用户名: 密码: 验证码:
川西亚高山岷江冷杉与紫果云杉对气候的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二十世纪气候变化显著的气温升高现象,深刻影响了高纬度和高海拔地区森林的动态。亚高山森林是全球气候变化极为重要和敏感的指示因子,研究亚高山森林生态系统对气候变化的响应,对于理解和掌握全球变化具有重要意义。作为全球变化中最为敏感的区域之一,川西亚高山在全球气候变化研究中具有突出的地位和作用。王朗自然保护区属于青藏高原东缘川西亚高山的典型区域,其独特的地貌和广泛分布的原始森林为开展森林应对气候变化的相关研究提供了得天独厚的条件。在此进行树木年轮气候学系统研究,有利于深刻认识气候变化对川西亚高山森林生态系统的影响与其所带来的后果以及预测未来分布格局的时空变化。
     本文以优势树种岷江冷杉(Abies faxoniana)和紫果云杉(Picea purpurea)为研究对象,分别布设了5个岷江冷杉样带和1个紫果云杉样带,对样带内和样带附近的冷杉和云杉进行调查和取样,建立了相应的年表和年龄结构,利用山地小气候模型(MTCLIM)模拟各采样点的月气候要素,通过相关与主成分分析、相关与响应函数分析、特征年分析、生长释放分析等方法,揭示了地形(海拔与坡向)、年龄等因素影响下树木的生长格局及气候响应差异、相同生境处不同树种径向生长对气候因子的响应差异、高海拔林线处冷杉幼苗的更新动态及限制因子。本研究填补了川西亚高山湿润半湿润气候敏感区林线动态研究的空白,得出的主要结果如下:
     (1)在公共区间内各样带内冷杉的年际生长存在一定的共性:在1937年左右均较低,在1990年之后也基本同步出现了下降趋势;两个坡向不同海拔年表的特征窄年出现在相同的时间段,1935-1937年、1967年、1976年和1982年;年表间的相关和主成分分析也表明不同坡向不同海拔的树木生长受共同因素的控制;不同样带内冷杉的生长受到共同气候因子的影响,上年生长季(上年7、8月份)的高温抑制冷杉当年的径向生长,当年1月份的充足降水会促进其生长;只有在两个低海拔样带冷杉生长受到生长季降水的显著促进作用,上年9月的降水对西北坡低海拔样带径向生长具有显著的促进作用,东南坡低海拔样带冷杉的生长与当年7月份的降水显著正相关。
     (2)不同海拔处紫果云杉径向生长与气候因子的关系存在一致性,3个海拔的年轮指数均与上年12月份的降水成负相关关系,与当年6月份的月平均气温及月平均最高气温成正比;随海拔梯度的变化,云杉径向生长的气候敏感性存在一定差异,低海拔与中海拔采样点的树木生长均受到上年生长季(7、8月份)气温的抑制,高海拔采样点的树木生长受生长季前(12月份、当年2月份、当年4月份)和生长季(当年6月份、7月份)气温明显的促进作用。
     (3)近30年的升温造成生长季的水分缺失,可能是低海拔生境处冷杉与气温产生“分离”的主要原因;低海拔相同生境处:冷杉主要受上年生长季(上年7、8月份)及当年生长季末(当年9月份)气温的负反馈作用,而云杉仅表现为同生长季前(上年12月份)与当年生长季末(当年9月份)的月平均最低气温显著正相关,冷杉与云杉均表现出同上年生长季末(上年10月份)降水的显著负相关关系;高海拔生境处:冷杉明显受到上年生长季(上年6、8月份)高温的限制,当年生长季(当年7月份)较高的月平均最低气温会促进径向生长,而云杉的径向生长同生长季前(上年12月份、当年2、4月份)及当年生长季(6、7月份)的月平均最低气温显著正相关,当年2、6月份的高温也会明显促进径向生长。
     (4)云杉随树龄增大敏感度降低,幼龄组云杉对生长季前及生长季的气温状况响应显著;中龄组云杉年表仅与当年4月份和7月份的月平均最低气温显著正相关;老龄组云杉的年轮宽度指数同上年生长季(上年8月份)的月平均气温和月平均最低温显著负相关,上年生长季高温的“滞后效应”在老龄组云杉体现的史为突出;幼龄组与中龄组云杉对当年6月份降水持续增加显示出明显的负相关关系,上年12月份的降水会对幼龄和老龄云杉径向生长不利。
     (5)低频的小规模干扰不是限制冷杉更新的主要因素,在竹子盖度相对较小的西北坡林线,近60年较丰富的幼苗更新得益于生长季前(1、2、3月份)及生长季(5、6、9、10月份)较高的月平均最低气温,生长季前(2、3月份)的充足降水也有利于幼苗存活;东南坡林线处稀疏的幼苗更新主要受到浓密竹子的强烈抑制。
Climate change in the20th century, especially the significant climate warming, has deeply influenced the dynamics of forests in the high latitudes and high altitudes. Subalpine forest is one of the most important and sensitive indicators for global climate change. It is very important for us to understand and grasp global change, to study the response of subalpine forest ecosystem to climate change. As one of the most sensitive areas to global change, subalpine in western Sichuan province owns prominent standing and role in the research about global climate change. Wanglang Nature Reserve belongs to the typical subalpine area of western Sichuan province on the eastern edge of Qinghai-Tibet Plateau. The unique landscape and the vast virgin forest supply the advantaged conditions for us to study forestry adapting to climate change. To carry out systematic dendroclimatology study in this area is beneficial for gaining profound knowledge on the influences and consequences of climate change to forest ecosystem. It is also conductive to forecasting the time-space distribution patterns of forest ecosystem in the future.
     Regarding Abies faxoniana and Picea purpurea as the research object, we established five sampling transects for Abies faxoniana and one sampling transect for Picea purpurea. After surveyed and sampled within and around the six transects, we developed the corresponding chronologies and age structures for both the tree species. At the same time, we simulated the month climate factors for each sampling site using the software of MTCLIM. And then, through correlation and component analysis, correlation function and response function analysis, pointer year analysis, and growth release analysis, we revealed tree radial growth patterns and recruitment dynamics influenced by climate, slope, elevation and age. This study filled the research gap of treeline dynamics in the humid and semi-humid climate sensitive areas in subalphine of western Sichuan province. The main conclusions can be drawn as follows:
     (1) The annual-growth of Abies faxoniana in all sampling sites had certain common characteristics, such as the lowest value appeared around1937and there was a down trend after1990. The pointer narrow years for all the chronologies of the two different aspect occurred in the same time period, such as1935-1937,1967,1976and1982. The correlation and principal component analysis among all the chronologies showed that tree growth was controlled by common factors at different altitudes and different aspect. Fir growth among different sampling transects was influenced by common climatic factors:the warming temperature in the previous growing season (July and August) restrained fir radial growth; adequate precipitation in the current January promoted growth. Only in the two low-altitudes transects, fir growth was significant affected by growing season precipitation:the previous September precipitation promoted fir radial growth significantly in the low-altitude of northwestern slope; fir growth in the low-altitude of southeast slope was significantly positively correlated with the current July precipitation.
