用户名: 密码: 验证码:
电煤供应链碳排放过程及测度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:2009年哥本哈根世界气候大会上,我国承诺到2020年单位GDP能耗比2005年降低40%-45%,并以问责制的形式强制执行。为了将国家级的约束性指标分解到各个行业和各个地区,企业层面的碳排放测度方法及减排影响评估应是首先要解决的问题。
     本文以电煤供应链直接碳排放为研究对象,全面综述了电煤供应链、电煤供应链碳排放过程、测度方法及指标等研究现状;提炼出电煤供应链成员企业碳排放的计量方法;提出了成本-收益双向指标的企业碳强度和脱钩弹性测度方法,论证其有效性;构建了电煤供应链碳排放全过程仿真模型,再现了电煤供应链碳排放源、碳排放量及其与相应的成本-收益的关系,既解决企业碳排放测度方法的操作性,又可用于分析多种情景对碳排放测度指标及企业经济性的影响,可实现对电煤供应链减排给企业成本-收益带来的影响的动态监控,利于决策者制定减排对策。主要贡献如下:
     1.界定了煤炭供应链及电煤供应链的概念、内涵
     目前,煤炭供应链定义有煤炭企业供应链、煤炭行业供应链、煤炭供应链等,电煤供应链定义有煤电链、煤电产业链、电煤供应链等,并未统一。参考利丰集团及学者们对供应链的定义方法,给出了煤炭供应链和电煤供应链的概念,分析了概念的内涵(包括服务内容、边界和研究方法)及基本结构。此外,特别指出电煤供应链不应包括勘探环节及原因。
     2.提炼出电煤供应链各环节碳排放的计量方法
     电煤供应链包括煤炭生产、运输、消费三个环节,重点碳排放源的碳排放量可被较为准确的计量,但目前碳排放计量方法较多,核算标准有必要统一。
     生产环节煤层气排放的计量,若煤层气抽采统计数据完备,宜采用分源法,否则可依据《2006年IPCC国家温室气体清单指南》(简称"2006IPCC青单指南”),将煤层气与煤炭产量挂钩的方法计算。
     运输环节CO2的计量,由于电煤运输网络有“三定”的特点(服务对象确定、主要结点确定、主要运输方式确定),宜采用“经验公式+统计分析+'2006IPCC清单指南’”的方法,其中以经验公式确定电煤调运量,以统计分析方法确定三种运输方式(铁路、公路、水路)的占比,以"2006IPCC清单指南”确定碳排放因子。
     消费环节CO2的计量,若电厂脱硫装置排放数据完备,宜采用实测法,否则可采用排放系数法,依照锅炉效率及电煤碳排放系数计算。
     3.提出了成本-收益双向指标的企业碳排放测度方法,并论证了方法的有效性
     (1)近年来,以博弈论方法研究中央政府、地方政府、企业三者减排目标的文献较多,对当前研究成果的综述表明:在减排目标上地方政府和企业的利益具有较强的一致性,与中央政府则相对处于对立面;中央政府关注节能减排的效果,并采取关闭、罚款、停水停电等众多手段执行减排政策;地方政府更关注减排的影响,包括地方政府的经济增长,财政收入水平,地区人口的就业水平及地区稳定性;企业更关注减排对生产的影响,尤其对成本和收益的影响。
     (2)借鉴脱钩理论、投入-产出理论、碳强度概念,结合碳排放相关的成本-收益核算方法,提出了企业碳强度和脱钩测度方法。重点对电煤供应链成员企业碳排放相关的成本和收入构成进行分析,其中成本分析包括煤炭生产成本(不含电力)、煤层气发电成本、碳捕集和封存成本,收入分析包括煤层气发电收入、碳捕集和封存收入。以近年来我国电煤生产、运输、消费企业大量的实际数据,验证了测度方法的有效性,结果表明:
     ①电煤生产环节碳强度呈上升趋势,与煤层气排空量密切相关;成本脱钩弹性呈强负脱钩,原因是煤层气排空惩罚机制缺乏,煤层气排空与成本关联机制尚未建立;收入脱钩弹性呈扩张负脱钩,碳排放视角的解释是煤炭企业盈利能力增加是以煤层气排空为代价。
     ②电煤运输环节碳强度横向比较结果表明,电煤铁路运输碳强度远小于公路和水路运输方式,水路运输碳强度小于公路运输;公路收入脱钩弹性无明显规律,水路收入脱钩弹性呈脱钩状态。研究结果与电煤公路运输企业分散,节能减排管理薄弱,减排成效不明显,及水运领域减排取得卓越成效的现状吻合。
     ③电煤消费环节碳强度呈下降趋势,其中收入碳强度下降趋势较快,原因与发电煤耗率下降、电价提高密切相关;成本碳强度下降趋势较缓,原因是电煤价格上涨幅度过大,平抑了发电煤耗率下降的减排效果。成本脱钩弹性呈弱负脱钩,属不可持续状态,亟需国家出台相关政策来缓解;收入脱钩弹性呈强脱钩的良性状态。
     该部分研究成果证明了成本-收益双向指标的企业碳强度和脱钩弹性测度方法的有效性。
     4.构建了电煤供应链碳排放全过程仿真模型,并进行了实证研究
     (1)界定了电煤供应链整体投入-产出的边界,将煤炭企业电煤销售收入和运输企业运输收入内化为供应链内部收益;给出了模型建立的假设条件,包括电煤供应链收入假设、成本假设、碳排放假设;借助系统动力学方法,对碳排放计量方法、成本-收益核算方法、碳排放测度方法进行集成,构建了电煤供应链碳排放全过程仿真模型,再现了电煤供应链碳排放源、排放量及与其对应的成本-收益的相互关系及影响程度,解决了企业碳排放测度方法的操作性问题,也为后续实际应用奠定基础。
     (2)以晋城煤业集团寺河煤矿-大唐耒阳电厂电煤供应链为例,采用电煤供应链碳排放全过程仿真模型,分析了多种情景对碳排放测度指标及企业经济性的影响,并给出了针对性建议。
     实证研究结果表明:
     ①电煤供应链的减排应以提高煤层气利用率和降低火电厂发电煤耗率为主。若煤层气利用率达到典型电煤供应链水平,则可为供应链提供70%的减排潜力;若发电煤耗率年下降0.29g/kwh和0.45g/kwh,电煤供应链可实现到2020年单位GDP能耗降低40%和45%的目标。
     ②当前还不宜采用碳捕集和封存技术。在无国家补贴政策情况下,碳捕集和封存会使电煤供应链成本脱钩弹性和收入脱钩弹性均处于衰退脱钩状态。典型电煤供应链承受的最大捕集量为55万吨/年,若国家给火电企业发电补贴为0.028元/kwh,可弥补全部碳捕集和封存成本,此时碳强度下降幅度为5.03%。
     ③建立煤层气排空惩罚机制,健全煤层气补贴发放监督机制。目前,山西省1元/m3煤层气排空惩罚成本过低,典型电煤供应链建议煤层气惩罚成本不超过6元/m3。当前煤层气电厂国家补贴额度较为恰当,可使煤层气发电企业达到国际上的平均利润水平,重点应是保障补贴的发放。
     总的来说,本文比较深入的研究了电煤供应链碳排放过程及测度方法,论证了测度方法的有效性和可操作性,既在方法论上完善了企业碳排放测度方法,又在应用层面明确了电煤供应链减排的重点对象、重要环节及其承担的角色,拓展了碳减排的研究范围,为国家级减排指标向行业/企业层面减排指标的细分作了有益的探索和尝试。模型的运行结果还可为国家制定煤炭、电力等领域节能减排发展战略提供参考。
ABSTRACT:At Copenhagen Climate Change Conference in2009, Chinese government promised that China's energy consumption per unit of GDP would be reduced by40%-45%by2020in relation to2005levels. And this target will be enforced by accountability system. In order to decompose the national binding index into all industry and regions, it is essential to establish carbon emissions measurement method and impact assessment on carbon emissions at enterprise level.
     In the dissertation, the direct carbon emissions of electric-coal supply chain (ECSC) were systematically studied. A comprehensive literature review was made on the ECSC, including the carbon emissions process, measurement methods, and indicators. The carbon emissions accounting methods of ECSC were reconstructed and a new measurement method for carbon emissions was proposed and its effectiveness was demonstrated. The carbon emissions process simulation model (CEPS) of the ECSC was established, which has solved the operation issue of this method.
     The main contributions of this paper are as follows:
     1. The concepts and connotations of the coal supply chain (CSC) and the ECSC were defined.
     Currently, the definition of CSC refers to the coal enterprises supply chain, the coal industry supply chain, and the coal supply chain. The definition of ECSC refers to the coal-power chain, the coal-power industry chain, and the electric-coal supply chain. Based on the definitions of supply chain by Li&Fung Group and other scholars, the definitions of CSC and ECSC were given, and the connotations (their businesses, research borders, and methods) and the basic structure were analyzed. In addition, this paper specifically pointed out that the ECSC should not include the exploration sectors and its causes.
     2. The carbon emissions accounting methods of the ECSC were reconstructed.
     The ECSC includes coal production, transportation, and consumption. There are many carbon emissions accounting methods, so it is necessary to unify the carbon emissions accounting methods.
     (1)With regard to the accounting of coalbed methane (CBM) release in the production process, if the statistical data of CBM were complete, the sub-source method can be used. Otherwise, the2006IPCC Guidelines for National Greenhouse Gas Inventories (short for2006IPCC Inventories) can be applied to calculate CBM and coal yield simultaneously.
     (2)Since the electric-coal transportation network has the characteristics of defined clients, defined major nodes, and defined transportation modes, the empirical formula can be used together with statistical analysis and the "2006IPCC Inventories" method. Empirical formula determines the amount of electric-coal transportation volume, statistical analysis determines the proportions of the three types of transportation (railway, road, and waterway), and the "2006IPCC Inventories" determines the carbon emissions factors.
     (3)In the consumption process, the actual measurement method can be used to estimate the CO2emissions supposed that the emission data of the desulphurization device in the coal-fired power plant is complete. Otherwise, carbon emissions coefficient method would be better in estimation of CO2emissions based on boiler efficiency and carbon emissions factor of electric-coal.
     3. A carbon emissions measurement method at the industry or enterprise level was proposed, and its effectiveness was demonstrated.
     (1)In recent years, many studies have given insight into the different carbon emissions reduction targets of central government, local governments, and enterprises based on game theory. The literature review showed that local governments and enterprises have a strong consistency in the interests of carbon emissions reduction, but opposite to the central government. The causes are that the central government focused on the effects of carbon emissions reduction, and enforced carbon emissions reduction policies by many ways, including production suspension, fines, or cutting off water and electricity supply. The local governments gave more concerns to the impact of carbon emissions reduction, including the economic growth of the local government, financial income level, employment rate of the population in the region, and regional stability. Enterprises were more concerned about the impact of carbon emissions reduction on the production, especially the profit levels.
     (2)The carbon intensity and decoupling method at the industry or enterprise level was proposed based on the input-output theory, decoupling theory, the concept of carbon intensity, as well as related cost-revenue accounting methods. The composition of the costs and revenues of the ECSC enterprises was systematically analyzed, especially these costs of the coal production process (excluding electricity cost), CBM power plant, carbon capture and storage (CCS), and these revenues of CBM power plant and CCS. Moreover, the effectiveness of the method was further verified based on the data of recent years from coal production, transportation, and consumption of enterprises in China. The results showed that:
     ①Carbon intensity is on the rise in electric-coal production, closely related to the amount of CBM release. The cost elasticity showed a strong negative decoupling due to the lack of punishment mechanism, and the CBM release and costs associated mechanisms have not yet been established. Revenue elasticity is expansive negative decoupling, because the profit increase of the coal enterprises is at the cost of CBM release from a carbon emissions perspective.
     ②The horizontal comparison results of carbon intensity in electric-coal transport process showed that carbon intensity of electric-coal rail transport is far less than the road and waterway transportation, and carbon intensity of waterway transport is less than road transport. The pattern of road revenue elasticity is not obvious, whereas waterway revenue elasticity is obviously decoupled. These results showed that the electric-coal transport enterprises by road are dispersed greatly, and deficient in the management of carbon emissions reduction, thus the effect of carbon emissions reduction wasn't obvious. However, the effect of emissions reduction by water transportation is remarkable, which is in accordance to the current status.
     ③Carbon intensity in electric-coal consumption declines, among which revenue carbon intensity declines faster due to the decline in coal consumption rate (CCR) and the increase in the tariff, and the cost carbon intensity is of a more moderate downward trend, because the increase in electric-coal price is so fast that the reduction advantage of CCR cannot be gained. Cost elasticity is weak negative decoupling, which is not a sustainable state. Therefore, policies should be formulated urgently. Revenue elasticity is in a benign state of strong decoupling.
     The results of this part have proven the effectiveness and practicality of carbon intensity and decoupling method at the industry or enterprise level.
     4. The CEPS of the ECSC was established, and an empirical study was carried out.
     (1)The input-output boundary of the ECSC were defined, and coal sales revenue and transportation revenue were internalized as the revenue of the supply chain. Sufficient assumptions of the CEPS were provided, including the ECSC's revenue assumptions, cost assumptions, and carbon emissions assumptions. The system dynamics (SD) was used to construct the CEPS of the ECSC, integrating carbon emissions accounting methods, cost-revenue accounting methods, and carbon emissions measurement methods at the industry or enterprise level. This model has solved the operability of carbon emissions measurement method.
     (2)Taking the ECSC of Sihe Mine in Jincheng Coal Industry Group-Datang Leiyang power plant as an example, a variety of scenarios were simulated to examine the effect of different scenarios on the measurement indicators, and specific recommendations were put forward. The results showed that:
     ①The emissions reduction of the ECSC should give priority to the improvement of CBM utilization rate and reduction of CCR in the power plant. If the CBM utilization rate reached the case level, approximately70%of the emissions reduction potential of the ECSC can be achieved. If the CCR of the ECSC declined0.29g/kwh and0.45g/kwh annually, the target that China's energy consumption per unit of GDP can be reduced by40%-45%by2020can be achieved.
     ②Currently, it is not suitable to adopt CCS in carbon emissions reduction of ECSC. Without the subsidies from the nation, the cost of CCS will make the cost elasticity and revenue elasticity in a recessive decoupling. The study case can withstand the maximum carbon emissions reduction capacity of550,000tons per year. If the subsidy of¥0.028per kwh can be provided to thermal power enterprises by our country, all the costs associated with CCS can be compensated. In this circumstance, carbon intensity will declines5.03%.
     ③It is suggests that China should establish the punishment mechanisms of CBM release, and improve the supervision mechanisms of CBM subsidy payment. Currently, the penalty cost of CBM release in Shanxi Province is¥1.00per cubic meter, which is too low. The study case indicated that the penalty cost of CBM should not be more than¥6.00per cubic meter. The current amount of subsidy to CBM power plant is enough for power plants of CBM to reach the international average profits. The key issue is to ensure the granting of the subsidy.
     In conclusion, the carbon emissions process and measurement method of the ECSC were studied deeply, and its effectiveness and feasibility were demonstrated in the dissertation, which has filled the blank of CEPS at the industry or enterprise level in methodology, and illustrated the key targets of carbon emissions reduction, important links, and their important roles at the application level. This study has greatly expanded the research scope of carbon emissions reduction, and made a useful try in subdividing the national emissions reduction targets into industry or enterprise emissions reduction targets.In addition, the simulation results of the CEPS can also provide a reference for the country to formulate development strategies of energy saving and emissions reduction in such fields as coal and electricity.