     (2) There was some consistency about relationships between radial growth of Picea purpurea and climate factors at different altitudes:the three tree-ring indexes were all negatively correlated with December precipitation, and were all positively correlated with monthly mean temperature and monthly mean maximum temperature in current June. The sensitivity of radial growth to climate factors was also different in some ways with the elevation gradient, spruce growth in the low and mid-elevation were inhibited by the temperatures of previous growing season (July and August); tree growth in the high-altitude sampling site was obviously promoted by the temperatures before the growing season (December, February and April) and the temperatures in the growing season (June and July).
     (3) That water loss in the growing season caused by the warming of the past30years might be the main reason for the "abruption" between the fir growth and temperature at the low-elevation. At the same habitat of low altitude:fir radial growth was mainly negatively influenced by the temperatures of previous growing season (July and August) and in the end of current growing season (September); spruce growth only showed significant positive correlations with monthly mean minimum temperatures of previous December and current September; fir and spruce were all showed significant negative correlations with previous October precipitation. At the same habitat of high altitude:fir growth was obviously inhibited by the high temperatures in previous growing season (June and August), and was promoted by the higher monthly mean minimum temperatures of current growing season (July); spruce radial growth showed significant positive correlations with the monthly mean minimum temperatures before growing season (December, February and April) and in the growing season (June and July), and the high temperatures in current February and June also promoted radial growth.
     (4) With tree age increasing, the sensitivity of spruce reduced. The responses of young spruce were significant with temperatures before growing season and in growing season. The chronology of the middle-aged spruce showed significant and positive correlation with monthly mean minimum temperatures in current April and July. Ring width index of old spruce was significantly negatively correlated with monthly mean temperature and monthly mean minimum temperature of previous August. The "lag effect" of high temperatures in previous growing season was prominent in the old spruce. Spruce within young group and mid-age group showed a significant negative correlation with current June precipitation. Adequate precipitation in December was not beneficial for the radial growth of young and aged spruce.
     (5) Small-scale interferences occurred in low frequency were not the main factors to restrict fir recruitment. In the northwestern treeline with sparse bamboo, the relatively rich seedling recruitment in recent60years was beneficial for higher monthly mean minimum temperatures before growing season (January, February and March) and in the growing season (May, June, September and October). Adequate precipitation before the growing season (January and February) was also beneficial for seedlings' survival. Recruitment was greatly restricted by competition with dense bamboos in the southeast treeline.
引文
白杨.北京周边古树年轮与气候关系研究[D].北京:北京林业大学,2009.
    蔡秋芳,刘禹.油松树轮记录的1776年以来贺兰山地区气温变化[J].地理学报,2006,61(9):929-936.
    常锦峰,王襄平,张新平,等.大兴安岭北部大白山高山林线动态与气候变化的关系[J].山地学报,2009,27(6):703-711.
    陈峰,袁玉江,魏文寿,等.树轮记录的伊犁地区近354年帕尔默干旱指数变化[J].高原气象,2011,30(2):355-362.
    陈峰.伊犁南天山北坡西部树木年轮气候学研究[D].乌鲁木齐:新疆师范大学,2008.
    陈向军.新疆天山北坡东部地区树木年轮气候研究[D].乌鲁木齐:新疆师范大学,2009.
    陈振举,陈玮,何兴元.沈阳福陵油松年轮宽度年表的建立[J].北京林业大学学报,2007b,29(4):100-109.
    陈振举,孙雨,何兴元.千山油松年轮宽度年表的建立及其与气候的关系[J].应用生态学报,2007a,18(10):2191-2201.
    程瑞梅,封晓辉,肖文发,等.北亚热带马尾松净生产力对气候变化的响应[J].生态学报,2011,31(8):2086-2095.
    程伟,吴宁,罗鹏.岷江上游林线附近岷江冷杉种群的生存分析[J].植物生态学报,2005,29(3):349-353.
    崔宇,袁玉江,金海龙,等.乌鲁木齐河源467年春季降水的重建与分析[J].干旱区地理,2007,30(4):496-500.
    戴君虎,崔海亭.国内外高山林线研究综述[J].地理科学,1999,19(3):243-249.
    党海山.秦巴山地亚高山冷杉林对区域气候的响应[D].武汉:中国科学院武汉植物园,2007.
    丁一汇.中国气候变化-科学、影响、适应及对策研究[M].北京:中国环境科.学出本社,2009.
    段仁燕,王孝安,黄敏毅,等.太白山林线附近太白红杉种群的生态特征[J].生态学报,2010,30(2):519-526.
    范敏杰.伊犁地区南天山北坡的气候重建与分析[D].乌鲁木齐:新疆师范大学,2007.
    范玮熠,王孝安.树木年轮宽度与气候因子的关系研究进展[J].西北植物学报,2004,24(2):345-351.
    方近圻,吴宁,罗鹏,等.干扰对高山林线再形成过程的影响[J].生态学杂志,2005,24(12):1493-1498.
    方近圻.岷江上游高山林线附近优势树种土壤种子库和幼苗更新特征的研究[D].成都:中国科学院成都生物研究所,2006.
    高露双,赵秀海,王晓明.火干扰后红松生长与气候因子的关系[J].生态学报,2009,29(11):5963-5970.
    高露双.长白山典型树种径向生长与气候因子的关系研究[D].北京:北京林业大学,2011.
    勾晓华,陈发虎,杨梅学,等.青藏高原东北部树木年轮记录揭示的最高最低温的非对称变化[J].中国科学(D辑),2007,37(11):1480-1492.
    勾晓华,邵雪梅,王亚军,等.祁连山东部地区树木年轮年表的建立[J].中国沙漠.1999,19(4):364-367.