引文
[1]赵承等.温家宝总理出席哥本哈根气候变化会议纪实[J].节能与环保,2010(01):1-4
    [2]丁仲礼.对我国2020年二氧化碳减排目标的粗略分析[N].科学时报,2010-04-27
    [3]任民.全球减排资金还差3万亿美元[N].中国贸易报,2009-11-3
    [4]袁军宝,江国成.我国节能与减排5年投入2万亿[N].深圳商报,2010-11-24
    [5]姜庆国,穆东等.到2020年中国实现减排目标的减排成本测算[J].北京交通大学学报(社会科学版),2013(01):1-10
    [6]胡芳.资金和技术成为节能减排的瓶颈[N].中国医药报,2008-12-04
    [7]陈迎.温室气体减排的主要途径与中国的低碳经济转型[J].科学对社会的影响,2010(01):46-51
    [8]严于龙.实现2020年CO2排放目标,调整能源消费结构最有效[J].中国经济报告,2010(03):26-31
    [9]陈诗一.能源消耗、CO2排放与中国工业的可持续发展[J].经济研究,2009(04):41-55
    [10]丁炜,朱林.火电厂CO2减排技术及成本探讨[J].电力科技与环保,2011(04):9-13
    [11]刘建功.煤炭企业应在节能减排工作中发挥重要作用[J].中国煤炭,2008(08):11-14
    [12]崔民选.2007年中国能源发展报告[M].北京:社会科学文献出版社,2007年03月
    [13]田小鹏.2009年第4季度动力用煤产品质量国家监督抽查结果与分析[J].大众标准化,2009(12):37-38
    [14]黄湘,孙育文.不同能源发电形式对环境的影响[J].中国电力,2008(02):48-50
    [15]马士华,林勇,陈志祥.供应链管理[M].北京:机械工业出版社,2000
    [16]国通供应链管理研究中心.供应链管理平台最佳实现方式[M].北京:机械工业出版社,2003
    [17]Fisher M L..What is right supply chain for your products[J].Harvard Business Review,1997,75(2):105-116
    [18]Mar Stevens.Integrating the Supply Chain[J].International Journal of Physical Distribution and Materials Management,1989(8):3-8
    [19]Harland C M..Supply chain management:relationship,chains and networks[J].British Journal of Management,1996,23(1):75-98
    [20]Hau L.Lee,Billington C..Managing supply chain inventory:pitfalls and opportunities[J].Sloan Management Review,1992(1):65-73
    [21]Christopher M.Logistics and supply chain management[M].Financial Times:Pintman Publishing,1992
    [22]Robert S.,KapIan,David P.Norton.The Balanced Scorecard-Measures That Drive Performance[J].Harvard Business Review,1992(1):71-79
    [23]Kraljic,P..Beyond Partnership:Strategies for Innovation and Lean Supply[M].Prentice Press,Newyork,1993
    [24]Robert S.KapIan,David P.Norton.Linking the Balanced Scorecard to Strategy[M].California Business Review,1996
    [25]Andy Neely,John MIIs.Ken latts.Performance measurement system design:developing and testing approcess-based approach[J].International Journal of Operations & Production Management,2000(10):1119-1145
    [26]B.M. Beamen.Designing the green supply chain[J].Logistics Information Management,1999,12 (4):332-342
    [27]Balan Sundarakani,Robert de Souza,etc.Modeling carbon footprints across the supply chain[J].International Journal of Production Economics,2010(128):43-50
    [28]Samir Elhedhli, Ryan Merrick.Green supply chain network design to reduce carbon emissions[J].Transportation Research Part D:Transport and Environment,2012(17):370-379
    [29]C. Peng, D. Yue.Study of object oriented structural description of flow supply chain[J].Journal of Nanjing Normal University(Engineering and Technology),2004(01):49-52
    [30]C. Peng, D. Yue.The research of opening functional structure of coal supply chain[J].Journal of China Coal Society,2003(03):326-331
    [31]J. S. Chen,L. J. Wang.Logistics and supply chain union of the coal enterprises[J].Management World,2004(11):148-149
    [32]W. K. Yao.Characteristics of even coal supply chain[J] Journal of China University of Mining & Technology (Social Sciences),2007(3):41-45
    [33]Liu Man-zhi,Zhou Mei-hua.The research on modeling of coal supply chain based on objectoriented Petri net and optimization[C].The 6th International Conference on Mining Science & Technology,Procedia Earth and Planetary Science 1,2009
    [34]赵怡晴,李翠平.煤炭企业推-拉式供应链战略研究[J].中国煤炭,2008(06):38-40
    [35]王艳梅,王晓松.煤炭行业供应链管理初探[J].中国煤炭,2007(9):22-23
    [36]Lv Tao. Coal Supply Chain System Structure and Coordination Mechanisms[J] Journal of China University of Mining & Technology(Social Science),2009(01)74-79
    [37]吴永平,宋华岭,李金克.煤炭资源供应链国际化系统的复杂性研究[J].中国矿业,2007(6):33-36
    [38]杨海贤,李新威.改善电煤供应链[J].中国电力企业管理,2004(07):30-31
    [39]黄文杰,郭晓鹏.发电集团公司电煤供应链能力成熟度模型及综合评价[J].华东电力,2010(02):271-276
    [40]马忠海等.中国煤电链温室气体排放系数及其与核电链的比较[J].核科学与工程,1999(03):268-275
    [41]马忠海.中国几种主要能源温室气排放系数的比较评价研究[D].中国原子能科学研究院博士研究生学位论文,2002年6月
    [42]潘自强等.核燃料链和煤燃料链对健康、环境和气候影响的比较[J].辐射防护,1996(01):15-30
    [43]姜子英.我国核电与煤电环境影响的外部成本比较[J].环境科学研究,2010(08):1086-1091
    [44]Jiang Zi-ying, PAN Zi-qiang,etc.Comparison of External Cost of Nuclear Power Chain and Coal Power Chain in China[J].Radiation Protection and Environmental Protection,2008(07):269-270
    [45]姜子英.我国核电与煤电的外部成本研究[D].清华大学博士学位论文,2008年6月
    [46]孙媛.中国电煤可应用基准价格研究[D].复旦大学博士学位论文,2008年6月
    [47]Wang Y F, Feng X..Exergy analysis involving resource utilization and environmental influence[J].Computers and Chemical Engineering,2000,(24):1243-1246
    [48]罗玉萍.煤电转化材料过程工程研究[D].大连理工大学博士学位论文,2008年6月
    [49]于立宏.需求波动下的中国煤电产业链纵向安排与经济规则研究[D].复旦大学博士学位论文,2006年4月
    [50]陈红敏.国际碳核算体系发展及其评价[J].中国人口&资源与环境,2011(09):111-116
    [51]IPCC.2006 IPCC Guidelines for National Greenhouse Gas Inventories,1.1 Introductions[M]. IPCC,2006
    [52]龙世叇.火力发电厂温室气体排放控制[J].云南电力技术,2005(10):31-32
    [53]孙建卫,赵荣钦等.1995-2005年中国碳排放核算及其因素分解研究[J].自然资源学,2010(08):1284-1295
    [54]于海琴,李进等.火力发电企业CO2排放量和减排分析[J].北京交通大学学报(社会科学版),2010(06):101-105
    [55]刘竹,耿涌等.城市能源消费碳排放核算方法[J].资源科学,2011(7):1325-1330
    [56]Eder P,Narodoslawsky M..What Environmental Pressures Are a Region's Industries Responsible for? A Method of Analysis with Descriptive Indices and Input-Output Models[J].Ecological Economics,1999,66(3):359-374
    [57]Bastianoni S,Pulselli F M,Tiezzi E..The Problem of Assigning Responsibility for Greenhouse Gas Emissions[J].Ecalogical Economics,2004,49(3):253-257
    [58]Hoekstra R,Jansscn M A..Environmental Responsibility and Policy in a Two-country Dynamic Input-output Model [J].Economic Systems Research,2006,18(1):61-84
    [59]Peters G P,Hertwich E G..CO2 Embodied in International Trade with Implications for Global Climate Policy[J].Environmental Science & Technology,2008,42(5):1401-1407