    何海.川西业高山针叶林主要针叶树种年轮生态学研究[D].成都:中国科学院成都生物研究所,2006.
    何志斌,赵文智,张立杰,等.祁连山青海云杉林采伐干扰与恢复过程[J].林业科学,2009,45(32):12-16.
    侯向阳,韩进轩,谢海生.长白山红松林干扰节律研究[J].生态学报,2000b,20(3):409-411.
    侯向阳,韩进轩,阳含熙.长白山红松阔叶林林冠木竞争生长及林冠空隙动态研究[J].生态学报,2000a,20(1):68-72.
    侯颖,王开运,张远彬,等.C02浓度和温度升高对川西亚高山红桦幼苗根系结构的影响[J].北京林业大学学报,2008,30(1):29-33.
    胡林林.东北红豆杉树木年代学研究[D].哈尔滨:东北林业大学,2009.
    黄磊,邵雪梅,梁尔源等.青海沙利克山祁连圆柏千年树轮宽度序列的变化特征[J].地理研究,2004,23(3):365-377.
    黄磊,邵雪梅,刘洪滨等.青海德令哈地区千年来降水量的突变分析[J].地理学报,2006,61(7):713-719.
    黄荣凤,鲍甫成.异常气候环境变化与树木年轮[J].世界林业研究,2002,15(6):26-31.
    黄荣凤,张国盛,王林和,等.影响毛乌素沙地臭柏年轮宽度变化的主要气候因子分析[J].干旱区资源与环境,2004,18(6):164-169.
    姜庆彪,高露双,王晓明,等.浑善达克沙地油松树轮宽度与气候因子的关系[J],2012,18(3):405-410.
    兰涛,夏冰,贺善安.马尾松的生长与气候关系的年轮分析[J].应用生态学报,1994,5(4):422-424.
    冷泠.大岗山丝果拷和樟树年轮宽度对气候变化响应研究[D].北京:中国林业科学研究院,2007.
    李广起,白帆,桑卫国.长白山红松和鱼鳞云杉在分布上限的径向生长对气候变暖的不同响应[J].植物生态学报,2011,35(5):500-511.
    李海涛,沈文清,桑卫国,等MTCLIM模型(山地小气候模拟模型)的研究现状及其潜在应用[J].山地学报,2001,19(6):533-540.
    李江风,袁玉江,由希尧.树木年轮水文学研究与应用[M].北京:科学出版社,2000.
    李宗善,刘国华,张齐兵,等.利用树木年轮宽度资料重建川西卧龙地区过去159年夏季温度的变化[J].植物生态学报,2010,34(6):628-641.
    梁尔源,胡玉熹,林金星.CO2浓度加倍对辽东栎维管组织结构的影响[J].植物生态学报,2000,24(4):506-510.
    梁尔源,邵雪梅,刘鸿雁,等.树轮所记录的公元1842年以来内蒙古东部浑善达克沙地PDSI的变化[J].科学通报,2007,52(14):1694-1699.
    梁尔源.白扦的树木年轮生态学研究[D].北京:中国科学院植物研究所,2001.
    刘成程.山东省常用恢复树种径向生长与气候关系的研究[D].济南:山东大学,2007.
    刘洪滨,邵雪梅,黄磊.中国陕西关中及周边地区近500年来初夏干燥指数序列的重建[J].第四纪研究,2002,22(3):220-229.
    刘洪滨,邵雪梅.利用树轮重建秦岭地区历史时期初春温度变化[J].地理学报,2003a,58(6):879-884.
    刘洪滨,邵雪梅.秦岭南坡佛坪1789年以来1-4月平均温度重建[J].应用气象学报,2003b,14(2):188-196.
    刘鸿雁,谷洪涛,唐志尧,等.中国东部暖温带高山林线乔木的光合作用及其与环境因子的关系[J].山地学报,2002,20(1):32-36.
    刘丽娟,咎国盛,葛剑平,等MTCLIM模型在崛江上游气候模拟中的应用[J].长江流域资源与环境,2005,14(2):248-253.
    刘庆,吴彦,何海.中国西南亚高山针叶林的生态学问题[J].世界科技研究与发展,2001,23(2):63-69.
    刘彤.天然东北红豆杉种群生态学研究[D].哈尔滨:东北林业大学,2007.
    刘晓宏,秦大河,邵雪梅,等.祁连山中部过去近千年温度变化的树轮记录[J].中国科学(D辑),2004,34(1):89-95.
    刘禹,安芷生,马海州,等.青海都兰地区公元850年以来树轮记录的降水变化及其与北半球气温的联系[J].中国科学(D辑),2006,36(5):461-471.
    刘禹,蔡秋芳,Park WK,等.内蒙古锡林浩特白音敖包1838年以来树轮降水记录[J].科学通报,2003,48(9):952-957.
    刘禹,史江峰,Shishov V,等.以树轮晚材宽度重建公元1726年以来贺兰山北部5-7月降水量[J].科学通报,2004,49(3):265-269.
    刘禹,王雷,史江峰.利用贺兰山北部树轮资料重建过去270年以来6-8月平均十燥指数[J].第四纪研究,2005,25(5):540-545.
    鲁瑞洁,夏虹.腾格里沙漠南缘油松树轮宽度变化及其对气候因子的响应[J].中国沙漠,2006,26(3):399-402.
    吕立新.青藏高原高山林线动态及其与气候变化的关系[D].北京:中国科学院植物研究所,2011.
    马连祥,杨文斌,周定国.酸雨和大气污染对杨树木材物理性质的影响-对年轮宽度和基本密度的影响[J].福建林学院学报,2000,20(3):269-272.
    彭剑峰,勾晓华,陈发虎,等.阿尼玛卿山中部高山林线树轮宽度对气候变化的响应[J].北京林业大学学报,2006,28(增2):57-62.
    彭剑峰,勾晓华,陈发虎,等.坡向对海拔梯度上祁连圆柏树木生长的影响[J].植物生态学报,2010,34(5):517-525.
    彭剑峰,勾晓华,陈发虎等.阿尼玛卿山地不同海拔青海云杉树轮生长特性及其对气候的响应[J].生态学报,2007,27(8):3268-3276.
    彭剑峰,杨爱荣,田沁花.万仙山油松径向生长与气候因子的关系[J].生态学报,2011,31(20):5977-5983.
    乔匀周.环境CO2浓度和群落密度对红桦幼苗碳氧吸收和分配的影响[D].成都:中国科学院成都生物研究所,2007.