    [60]Peters G P,Hertwieh E G..Post-Kyoto Greenhouse Gas Inventories:Production Versus Consumption[J].Climatic Change,2008(86):51-66
    [61]Baumann,A.M. Tillman.The Hitch Hiker's Guide to LCA[M]. Sweden:Student litteratur,2004
    [62]李政,王哲等.我国CO2排放控制的一些思考[J].中国科学基金,2008(04):211-216
    [63]沈卫国,蔡智等.浅谈水泥混凝土工业低CO2排放技术[J].新世纪水泥导报,2008(04):1-6
    [64]尚春静,张智慧.建筑生命周期CO2排放核算[J].工程管理学报,2010(01):7-13
    [65]Jingheng Zhang, Lauren Basson,etc. Review of Life Cycle Assessment Studies of Coal-fired Power Plants with Carbon Captureand Storage[C].1st International Conference on Sustainable Power Generation and Supply,2009
    [66]M. Pehnt and J. Henkel.Life cycle assessment of carbon dioxide capture and storage from lignite power plants[J].Greenhouse Gas Control,2009(1):49-66
    [67]N. A. Odeh and T. T. Cockerill.Life cycle GHG assessment of fossil fuel power plants with carbon capture and storage[J].Energy Policy,2007:367-380
    [68]N. A. Odeh and T. T. Cockerill.Life cycle emissions from fossil fuel power plants with carbon capture and storage[C].Proceedings of the Third International conference on clean coal technologies, Cagliari, Italy,May 2007
    [69]WBCSD/WRI.The Greenhouse Gas Protocol.A Corporate Accounting and Reporting Standard[EB/OL].2004.http://pdf.wri.org/ghg_protocol_2004.pdf
    [70]Ge Linshan,Robin Kamper,The Establishment of China's Carbon Accounting System[J].Resources Inhabitant Environment,2009(15):60-67
    [71]吴晓蔚,朱法华等.火力发电行业温室气体排放因子测算[J].环境科学研究,2010(02):170-176
    [72]苏达根,叶华.关于水泥窑SO2放量的物料衡算法[J].环境工程,2009(03):33-35
    [73]York R,Rosa E A,Dietz T..STIRPAT,IPAT and IMPACT:Analytic tools for unpacking the driving forces of environmental impacts[J].Ecological Economics,2003,46(3):351-365
    [74]Ehrlich P R,Holden J P..Impact of population growth[J].Science,1971(171):1212-1217
    [75]Kaya Y..Impact of carbon dioxide emission control on GNP growth:Interpretation of proposed scenarios [R].Paris:IPCC Energy and Industry Subgroup,Response Strategies Working Group,1990
    [76]Park S H..Decomposition of industrial energy consumption:An alternative method[J].Energy Economics,1992,14(4):265-270
    [77]Chun bo Ma,David I..China's changing energy intensity trend:A decomposition analysis[J].Energy Economics,2008 (3):1037-1053
    [78]李国志,李宗植.中国二氧化碳排放的区域差异和影响因素研究[J].中国人口&资源与环境,2010(5):22-27
    [79]李国志,李宗植.我国二氧化碳排放的特点及影响因素分析[J].广西财经学院学报,2011 (1):56-62
    [80]李忠民,孙耀华.基于IPAT公式的省际间碳排放驱动因素比较研究[J].科技进步与对策,2011(2):39-42
    [81]查冬兰,周德群.地区能源效率与二氧化碳排放的差异性——基于Kaya因素分解[J].系统工程,2007(11):65-71
    [82]徐国泉,刘则渊等.中国碳排放的因素分解模型及实证分析:1995-2004[J].中国人口&资源与环境,2006(6):158-161
    [83]郝千婷,黄明祥等.碳排放核算方法概述与比较研究[J].中国环境管,2011(04):51-55
    [84]http://cdm.ccchina.gov.cn,中国清洁发展机制网:EB通过的方法学一览
    [85]王乾明,李千.浅谈中国CDM新现状[J].北方经济,2012(01):14-15
    [86]陈杰等.积极应对外资大量进入中国碳交易市场的政策研究[J].区域金融研究,2011(08):55-59
    [87]洪大剑,张德华.C02减排途径[J].电力环境保护,2006(12):5-9
    [88]Paeala S.,Socolow R..Stabilization wedges:solving the climate problem for the next 50 years with current technologies [J].Science,2004(5):968-972
    [89]孙丽梅,白艳英.温室气体减排现状及对策[J].上海电力学院学报,2010(6):237-242
    [90]张仁健,王明星.中国CO2排放源现状分析[J].气候与环境研究,2001(03):321-327
    [91]刘强,郭民臣.环保高效的整体煤气化燃气-蒸气联合循环发电[J].节能与环保,2005(07):40-42
    [92]倪维斗,李政等.以煤气化为核心的多联产能源系统-资源/能源/环境整体优化与可持续发展[J].中国工程科学,2000(08):59-68
    [93]倪维斗,郑洪等.多联产系统:综合解决我国能源领域五大问题的重要途径[J].动力工程,2003(02):2245-2251
    [94]倪维斗,张斌.多联产能源系统与CO2减排[J].中国能源,2005(04):17-22
    [95]张雷,黄园淅等.中国CO2排放区域格局变化与减排途径分析[J].资源科学,2010(2):211-217
    [96]任玉珑,黄守军等.电力市场中厂网合作的CO2减排调度模式研究[J].技术经济,2010(02):89-114
    [97]Bert Metz,Ogunlade Davidson,Heleen Coninck,etc.IPCC Specoal Report on Carbon Dioxid Capture and Storage[M]. Cambridge:Cambridge University Press,2005
    [98]Dolf Gielen.Prospects for CO2 capture and storage[M].Cambridge:Cambridge University Press,2005
    [99]Davison,J.E..CO2 capture and storage and the IEA Greenhouse Gas R&D programme[J].Workshop on CO2 issues,2005(03):112-165
    [100]IEA.Retrofit of CO2 capture to natureal gas combined cycle power plants[R]. IEA GHG Report,2005
    [101]IEA.Improvements in power generation with post-combustion caputure of CO2 [R].IEA GHG Report,2004
    [102]Allam,R.J,E-P-Foster,V.E.stein.Improving Gasification Economics through ITM Oxygen Interation[C].Proceedings of the Fifth Institution of Chemical Engineer(UK)European Gastification conference,2002
    [103]Larson,E.D.,T.Ren.Synthetic fuels production by indirect coal liquefaction[J].Energy for Sustainable Development,2003(4):79-102
    [104]Dillon,D.J.,R.S.Panesar,R.A.Wall,et al.Oxy-combustion processes for CO2 capture from advanced supercritical PF and NGCC power plant[C].Proceedings of 7th International Conference on Greenhouse Gas Control Techologies,2004
    [105]Mc Donald,M.and M.Palkes.A design study for the application of CO2/O2 combustion to an existing 300 MW coal-fired boiler[C].Proceedings of Combustion Canada 99 Conference-Combustion and Global Climate Change,1999
    [106]霍恩比著,李北达译.牛津高阶英汉双解词典(第四版)[M].牛津大学出版社,1997
    [107]刘国风,王永.基于EMIMIC模型的灰色经济测度[J].现代财经,2011(09):51-58
    [108]靖继鹏,马哲明.信息经济测度方法分析与评价[J].情报科学,2003(08):785-792
    [109]Marc U. Porat.Rise of the Knowledge Worker:chapter 8-The Information Economy: Definition and Measurement[M]. Butterworth-Heinemann Ltd,1998
    [110]D. Quah. Economic Growth Measurement[J].International Encyclopedia of the Social & Behavioral Sciences,2001(09):4093-4098
    [111]Marcel Boumans.Measurement in economic systems[J]. Measurement,2005(38):275-284
    [112]Weizs cker, E. U.V., Lovins, A. B., Lovins, L. H.. Factor Four. Doubling Wealth Halving Resource Use [M]. London:Earthscan Press,1997
    [113]OECD.Indicators to Measure Decoupling of Environmental Pressure and Economic Growth[R].Paris:OECD,2002.