    秦’宁生,邵雪梅,靳立亚,等.青海南部高原圆柏年轮指示的近500年来气候变化[J].科学通报,2003,48(19):2068-2072.
    秦宁生,时兴合,邵雪梅,等.川西高原树木年轮所指示的平均最高气温变化[J].高原山地气象研究,2008,28(4):18-24.
    邵雪梅,范金梅.树轮宽度资料所指示的川西过去气候变化[J].第四纪研究,999,(1):81-89.
    邵雪梅,梁尔源,黄磊,等.柴达木盆地东北部过去1437a的降水变化重建[J].气候变化研究进展,2006,2(3):122-126.
    邵雪梅,吴祥定.华山树木年轮年表的建立[J].地理学报,1994,49(2):174-181.
    邵雪梅,吴祥定.华山松横向生长与气候要素之间的关系[A].中国博士后首届学术大会论文集(下册)[C].北京:国防工业出版社,1993,1841-1844.
    邵雪梅,吴祥定.利用树轮资料重建长白山区过去气候变化[J].第四纪研究,1997,(1):76-84.
    中国珍,李俊清,蒋仕伟.大熊猫栖息地亚高山针叶林结构和动态特征[J].生态学报,2004,24(6):1294-1299.
    沈长泗,陈金敏,张志华等.采用树木年轮资料重建山东沂山地区200多年来的湿润指数[J].1998,17(2):150-156.
    时兴合,秦宁生,邵雪梅,等.青海湖流域圆柏年轮指示的近千年降水变化[J].湖泊科学,2009a,21(4):579-586.
    时兴合,秦宁生,邵雪梅.青海杂多圆柏年轮指示的近700年旱涝变化[J].高原气象,2009b,28(4):769-776.
    四川省野生动物资源调查保护管理站,四川省林业科学研究院.四川王朗白然保护区综合科学考察报告[M].成都:1999.
    宋洪涛,程颂,孙守琴.高山林线形成机制及假说的探讨[J].生态学杂志,2009,28(11):2393-2402.
    宋慧明,刘禹.倪万眉,等.以树轮宽度重建九寨沟1750年以来冬半年平均最低温度[J].第四纪研究,2007,27(4):486-491.
    田沁花.祁连山区中-西部近500年来气候变化的树轮记录[D].兰州:兰州大学,2006.
    涂云博,王孝安.林线区域植被的结构与动态研究综述[J].安徽农学通报,2008,14(9):125-127.
    王兵,高鹏,郭浩.江西大岗山林区樟树年轮对气候变化的响应[J].应用生态学报,2009,20(1):71-76.
    王金锡,马志贵.大熊猫主食竹生态学研究[M].成都:四川科学技术出版社,1993.
    王丽丽,邵雪梅,黄磊,等.黑龙江漠河兴安落叶松与樟子松树轮生长特性及其对气候的响应[J].植物生态学报,2005,29(30):380-385.
    王林,冯锦霞,王双霞,等.干旱和坡向互作对栓皮栎和侧柏生长的影响[J].生态学报,2013,33(8):2425-2433.
    王梦君.松潘-平武地震干扰后大熊猫栖息地生态恢复研究[D].北京:北京林工业大学,2010.
    王婷,于丹,李江风,等.树木年轮宽度与气候变化关系研究进展[D].植物生态学报,2003,27(1):23-33.
    王婷.天山中部不同海拔高度天山云杉林的生态学研究[D].武汉:武汉大学,2004.
    王蔚蔚,张军辉,戴冠华,等.利用树木年轮宽度资料重建长白山地区过去240年秋季气温的变化[J].生态学杂志,2012,31(4):787-793.
    王晓春,鲁永现.火烧伤害对兴安落叶松树干径向生长的影响[J].生态学报,2012,32(23):7463-7472.
    王晓春,周晓峰.李淑娟.等.气候变暖对老秃顶子林线结构特征的影响[J].生态学报,2004,24 (11):2412-2421.
    王晓春.中国东北亚高山林线对全球气候变化的响应[D].哈尔滨:东北林业大学,2003.
    王晓明,赵秀海,高露双,等.长白山北坡不同年龄红松年表及其对气候的响应[J].生态学报,2011,31(21):6378-6387.
    王亚军,陈发虎,勾晓华.利用树木年轮资料重建祁连山中段春季降水的变化[J].地理科学,2001,21(4):373-377.
    王玉玺,刘光远,张先恭,等.祁连山圆柏年轮与我国近千年气候变化和冰川进退的关系[J].科学通报,1982,27(21):1316-1319.
    王云霞,陆兆华,苏宏新等.天山云杉树木年轮宽度对气候因子变化的响应[J].中国矿业大学学报,2007,36(2):251-255.
    吴普,王丽丽,黄磊.五个中国特有针叶树种树轮宽度对气候变化的敏感性[J].地理研究,2006,25(1):43-52.
    吴普,王丽丽,邵雪梅.采用高山松最大密度重建川西高原近百年夏季气温[J].地理学报,2005,60(6):998-1006.
    吴祥定,孙力,程志刚.若干西藏高原上树木年轮年表的建立[J].科学通报,1988,(8):616-619.
    吴祥定.树木年轮分析在环境变化研究中的应用[J].第四纪研究,1990,(2):188-196.
    吴泽民,黄成林,马青山.黄山松年轮生长与气候的关系[J].应用生态学报,1999,10(2):147-150.
    夏冰,贺善安,兰涛,等.亚高山云冷杉混交林树木生长释放与干扰分析[J].植物资源与环境,1997,6(1):1-8.
    夏冰,兰涛贺,善安,等.西天目山黄山松阔叶林的冠层干扰与动态推测[J].植物资源与环境,1995,4(3):15-20.
    肖玲,王开运,杨万勤.升高CO2浓度和温度对针叶林的影响以及在川西亚高山针叶林研究中的展望[J].世界科技研究与发展,2004,26(2):55-63.
    徐倩倩.长白山东坡长白落叶松生长和气候关系的研究[D].北京:北京林业大学,2011.
    徐振锋,胡庭兴,张力,等.模拟增温对川西亚高山林线交错带绵穗柳生长、叶物候和叶性状的影响[J].应用生态学报,2009a,20(1):7-12.
    徐振锋,胡庭兴,张力,等.青藏高原东缘林线交错带糙皮桦幼苗光合特性对模拟增温的短期响应[J].植物生态学报2010,34(3):263-270.