    [114]Climent F,Pardo A..Decoupling factors on the energy output linkage:The Spanish case[J]. Energy policy,2007(3):522-528
    [115]Gray D,Anable J,Illingworth L.,etc..Decoupling the link between economic growth,transport growth and carbon emissions in Scotland [EB/OL].http://en.scientificcommons.org/42399527
    [116]Kveiborg, O., Fosgerau, M.. Decomposing the decoupling of Danish road freight traffic growth and economic growth[J]. Transport Policy,2007 (1):39-48
    [117]Sorrella, S., Lehtonena, M., Stapletona,L.. Decoupling of road freight energy use from economic growth in the United kingdom[J]. Energy policy,2009,(8):3115-3129
    [118]Lu I J,Lin Sue J,Lewis C.Decomposition and decoupling effects of carbon dioxide emission from highway transportation in Taiwan,Germany,Japan and South Korea[J].Energy Policy,2007 (6): 3226-3235
    [119]陆钟武,王鹤鸣,岳强.脱钩指数:资源消耗、废物排放与经济增长的定量表达[J].资源科学,2011,33(1):2-9
    [120]钟太洋,黄贤金等.资源环境领域脱钩分析研究进展[J].自然资源学报,2010(08):1400-1422
    [121]王虹,王建强,赵涛.我国经济发展与能源、环境的“脱钩”“复钩”轨迹研究[J].统计与决策,2009(17):56-59
    [122]王鹤鸣,岳强,陆钟武.中国1998-2008年资源消耗与经济增长的脱钩分析[J].资源科学,2011(09):1757-1767
    [123]王崇梅.中国经济增长与能源消耗脱钩分析[J].中国人口&资源与环境,2010(03):45-49
    [124]王崇梅.基于中国样本探析经济增长与能源消耗脱钩[J].山东工商学院学报.2009(06):1-3
    [125]于法稳.经济发展与资源环境之间脱钩关系的实证研究[J].内蒙古财经学院学报,2009(03):44-47.
    [126]李忠民,姚宇,庆东瑞.产业发展、GDP增长与二氧化碳排放脱钩关系研究[J].统计与决策,2010(11):108-111
    [127]李忠民,庆东瑞.经济增长与二氧化碳脱钩实证研究——以山西省为例[J].福建论坛(人文社会科学版),2010(02):67-73
    [128]王云,张军营,赵永椿,郑楚光.基于CO2排放因素模型的“脱钩”指标构建与评估——以山西省为例[J].煤炭学报,2011(03):507-514
    [129]孙耀华,李忠民.中国各省区经济发展与碳排放脱钩关系研究[J].中国人口&资源与环境,2011(05):87-93
    [130]刘怡君,王丽,牛文元.中国城市经济发展与能源消耗的脱钩分析[J].中国人口&资源与环境,2011,21(1):70-77.
    [131]邓华,段宁.“脱钩”评价模式及其对循环经济的影响[J].中国人口&资源与环境,2004(12):44-47
    [132]王明霞.脱钩理论在浙江循环经济发展模式中的运用[J].林业经济,2006(12):40-43
    [133]杨璐嘉.四川省建设占用耕地与经济发展的脱钩分析[J].国土与自然资源研究,2011(08):23-28
    [134]汪奎.中国用水量与经济增长的脱钩分析[J].灌溉排水学报,2011(06):18-23
    [135]段宁,邓华.“上升式多峰论”与循环经济[J].世界有色金属,2004(10):7-10
    [136]段宁,邓华.“上升式多峰论”与循环经济[J].世界有色金属,2004(11):9-13
    [137]赵一平,孙祁红,段宁.中国经济发展与能源消费响应关系研究——基于相对“脱钩”与“复钩”理论的实证研究[J].科研管理,2006(3):128-134
    [138]J.W.Sun. Is CO2 emission intensity comparable?[J].Energy Policy,28(2000):1081-1084
    [139]国家统计局.中国统计年鉴2010[EB/OL].http://www.stats.gov.cn
    [140]陈春华,路正南.我国碳强度的影响因素及其路径分析[J].统计与决策,2012(02):96-98
    [141]James B. Ang. CO2 Emissions, Energy Consumption, and Output in France[J].Enemy Policy, 2007(35):27-58
    [142]林伯强,蒋竺均.中国二氧化碳的环境库茨涅茨曲线预测及影响因素[J].管理世界,2009(04):19-23
    [143]朱永彬,王铮等.基于经济模拟的中国能源消费与碳排放高峰预侧[J].地理学报,2009,64(3):34-40
    [144]Lee,Chien-Chiang,Lee,Jun-De.Income and CO2 Emissions:Evidence From Panel Unit Root and Co-integration Tests[J].Energy Policy,2009(02:23-45
    [145]Ferda,Halicioglu.An Econometric Study of CO2 Emissions,Energy consumption,Income and Foreign Trade in Turkey[J].Energy Policy,2009(03):12-34
    [146]Ying Fan,Lan-Cui Liu,Gang Wu.Changes in Carbon Intensity in China:Empirical Findings from 1980-2003 [J].Ecological Economics,2007(62):98-132
    [147]Emmanouil Hatzigeorgiou,Heracles Polatidis,Dias Haralambopoulos.CO2 Emissions in Greece for 1990-2002:A Decomposition Analysis and Comparison of Results Using the Arithmetic Mean Divisia Index and Logarithmic Mean Divisia Index Techniques[J].Energy,2008(33):132-187
    [148]朱江玲,岳超等.1850-2008年中国及世界主要国家的碳排放[J].北京大学学报(自然科学版),2010(04):497-504
    [149]岳超,胡雪洋.1995-2007年我国省区碳排放及碳强度的分析[J].北京大学学报(自然科学版),2010(04):510-516
    [150]高鹏飞,陈文颖.碳税与碳排放[J]清华大学学报(自然科学版),2002(10):1335-1338
    [151]Bernard P.Herber and Jose T.Raga.An International carbon tax to combat global warming:an economic and political analysis of the European Union proposal[J].American Journal of Economics and Sociology,1995(3):257-267
    [152]Lawrence H.Goulder.Carbon tax design and US industry performance[J].Tax Policy and the Economy,1992(6):59-104
    [153]David Pearce.The role of carbon taxes in adjusting to global warming[J].The Economic Journal,1991 (407):938-948
    [154]Miles Young.Beautifying the ugly step-sistendesigning an effective cap-and-trade program to reduce greenhouse gas emissions[J].Brigham Young University Law Review,2009(5):120-138
    [155]Bergman L.General equilibrium effects of environmental policy:a CGE modeling approach[J].Environmental and Resource Economics,1991(1):43-61
    [156]贺菊煌,沈可挺等.碳税与二氧化碳减排的CGE模型[J].数量经济技术经济研究,2002(10):39-47
    [157]Dellinkr W W.CGE analysis of the impact of a carbon energy tax on the Irish economy[J].Ecological Economics,2007(4):671-683
    [158]朱永彬,刘晓,王铮.碳税政策的减排效果及其对我国经济的影响分析[J].中国软科学,2010(4):1-9
    [159]Wenying Chen.The costs of mitigating carbon emissions in China:findings from China MARK AL-MACRO modeling[J].Energy Policy,2005(05):885-896
    [160]Paltsev S., Reilly J., Jacoby H.,etc..The MIT Emissions Prediction and Policy Analysis (EPPA) Model:Version 4[R].MIT Joint Program on the Science and Policy of Global Change,2005
    [161]秦少俊,张文奎等.上海市火电企业二氧化碳减排成本估算——基于产出距离函数方法[J].工程管理学报,2011(6):704-708
    [162]丁炜,朱林.火电厂CO2减排技术及成本探讨[J].电力科技与环保,20111(04):9-14
    [163]Marina Fischer-Kowalski.Society's Metabolism:Origins and Development of the Material Flow paradigm[C].Regional and National Material Flow Accounting:From Paradigm to Practice of Sustainability,Wuppertal Special 4:16-23
    [164]Fischer-Kowalski M..Society-metabolism,the intellectual history of materials flow analysis,Part 1:1860-1970[J] Journal of Industrial Ecology,1998,2(l):61-78.