    徐振锋,胡庭兴,张远彬,等.模拟增温引发的早春冻害:以岷江冷杉为例[J].生态学报,2009b,29(11):6275-6280.
    徐振锋.川西亚高山林线交错带典型优势物种物候与生长对模拟增温的初期响应[D].四川雅安:四川农业大学,2008.
    阳含熙,谢海生.长白山红松混交林干扰历史的重构研究[J].植物生态学报,1994,18(3):201-208.
    杨建明,陈建.江垭水库树木年轮与溇水河近百年间气候变化[J].武汉植物学研究,2001.19(5):397-402.
    尹红.基于TREE-RING模型的小兴安岭红松树轮生长气候响应研究[D].南京:南京信息工程大学,2009.
    尹华军,赖挺,程新颖,等.增温对川西亚高山针叶林内不同光环境下红桦和岷江冷杉幼苗生长和生理的影响[J].植物生态学报2008,32(5):1072-1083.
    于大炮,王顺忠,唐立娜.长白山北坡落叶松年轮年表及其与气候变化的关系[J].应用生态学报,2005,16(1):14-16.
    于大炮.长白山北坡森林群落交错区植被结构及动态[D].沈阳:中国科学院沈阳生态研究所,2004.
    于明涛.运用树木年代法重建陕西太白山生态气候指标[D].北京:北京林业大学,2008.
    余峥.川西亚高山红桦光合作用对大气CO2浓度和温度升高的响应[D].四川雅安:四川农业大学,2006.
    喻斌,黄会一.城市环境中树木年轮的变异及其与工业发展的关系[J].应用生态学报,1994,5(1):72-77.
    袁晴雪,叶芝祥,王丽丽,等.乌鲁木齐河山区流域树轮宽度年表特征及其对气候的响应[J].干旱区地理,2010,33(3),394-403.
    袁玉江,邵雪梅,李江凤,等.夏干萨特树轮年表中降水信息的探讨与326年降水重建[J].生态学报,2002,22(12):2048-2053.
    张春雨,高露双,赵亚洲,等.东北红豆杉雌雄植株径向生长对邻体竞争和气候因子的响应[J].植物生态学报,2009,33(6):1177-1183.
    张寒松.长白山典型森林植被树木年轮资料与气候变化的关系[D].哈尔滨:东北林业大学,2007.
    张力.亚高山林线复合群落优势植物的光合特性以及对模拟升温的响应[D].四川雅安:四川农业大学,2006.
    张瑞波.天山南坡阿克苏河流域树木年轮气候研究[D].乌鲁木齐:新疆师范大学,2008.
    张新时,杨奠安.中国全球变化样带的设置于研究[J].第四纪研究,1995,(1):43-52.
    张远彬.CO2浓度升高对红桦幼苗生理与生长的影响[D].成都:中国科学院成都生物研究所,2007.
    张志华,吴祥定.祁连山地区1310年以来湿润指数及年际变幅的变化与突变分析[J].第四纪研究,1996(4):368-378.
    赵兴云,中国东部亚热带地区树轮δ13C年序列及方位变化的环境意义[D].南京:南京师范大学,2006.
    赵志江,谭留夷,康东伟,等.云南小中甸地区丽江云杉径向生长对气候变化的响应[J].应用生态学报,2012,23(3):603-609.
    郑永宏,梁尔源,朱海峰等.不同生境祁连圆柏径向生长对气候变化的响应[J].2008,30(3):7-12.
    周志强,刘彤,胡林林,等.穆棱东北红豆杉年轮-气候关系及其濒危机制[J].生态学报,2010,30(9):2304-2310.
    朱海峰.王丽丽.邵雪梅,等.雪岭云杉树轮宽度对气候变化的响应[J].地理学报,2004,59(6):863-870.
    朱海峰.郑永宏.邵雪梅等.树木年轮记录的青海乌兰地区近千年温度变化[J].2008,53(15):1835-1841.
    朱跃峰.自然火干扰对泰加林主要树种影响的年轮生态学分析[D].乌鲁木齐:新疆农业大学,2009.
    Agren J & Zackrisson O. Age and size structure of Pinus sylvestris populations on mires in central and northern Sweden [J]. Journal of Ecology,1990,78:1049-1062.
    Alley WM. The palmer drought severity index as a measure of hydrologic drought [J]. Journal of the American Water Resources Association,1985,21 (1):105-114.
    Andersen T, Carstensen J, Hernandez-Garcia E, et al. Ecological thresholds and regime shifts: approaches to identification [J]. Trends in Ecology and Evolution,2009,24:49-57.
    Antos JA & Parish R. Dynamics of an old-growth, fire-initiated, subalpine forest in southern interior British Columbia:tree size, age, and spatial structure [J]. Canadian Journal of Forest Research,2002, 32(11):1935-1946.
    Antos JA, Guest HJ & Parish R. The tree seedling bank in an ancient montane forest:stress tolerators in a productive habitat [J]. Journal of Ecology,2005,93:536-543.
    Barber V, Juday GP & Finney B. Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress [J]. Nature,2000,405:668-673.
    Barclay DJ, Calkin PE & Wiles GC. A 1119-year tree-ring-width chronology from western Prince William Sound, southern Alaska [J]. The Holocene,1999,9:79-84.
    Bekker MF. Spatial variation in the response of tree rings to normal faulting during the Hebgen Lake Earthquake, Southwestern Montana, USA [J]. Dendrochronologia,2004,22:53-59.
    Bergeron Y, Ledue A, Morin H. et al. Balsam fir mortality following the last spruce budworm outbreak in northwestern Quebec [J]. Canadian Journal of Forest Research,1995,25:1375-1384.
    Biondi F & Waikul K. DENDROCLIM2002:A C++ program for statistical calibration of climate signals in tree-ring chronologies [J]. Computers & Geosciences,2004,30(3):303-311.
    Biondi F, Estrada IG, Ruiz JCG, et al. Tree growth response to the 1913 eruption of Volcan de Fuego de Colima, Mexico [J]. Quaternary Research,2003,59:293-299.
    Biasing TJ, Solomon AM & Duvick DN. Response functions revisited [J]. Tree-Ring Bulletin,1984,44: 1-15.
    Bond BJ. Age-related changes in photosynthesis of woody plants [J]. Trends in Plant Science,2000,5: 349-353.