    [165]鲁静.国内外低碳经济综合评价方法评述[J].中国投资,2010(08):99-103
    [166]谢明辉,乔琦,孙启宏.清洁生产减排潜力分析方法研究[J].环境科学与技术,2011(12):318-321
    [167]Stockholm Environment Institute(SEI), Tellus Institute. LEAP:Long Range Energy Alternative Planning System, User Guide for LEAP 2006[EB/OL]. http://www.energycommunity.org/documents/Leap 2006 User Guide English.pdf,2009-08-25
    [168]Shin H C,Park J W,Kim H S,etc..Environmental and economic assessment of landfill gas electricity generation in Korea using LEAP model [J].Energy Policy,2005,33:1261-1270
    [169]Zhang Q Y,Tian W L,Wei Y M,etc..External costs from electricity generation of China up to 2030 in energy and abatement scenarios[J].Energy Policy,2007,35:4295-4304
    [170]Dhakal S..Implications of transportation policies on energy and environment in Kathmandu Valley,Nepal[J].Energy Policy,2003(31):1493-1507
    [171]Pradhan S,Ale B B,Amatya V B..Mitigation potential of greenhouse gas emission and implications on fuel consumption due to clean energy vehicles as public passenger transport in Kathmandu Valley of Nepal:a case study of trolley buses in Ring Road[J].Energy,2006(31):1748-1760
    [172]Limmeechokchai B,Chawana S..Sustainable energy development strategies in the rural Thailand:the case of the improved cooking stove and the small biogas digester[J].Renewable and Sustainable Energy Reviews,2007(11):818-837
    [173]尹科,彭晓春等.我国物质流研究述评[J].环境保护与循环经济,2009(01):15-19
    [174]利丰研究中心.供应链管理:香港利丰集团的实践(第2版)[M].中国人民大学出版社,2009.8
    [175]王超,穆东,姜庆国.煤炭产供链的碳排放经济测度模型和治理效益模型研究[J].北京交通大学学报(社会科学版),2011(04):64-70
    [176]张婧.管理科学的新热点:供应链管理[J].决策借鉴,2000(04):9-11
    [177]David Frederick Ross.Competing Through Supply Chain Management [M].Chapman&Hall, 1998
    [178]John Fernie,Leigh Sperks.Logistics and Retail Management:Insights into current Practice and trends from leading experts [M].Kogan Page limited,1999
    [179]李生红,丁祥发.中国煤炭地质钻探技术发展五十年[J].中国煤田地质,2009(06):77-80
    [180]袁清和.基于作业的煤炭企业成本管理体系研究[D].山东科技大学博士学位论文,2009.5
    [181]于励民.矿山固定设备选型使用手册[M].煤炭工业出版社,2009.3
    [182]煤炭专业委员会.采掘机械[M].煤炭工业出版社,2007,12
    [183]王宏.煤炭洗选加工实用技术[M].徐州:中国矿业大学出版社,2010,6
    [184]杜斌.煤层气采气过程分析[J].经营管理者,2011(01):388
    [185]宋岩,张新民.煤层气成藏机制及经济开采理论基础[M].北京:中国科学出版社,2005.1:204-214:李建武,张培河,郑玉柱.煤层气资源量计算方法述评
    [186]何国益.矿井瓦斯治理实用技术[M].北京:煤炭工业出版社,2011
    [187]王魁军,程五一.矿井瓦斯涌出理论及预测方法[M].北京:煤炭工业出版社,2009
    [188]国家安全生产监督管理总局.煤矿瓦斯涌出量预测方法AQ1018-2006.2006年2月27日公布,2006年6月1日实施
    [189]李五忠,赵庆波,吴国干.中国煤层气开发与利用[M].北京:石油工业出版社,2008
    [190]刘利军,关晓吉.浅谈我国煤炭物流的发展模式[J].山东工商学院学报,2009(2):27-28
    [191]俞恒.煤炭物流系统研究与分析[J].科技情报开发与经济,2007(14):246
    [192]钱卫忠.中国沿海煤炭运输市场分析[D].上海海事大学博士学位论文.2004
    [193]罗阳.各种运输方式对煤炭的分担现状及发展趋势[J].中国铁路,2001(02):38
    [194]荣朝和.煤炭物流对我国铁路运输的影响与挑战[J].中国铁路,2007(12):31-35
    [195]关达.浅议铁路煤炭运输改革[J].科技创新导报,2010(13):241
    [196]郭文龙.“三西”煤炭公路外运分析[J].中国经贸导刊,2011,(02):23-24
    [197]段七零.我国运煤通道现状与优化对策研究[J].中国能源,2007,(06):27-32
    [198]王明志.2005年我国水路运输经济形势分析[J].综合运输,2005(02):8-11
    [199]管小俊.煤炭物流运输网络风险评价及均衡保持关键问题研究[D].北京交通大学博士学位论文,2010
    [200]陆秀令,张忠贤,谷劲松.煤炭装卸线自动化技术[J].电工技术,2003(04):46-47
    [201]傅志寰,胡继思等.中国交通运输中长期节能问题研究[M].北京:人民交通出版社,2011
    [202]梅娟等.交通运输领域温室气体减排与控制技术[M].北京:化学工业出版社,2009
    [203]国家气候变化对策协调小组办公室.中国温室气体清单研究[M].北京:中国环境科学出版社,2007
    [204]夏建德,任玉珑.中国煤电能源链的生命周期碳排放计算[J].统计研究,2010(08):82-89
    [205]陈俊武.就《中国会不会走向“半个”工业化?》与何祚庥院士商榷[N].科学时报,2010-3-9
    [206]关高峰,董千里.基于低碳物流的煤炭运输灰色关联分析[J].物流技术,2011(04):85-87
    [207]马驹.全国主要煤炭基地煤炭运输铁路水路分工研究[J].铁道工程学报,2012(06):21-23
    [208]周新军.我国铁路能源消耗和节能现状[J].中外能源,2012(03):87-92
    [209]潘家华,陈迎,李晨曦.碳预算方案的国际机制研究[M].北京:经济科学出版社,2009.12
    [210]熊信银.发电厂电气部分[M].北京:中国电力出版社,2004.8
    [211]李青,潘焰平,宋淑娜.火力发电厂节能减排手册[J].北京:中国电力出版社,2010.1
    [212]国电太原第一电厂.除灰除尘系统和设备[M].北京:中国电力出版社,2009.8
    [213]黄成群,靳智平.火电厂辅助生产设备及系统[M].北京:中国电力出版社,2009.12
    [214]张仁志.“十二五”减排挑战与对策探讨[J].中国环境管理干部学院学报,2011(5):6-9
    [215]郭俊华,陈铭萱.我国节能减排政策执行阻滞及其消解对策研究——基于博弈论视角的分析[J].太平洋学报,2011(11):65-73
    [216]杨亚琴,邱菀华.强制减排机制下政府与企业之间的博弈分析[J].系统工程,2012(2):110-114
    [217]陈忠全,赵新良.节能减排过程的博弈分析[J].中国地质大学学报(社会科学版),2009(01):54-59
    [218]冯媛媛.政府引导企业实施节能减排的博弈分析[J].集体经济,2011(03):90-91
    [219]黄鑫,陶小马.节能减排管制政策的博弈分析[J].广西大学学报(自然科学版),2008(03):322-326
    [220]Tapio, P..Towards a theory of decoupling:Degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001[J].Transport Policy,2005,12(2):137-151.