    Brauning A & Mantwill B. Summer temperature and summer monsoon history on the Tibetan plateau during the last 400 years recorded by tree rings [J]. Geophysical Research Letters,2004,31, L24205, doi:10.1029/2004 GL020793.
    Brauning A. Dendrochronology for the last 1400 years in eastern Tibet [J]. Geophysical Journal,1994, 34(1):75-95.
    Brauning A. Dendroclimatological potential of drought-sensitive tree stands in southern Tibet for the reconstruction of monsoonal activity [J]. International Association of Wood Anatomists,1999,20: 325-338.
    Brauning A. Tree-ring evidence of 'Little Ice Age' glacier advances in southern Tibet [J]. Holocene, 2006,16:369-380.
    Briffa KR, Jones PD, Schweingruber FH, et al. Unusual twentieth-century summer warmth in a 1000-year temperature record from Siberia [J]. Nature,1995,376:156-159.
    Briffa KR, Osborn TJ & Schweingruber FH. Large-scale temperature inferences from tree rings:a review. Global and Planetary Change,2004,40,11-26.
    Brookhouse MT & Bi HQ. Elevation-dependent climate sensitivity in Eucalyptus pauciflora Sieb. ex Spreng [J]. Trees-Structure and Function,2009,23(6):1309-1320.
    Brown PM & Wu R. Climate and disturbance forcing of episodic tree recruitment in a southwestern ponderosa pine landscape [J]. Ecology,2005,86(11):3030-3038.
    Bunn AG, Waggoner LA & Graumlich LJ. Topographic mediation of growth in high elevation foxtail pine (Pinus balfouriana Grev. et Balf.) forests in the Sierra Nevada, USA [J]. Global Ecology and Biogeography,2005,14:103-114.
    Biintgen U, Frank DC, Kaczka RJ, et al. Growth responses to climate in a multi-species tree-ring network in the Western Carpathian Tatra Mountains, Poland and Slovakia [J]. Tree Physioloy,2007,27: 689-702.
    Camarero JJ & Gutierrez E. Structure and recent recruitment at alpine forest-pasture ecotones in the Spanish central Pyrenees [J]. Ecoscience,1999,6:451-464.
    Camarero JJ & Gutierrez F. Pace and pattern of recent treeline dynamirs:reponse of ectone to climatic variabiliv in the Spanish Pvenees [J]. Climatic Change,2004,63(1):181-200.
    Caritat A, Gutierrez E & Molinas M. Influence of weather on cork-ring width [J]. Tree Physiology,2000, 20:893-900.
    Carrer M & Urbinati C. Age-dependent tree-ring growth responses to climate in Larix decidua and Pinus cembra [J]. Ecology,2004,85 (3):730-740.
    Carrer M & Urbinati C. Spatial analysis of structural and tree-ring related parameters in a timberline forest in the Italian Alps [J]. Journal of Vegetation Science,2001,12:643-652.
    Case MJ & Peterson DL. Fine-scale variability in growth-climate relationships of Douglas-fir, North Cascade Range, Washington [J]. Canadian Journal of Forest Research,2005,35(11):2743-2755.
    Chhin S, Hogg EH, Lieffers VJ, et al. Potential effects of climate change on the growth of lodgepole pine across diameter size classes and ecological regions [J]. Forest Ecology and Management,2008, 256(10):1692-1703.
    Colenutt ME & Luckman BH. The dendrochronological characteristics of alpine larch [J]. Canadian Journal of Forest Research,1995,25:77-789.
    Colenutt ME & Luckman BH. Dendrochronological investigation of Larix luallii at Larch Valley, Alberta [J]. Canadian Journal of Forest Research.1991.21(8):1222-1233.
    Cook ER, Bird T, Peterson M, et al. Climate change in Tasmania inferred from a 1089-year tree-ring chronology of Huon Pine [J]. Science,1991,253:1266-1268.
    Cook ER, Buckley BM, D'Arrigo RD, et al. Warm-season temperature since 1600 BC reconstructed from Tasmannian Tree-ring and their ralationship to large-scale sea surface temperature anomalies [J]. Climate Dynamics,2000,16(2-3):79-91.
    Cook ER, Krusic PJ & Jones PD. Dendroclimatic signals in long tree-ring chronologies from the Himalayas of Nepal [J]. International Journal of Climatology,2003,23:707-732.
    Cook ER, Meko DM & Stockton CW. A new assessment of possible solar and lunar forcing of the bidecadal drought rhythm in the western United States [J]. Journal of Climate,1997,10:1343-1356.
    Cook ER, Shiyatov S & Mazepa V. Estimation of the mean chronology. In:Cook, E.R., Kairiukstis, L.A. (Eds.), Methods of dendrochronology:applications in the environmental sciences. Kluwer Academic Publishers, Dordrecht, the Netherlands,1990.
    Cook ER. A time series analysis approach to tree ring standardization (Dendrochronology, Forestry, Dendroclimatology, Autoregressive Process) [M]. Tucson, Arizona:The University of Arizona,1985.
    Cullen LE, Palmer JG, Duncan RP, et al. Climate change and tree-ring relationships of Nothofagus menziesii tree-line forests [J]. Canadian Journal of Forest Research,2001,31:1981-1991.
    D'Arrigo RD, Schuster WSF, Lawrence DM, et al. Climate-growth relationships of eastern hemlock and chestnut oak from Black Rock Forest in the highlands of southeastern New York [J]. Tree-Ring Research,2001 a,57(2):131-191.
    D'Arrigo RD, Villalba R & Wiles G. Tree-ring estimates of Pacific decadal climate variability [J]. Climate Dynamics,2001b,18:219-224.
    D'Arrigo RD, Wilson R, Liepert B, et al. On the'divergence problem'in northern forests:a review of the tree-ring evidence and possible causes. Global and Planetary Change,2007,60,289-305.
    Dai A, Trenberth KE & Qian TT. A global dataset of Palmer Drought Severity Index for 1870-2002: relationship with soil moisture and effects of surface warming [J]. Journal of Hydrometeorology,2004, 5(6):1117-1130.
    Danby RK & Hik DS. Variability, contingency and rapid change in recent subarctic alpine tree line dynamics [J]. Journal of Ecology,2007,95:352-363.
    Dang HS, Jiang MX, Zhang QF, et al. Growth responses of subalpine fir (Abies fargesii) to climate variability in the Qinling Mountain, China [J]. Forest Ecology and Management,2007,240(1-3): 143-150.