    [221]Tapio, P., Banister, David, Luukkanen, Jyrki, etc.. Energy and transport in comparison: Immaterialisation, dematerialisation and decarbonisation in the EU15 between 1970 and 2000[J]. Energy Policy,2007,35(1):433-451.
    [222]李忠民,宋凯,孙耀华.碳排放与经济增长脱钩指标的实证测度[J].统计与决策,2011(14):86-88
    [223]隋姗姗.节能减排:重新审视会计报表[J].市场周刊(理论研究),2008(04):121-122
    [224]段君亮.节能减排呼唤环境会计——加拿大环境会计的发展及其启示[J].国际商务财会,2008(06):38-39
    [225]佘洪元.煤炭企业开采成本变革与应对策略[J].经济研究导刊,2010(09):12-15
    [226]高殿军.煤炭产品的完全成本核算框架研究[J].山东工商学院学报,2010(03):29-34
    [227]王炜清.煤炭企业成本管理的几种方法[J].商业经济,2010(03):43-44
    [228]袁清和.基于作业的煤炭企业成本管理体系研究[D].山东科技大学博士学位论文,2009.4
    [229]赵海龙.煤炭企业成本构成及其控制问题研究[D].华中科技大学博士学位论文,2010.4
    [230]邹绍辉.基于期权的煤炭资源采矿权估价方法研究[D].西安科技大学博士学位论文,2009
    [231]《矿业权评估指南》修订小组.矿业权评估指南[M].北京:中国大地出版社,2004.12
    [232]詹朝阳,崔彬.国外矿业权评估方法综述[J].中国矿业,2003(12):16-18.
    [233]吴志刚,张锦河.新会计准则应用研究——《煤炭企业会计核算办法》设计[M].北京:中国矿业大学出版社,2009.3
    [234]中华人民共和国住房和城乡建设部.煤炭建设项目经济评价方法与参数[M].北京:中国计划出版社,2009.12
    [235]史志清.煤炭安全成本[J].当代矿工,1998(9):21-22
    [236]杨世勇,苏海雁.煤炭企业安全成本问题初探[J].内蒙古煤炭经济,2006(03):39-40
    [237]张士强,潘德惠,姚庆国.煤炭安全成本及其变动趋势分析[J].安全与环境学报,2005(08):109-113
    [238]联合国环境规划署.产业与环境[M].北京:计划出版社,2000.10
    [239]郭道扬.绿色成本控制初探[J].财会月刊,1997(05):20-23
    [240]罗国民,刘苍劲.经济发展论[J].广东商学院学报,1999(01):43-47
    [241]李永峰.煤炭资源开发对矿区资源环境影响的测度研究[M].徐州:中国矿业大学出版社,2008(06):243-244
    [242]茅于轼,盛洪等.煤炭的真实成本[M].北京:煤炭工业出版社,2008.10
    [243]刘耀彬,宋文君.国内矿业城市接续产业研究进展与展望[J].煤炭经济研究,2010(08):12-14
    [244]宋毅成,张新.解读资源枯竭型城市的产业接续问题[J].中国城市经济,2011(01):23-27
    [245]薛文林.山西省煤矿吨煤成本变化及其成因分析[J].煤矿现代,2010(02):9-10
    [246]钱伯章,朱建芳.煤层气资源及其利用[J].节能与环保,2006,(12):17-20
    [247]袁亮.中国煤矿区煤层气清洁发扎机制项目开发理论与实践[M].北京:煤炭工业出版社,2008
    [248]霍喜福.关于山西煤层气发电价格的调查[J].中国能源,2008(02):39-41
    [249]毛庆国,陈贵峰,谢华.我国煤矿区煤层气发电方案分析[J].中国煤层气,2009(10):32-34
    [250]房颖.中国煤炭进出口变化研究[J].现代商贸工业,2011(03):70-71
    [251]曾少军.碳减排:中国经验——基于清洁发展机制的考察[M].北京:社会科学文献出版社,2010
    [252]欧国立.轨道交通运输经济[M].北京:中国铁道出版社,2010
    [253]帅斌等.交通运输经济[M].四川:西南交通大学出版社,2010.10
    [254]中国国电集团公司.中国国电集团公司综合统计分析系统指标解释[J].国电集团文件,2003(8):1-45
    [255]柴忠信.发电企业成本管理与分析[M].北京:中国电力出版社,2008.10
    [256]牛东晓,刘崇明.火电企业价值链战略成本管理[M].沈阳:辽宁大学出版社,2010
    [257]陈卯凤.从火电厂成本习性分析谈成本管理[J].财会之窗,2009(06):171-172
    [258]魏一鸣,廖华等.中国能源报告(2010):能源效率研究[M].北京:科学技术出版社,2010
    [259]陈亮.火电企业环境成本控制与决策研究[D].辽宁工程大学博士学位论文,2010
    [260]孙欣.燃煤电厂二氧化碳捕集与储存技术[J].中国煤炭,2008(04):96-99
    [261]胥蕊娜,陈文颖.电厂中CO2捕集技术的成本及效率[J].清华大学学报(自然科学版),2009(09):103-106
    [262]Metz B, Davidson O, de Coninck HC, etc.. IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group Ⅲ of the Intergovernmental Panel on Climate Change [M]. Cambridge University Press,2005
    [263]安祥华,姜昀.我国火电行业二氧化碳排放现状及控制建议[J].中国煤炭,2011(01):108-111
    [264]巢清尘,陈文颖.碳捕获和存储技术综述及对我国的影响[J].地球科学进展,2006(03):291-298
    [265]郑学栋,张松涛.燃煤电厂CO2捕集技术与经济分析[J].上海化工,2011(05):19-23
    [266]绿色煤电有限公司.挑战全球气候变化——二氧化碳捕集与封存[M].北京:中国水利水电出版社,2008.7:181
    [267]王其藩.系统动力学[M].北京:清华大学出版社,1994
    [268]钟永光,贾晓菁,李旭等.系统动力学[M].北京:科技出版社,2009
    [269]Forrester J. W.. Industrial Dynamics[M].Pegasus Communications:Waltham,1961
    [270]Forrester JW..Counterintuitive behavior of social systems[J].Technology Review,1971 (3):52-68
    [271]Forrester J. W..World Dynamics[M].Pegasus Communications:Waltham,1971
    [272]Forrester J.W. The model versus a modeling process[J].System Dynamics Review,1985 (1): 133-134
    [273]秦钟,章家恩等.我国能源消费与CO2排放的系统动力学预测[J].中国生态农业学报,2008年7月,16(4):1043-1047
    [274]梁大鹏.基于电力市场的中国CCS商业运营模式及仿真研究[J].中国软科 学,2009(2):151-164
    [275]P. Kunsch, J.Springael. Simulation with system dynamics and fuzzy reasoning of a tax policy to reduce CO2 emissions in the residential sector[J].European Journal of Operational Research,2008(07):1285-1299
    [276]Brans J.P.,Macharis C., Kunsch P.L., Chevalier A.,Schwaninger M..Combining multicriteria decision aid and system dynamics for the control of socio-economic processes. An iterative realtime procedure[J].European Journal of Operational Research,1998,109 (2):428-441
    [277]Brans, J.P., Kunsch, P.L., Mareschal, B.. Management of the Future. A system dynamics and MCDA approach[M]. Kluwer Academic Publishers,2002
    [278]Bernhard J. Angerhofer,Marios C. Angelides.System dynamics modelling in supply chain management:research review[C].Proceedings of the 32nd conference on Winter simulation,2000
    [279]张力菠,韩玉启,陈杰.生产能力扩大的系统动态性研究[J].系统仿真学报,2006(05):1327-1378
    [280]张力菠,韩玉启,陈杰.基于时间的供应商管理库存整合补货模式下的牛鞭效应研究[J].计算机集成制造系统(CIMS),2006(09):1516-1524
    [281]杨瑞广,范英,魏一鸣.煤炭投资一供应的系统动力学分析模型[J].数理统计与管理,2005(09):199-203
    [282]艾德春,程伟,韩可琦.基于系统动力学的我国煤炭生产总量预测研究[J].煤炭技术,2010(05):35-37
    [283]Ying Fan,Rui-Guang Yang,Yi-Ming Wei.A system dynamics based model for coal investment[J].Energy,2007 (06):898-905
    [284]谭玲玲.电力行业煤炭需求系统动力学模型[J].系统工程理论与实践,2009(07):55-64
    [285]李兰兰,黄飞,於世为.基于SD-MOP的煤炭产业链系统仿真与优化[J].中国地质大学学报(社会科学版),2012(05):24-33
    [286]王帮俊,杨东涛.基于系统动力学视角的煤炭产业链自组织演化过程与仿真[J].武汉理工大学学报(社会科学版),2011(05):680-687
    [287]刘冰.中国煤、电产业纵向关系:决定因素与模式选择[M].北京:经济管理出版社,2010
    [288]何继善.煤矿不是开发煤层气的主体[J].能源评论,2011(10):25-26
    [289]任明胜.简析CDM机制与我国煤炭企业煤层气开发利用水平的提高[J].煤炭经济研究,2006(09):21-22
    [290]霍喜福.关于山西煤层气发电价格的调查[J].中国能源,2008(02):3941
    [291]薛晋华.煤炭洗选加工在洁净煤技术发展中的现状和趋势[J].大众标准化,2008(01):93-95
    [292]凯莉.煤炭洗选加工,煤炭工业转型发展的重要基础[J].煤炭经济研究,2011(11):20-21
    [293]杨淑霞,魏宾.低碳电能供应链分析及其管理探讨[J].山西电力,2011(03):17-20
    [294]李现勇.C02减排及封存利用技术概况及发展[J].电力设备,2008,9(5):7-10
    [295]郭力方.煤炭科技“十二五”:“高效低碳”须从源头抓起(行业聚焦)[N].中国能源报,2010-03-29(2)
    [296]张晋陶,刘伯荣.节能减排与动力煤洗选[J].煤炭工程,2008(03):21-22
    [297]于尔铁.21世纪的选煤与电煤[J].中国煤炭2000(03):5-8
    [298]俞珠峰,路迈西,吴立新.发展动力煤洗选,提高商品动力煤质量[J].洁净煤技术,2004(04):14-20
    [299]吴式瑜.提高重介质选煤技术,促进我国选煤业发展[J].煤炭加工与综合利用,2008(4):1-4
    [300]郭淑芬,赵国浩,段金鑫.基于选煤技术的国内外煤炭洗选业发展对比研究[J].煤炭经济研究,2010(01):11-13
    [301]陶宏伟.节能减排视角下的我国选煤技术[J].煤炭技术,2009(02):111-112
    [302]余洁,吴立新,杜铭华.发展动力煤洗选的经济合理性分析[J].洁净煤技术,1998(03):19-22
    [303]马昌忠,刘金平.某矿原煤洗选经济评价[J].西北地质,1995(03):33-36
    [304]于尔铁.动力煤洗选的经济效益[J].煤炭科学技术,1983(05):4247
    [305]王大鹏.山西动力煤洗选经济效益探讨[J].数量经济技术经济研究,1984(07):3342
    [306]马超云,梁肖,毛保华.铁路运输能源消耗现状分析[J].中国铁路,2010(11):51-56
    [307]陈贵锋,俞珠峰,郗小林.燃用洗选煤与锅炉改造配合是实现工业锅炉清洁燃烧的经济有效途径[J].洁净煤技术,2002(02):30-35
    [308]刘庆余.发展煤炭洗选加工,提高社会经济效益[J].煤炭加工与综合利用,1987(03):1-6
    [309]路迈西等.加大洗选力度增加产品品种[J].洁净煤技术,1998(04):12-15
    [310]杨军.影响发电厂厂用电率的因素探讨[J].焦作工学院学报,2000(09):385-387
    [311]谢克昌.高度重视我国煤炭清洁高效可持续开发利用[EB/OL].http://lianghui.people.com.cn/2012npc/GB/17348687.html
    [312]薛文林.山西省煤矿吨煤成本变化及其成因分析[J].煤矿现代化,2010(02):9-10
    [313]王建会.高瓦斯煤矿井大采高综采工艺的实践[J].采矿技术,2009年(02):23-25
    [314]王平虎.寺河矿高瓦斯抽放与突出综合防治技术试验研究[D].中国矿业大学(北京)博士学位论文,2010
    [315]朱学义.煤炭商品成本水平的考察及监审基准研究[J].会计之友,2012(02):52-54
    [316]姜海虹.煤炭企业成本费用控制创新探析[J].山东工商学院学报,2012(02):45-49
    [317]翁非.我国煤炭价格波动趋势及发展前瞻[J].经济视角,2011(11):145-148
    [318]张国光,姜英.基于技术进化理论对煤炭开采典型节能减排技术的发展路线分析[J].煤炭经济研究,2011(6):27-30
    [319]戈双武,龙如银.我国煤层气CDM项目的潜力与对策研究[J].中国矿业大学学报(社会科学版),2010(03):19-25
    [320]曾少军,陆日东.我国煤层气CDM项目开发现状及对策研究[J].煤炭经济研究,2008(5):7-10
    [321]易正林,周红梅.考虑外部成本的管道与铁路电煤运输的经济比较[J].武汉理工大学学报(交通科学与工程版),2012(03):608-612
    [322]韩长虎,刘玉平,史东升.牵引质量与燃油单耗关系研究[J]内燃机车,2002(02):9-12
    [323]宁文祥.各种运输类型的能源需求和排放对比分析数据显示:道路运输不输铁路[J].专用汽车,2011(6):4243
    [324]秦殿军.高油价对我国运输企业的影响及对策[J].中国物流与采购,2008(23):74-75
    [325]邹累.油价波动对道路运输业的影响及其对策研究[D].中国地质大学(北京)博士学位论文,2011,5
    [326]陈俊武.中国中长期碳减排战略目标初探——石油能源产品在交通运输等行业中的应用和碳减排[J].中外能源,2011(07):1-13
    [327]柯国军,徐小华.耒阳电厂粉煤灰综合利用探讨[J].粉煤灰综合利用,2009(02):55-56
    [328]何祚庥.中国会不会走向“半个”工业化?[N].科学时报,2010-2-23
    [329]于春杰,李忱.基于供应链剩余的供应链系统协同管理研究[J].系统科学学报,2007,(15):86-89.
    [330]陈俊武.中国中长期碳减排战略目标初探——中国煤炭消费过程的碳排放及减排措施[J].中外能源,2011(06):1-11
    [331]China-UK near zero emissions coal(NZEC)initiative summary report[EB/OL].http://www.NZEC.info/en/assets/Reports/China-UK-NZEC-English-031109.pdf.
    [332]IEA.CO2 capture ready plants[EB/OL]. http://www.iea.org/Papers/2007/CO2_Caprure_Ready_Plants.pdf
    [333]张建府.碳捕集与封存技术(CCS)成本及政策分析[J].中外能源,2011(03):21-26
    [334]王佩璋.燃煤电厂CDM与CO2近零排放现代技术的探讨[J].电力技术,2009(04):17-20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700