    Dang HS, Jiang MX, Zhang YJ. et al. Dendroecological study of a subalpine fir (Abies fargesii) forest in the Qinling Mountains. China [J]. Plant Ecology,2009a,201(1):67-75.
    Dang HS, Zhang KR, Zhang YJ. et al. Tree-line dynamics in relation to climate variability in the Shennongjia Mountains, central China [J]. Canadian Journal of Forest Research,2009b,39(10): 1848-1858.
    Dang HS, Zhang YJ, Zhang KR, et al. Age structure and regeneration of subalpine fir (Abies fargesii) forests across an altitudinal range in the Qinling Mountains, China [J]. Forest Ecology and Management, 2010,259(3):547-554.
    Daniels LD & Veblen TT. Spatiotemporal influences of climate on altitudinal treeline in northern Patagonia [J]. Ecology,2004,85(5):1284-1296.
    Deal RL, Oliver CD & Bormann BT. Reconstruction of mixed hemlock-spruce stands in coastal southeast Alaska [J]. Canadian Journal of Forest Research,1991,21:643-654.
    Deslauriers A, Morin H & Begin Y. Cellular phenology of annual ring formation of Abies balsamea in the Quebec boreal forest (Canada) [J]. Canadian Journal of Forest Research,2003,33:190-200.
    Dolezal J & Srutek M. Altitudinal changes in composition and structure of mountain-temperate vegetation:A case study from the Western Carpathians [J]. Plant Ecology,2002,158(2):201-221.
    Duan RY, Wang XA, Tu YB, et al.2009. Recruitment pattern of tree populations along an altitudinal gradient:Larix chinensis Beissn in Qinling Mountains (China). Polish Journal of Ecology,2009,57(3): 451-459.
    Duncan RP. An evaluation of errors in tree age estimates based on increment cores in Kahikatea (Dacrycarpus dacrydioides) [J]. New Zealand Natural Sciences,1989,16:31-37.
    Earle CJ. Forest dynamics in a forest-tundra ecotone, Medicine Bow Mountains, Wyoming [D]. Seattle: University of Washington,1993.
    Elliott GP & Baker WL. Quaking aspen (Populus tremuloides Michx.) at tree line:a century of change in the San Juan Mountains, Colorado, USA [J]. Journal of Biogeography,2004,31,733-745.
    Elliott GP & Kipfmueller KF. Multiscale influences of climate on upper treeline dynamics in the Southern Rocky Mountains, USA:evidence of intraregional variability and bioclimatic thresholds in response to twentieth-century warming [J]. Annals of the Association of American Geographers. Association of American Geographers,2011,101(6):1181-1203.
    Elliott GP & Kipfmueller KF. Multi-scale influences of slope aspect and spatial pattern on ecotonal dynamics at upper treeline in the Southern Rocky Mountains, USA [J]. Arctic Antarctic and Alpine Research,2010,42:45-56.
    Esper J, Niederer R, Bebi P, et al. Climate signal age effects-evidence from young and old trees in the Swiss Engadin [J]. Forest Ecology and Management,2008,255(11):3783-3789.
    Fan ZX, Brauning A & Cao KF. Annual temperature reconstruction in the central Hengduan Mountains, China, as deduced from tree rings [J]. Dendrochronologia,2008.26:97-107.
    Fan ZX. Brauning A, Tian QH, et al. Tree ring recorded May-August temperature variations since AD 1585 in the Gaoligong Mountains, southeastern Tibetan Plateau [J]. Palaeogeogr Palaeocl,2010.296: 94-102.
    Fang K.Y, Gou XH, Chen Fh, et al. Response of regional tree-line forests to climate change:evidence from the northeastern Tibetan Plateau [J]. Trees,2009,23:1321-1329.
    Fang KY, Gou XH, Chen FH, et al. Tree growth and time-varying climate response along altitudinal transects in central China [J]. European Journal of Forest Research,2010,129(6):1181-1189.
    Feliksik E & Wilczynski S. Dendroclimatological regions of Douglas fir (Pseudotsuga menziesii Franco) in western Poland [J]. European Journal of Forest Research,2004,123:39-43.
    Fichtler E, Trouet V, BeeckmanH, et al. Climatic signals in tree rings of Burkea africana and Pterocarpus angolensis from semiarid forests in Namibia [J]. Trees,2004,18:442-451.
    Foster TE & Brooks JR. Long-term trends in growth of Pinus palustris and Pinus elliottii along a hydrological gradient in central Florida [J]. Canadian Journal of Forest Research,2001,31:1661-1670.
    Fritts HC, Smith DG, Cardis JW, et al. Tree-ring characteristics along a vegetation gradient in northern Arizona [J]. Ecology,1965,46:393-401.
    Fritts HC. Relationships of ring widths in arid-site conifers to variations in monthly temperature and precipitation [J]. Ecological Monographs,1974,44:411-440.
    Fritts HC. Tree rings and climate [M]. London:Academic Press,1976.
    Gedalof Z & Smith DJ. Dendroclimatic response of mountain hemlock (Tsuga mertensiana) in Pacific North America [J]. Canadian Journal of Forest Research,2001,31 (2):322-332.
    Germino MJ and Smith WK. Sky exposure, crown architecture, and low-temperature photoinhibition in conifer seedlings at alpine treeline [J]. Plant Cell and Environment,1999,22:407-415.
    Gervais BR & MacDonald GM. A 403-year record of July temperatures and treeline dynamics of Pinus sylvestris from the Kola Peninsula, northwest Russia [J]. Arctic Antarctic and Alpine Research,2000, 32(3):295-302.
    Gou XH, Chen FH, Yang MX, et al. A comparison of tree-ring records and glacier variations over the past 700 years, northeastern Tibetan Plateau [J]. Annals of Glaciology,2006,43:86-90.
    Grace J, Berninger F & Nagy L. Impacts of climate change on the tree line [J]. Annals of Botany,2002, 90:537-544.
    Graumlich LJ. Subalpine tree growth, climate, and increasing CO2:an assessment of recent growth trends [J]. Ecology,1991,72:1-11.
    Griffin D, Woodhouse CA, Meko DM, et al. North American monsoon precipitation reconstructed from tree-ring latewood [J]. Geophysical Research Letters,2013, doi:10.1002/grl.50184.
    Guiot J. Keller T & Tessier L. Relational databases in dendroclimatology and new non-linear methods to analyse the tree response to climate and pollution [A]. FFPRI Scientific Meeting Report 1 [C],1995.
    Gutierrez AG, Barbosa O. Christie DA, et al. Regeneration patterns and persistence of the fog-dependent Fray Jorge forest in semiarid Chile during the past two centuries [J]. Global Change Biology,2008.14(1):161-176.
    Halter R, Sands R, Ashton DH, Nambiar EKS. Root growth of subalpine and montane Eucalyptus seedlings at low soil temperatures [J]. Trees-Structure and Function,1997,12:35-41.
    Hansen A & di Castri F. Landscape Boundaries:Consequences for Biotic Diversity and Ecological Flows [M]. Springer-Verlag, New York,1992.
    Harcombe PA. Tree life tables [J]. Bioscience,1987,37(8):557-568.
    Harsch MA, Hulme PE, McGlone MS, et al. Are treelines advancing? A global meta-analysis of treeline response to climate warming [J]. Ecology Letters,2009,12:1040-1049.
    Hessl AE & Baker WL. Spruce and fir regeneration and climate in the forest-tundra ecotone of Rocky Mountain National Park, Colorado, USA [J]. Arctic and Alpine Research,1997,29:173-183.
    Hoch G & Korner C. Growth, demography and carbon relations of Poly lepis trees at the world's highest treeline [J]. Functional Ecology,2005,19:941-951.
    Holmes JA, Zhang JW, Chen FH, et al. Paleoclimatic implications of an 850-year oxygen-isotope record from the northern Tibetan Plateau [J]. Geophysical Research Letters,2007,34:L23403, doi: 10.1029/2007GL032228.
    Holmes RL. Computer-assisted quality control in tree-ring dating and measurement [J]. Tree-ring Bulletin,1983,43:69-78.
    Holtmeier FK & Broll G. Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales [J]. Global Ecology and Biogeography,2005, 14(5):395-410.
    Holtmeier FK & Broll G. Treeline advance-driving processes and adverse factors [J]. Landscape Online, 2007,1:1-33.
    Holtmeier FK. Der einflu (3 der orographischen situation auf die windverhaltnisse im spiegel der vegetation [J]. Erdkunde,1971,25:178-195.
    Holtmeier FK. Mountain timberlines:Ecology, patchiness and dynamics [J]. New York:Springer,2009.
    Holz A &Veblen TT. Tree regeneration responses to Chusquea Montana bamboo die-off in a subalpine Nothofagus forest in the southern Andes [J]. Journal of Vegetation Science,2006,17:19-28.
    Hornberg G, Ohlson M & Zackrisson O. Stand dynamics, regeneration patterns and long-term continuity in boreal old-growth Picea-Abies swamp-forests [J]. Journal of Vegetation Science,1995,6:291-298.
    Hou Y, Luo ZK, Jenerette GD, et al. Effects of elevated CO? and temperature on growth and morphology of fir (Abies faxoniana Rehd, et Wils.) and native herbs in a treeline ecotone:an experimental approach [J]. Polish Journal of Ecology.2010,58(2):311-322.
    Hou Y, Qu JT, Luo ZK, et al. Morphological mechanism of growth response in treeline species Minjiang fir to elevated CO2 and temperature [J]. Silva Fennica,2011.45(2):181-195.
    Huges MK, Touchan R & Brown PM. A multimillennial network of giant sequoia chronologies for dendroclimatology [A]. In:Dean J. S., Meko D. M., and Swetnam T. W., eds., Tree Rings. Environment. and Humanity [C]. Tucson:Department of Geosciences, The University of Arizona,1996,225-234.
    Hughes MK, Schweingruber FH & Cartwright D, et al. July-August temperature at Edinburgh between 1721 and 1975 from tree-ring density and width data [J].Nature,1984,308:341-344.
    IPCC. Climate Change 2007:The physical science basis. Summary for policymakers. Contribution of working group I to the fourth assessment report. The Intergovernmental Panel on Climate Change, 2007.
    Jacoby GC & D'Arrigo RD. Tree ring width and density evidence of climatic and potential forest change in Alaska [J]. Global Biogeochemical Cycles,1995,9:227-234.
    Jacoby GC & D'Arrigo RD. Tree rings, carbon dioxide, and climatic change [J]. PNAS,1997,94: 8350-8353.
    Jacoby GC, D'Arrigo RD, Davajamts T, et al. Mongolian tree ring and 20th century warming [J]. Science,1996,273:771-773.
    Jenkins MA & Pallardy SG. The influence of drought on red oak group species growth and mortality in the Missouri Ozarks [J]. Canadian Journal of Forest Research,1995,25:1119-1127.
    Jobbagy EG & Jackson RB. Global controls of forest line elevation in the northern and southern hemispheres [J]. Global Ecology and Biogeography,2000,9(3):253-268.
    Jones PD & Moberg A. Hemispheric and Large-Scale Surface Air Temperature Variations:An Extensive Revision and an Update to 2001 [J]. Journal of Climate,2003,16:206-223.
    Jones PD, Osborn TJ, Briffa KR, et al. Adjusting for sampling density in grid box land and ocean surface temperature time series [J]. Journal of Geophysical Research,2001,106,3371-3380.
    Jump AS, Hunt JM & Penuelas J. Climate relationships of growth and establishment across the altitudinal range of Fagus sylvatica in the Montseny Mountains, northeast Spain [J]. Ecoscience,2007, 14(4):507-518.
    Kaiser HF. The varimax criterion for analytic rotation in factor analysis [J]. Psychometrikam,1958, 22(3):187-200.
    Kienast F & Luxmoore RJ. Tree-ring analysis and conifer growth responses to increased atmospheric CO2 levels [J]. Oecologia,1988,76:487-495.
    Klimek K. Historic slope degradation above timberline in the Balkan Mts., Bulgaria [J]. Geographia Polonica,1992,60:43-50.
    Korner C & Hoch G. A test of treeline theory on a montane permafrost island [J]. Arctic Antarctic and Alpine Research,2006,38:113-119.
    Korner C & Paulsen J. A world-wide study of high altitude treeline temperatures [J]. Journal of Biogeography,2004,31:713-732.
    Korner C. Alpine plant life [M]. New York:Springer,2003.
    Korner C. Alpine Plant Life:Functional Plant Ecology of High Mountain Ecosystems [M]. Berlin: Springer,1999.
    Kozlowski TT & Pallardy SG. Growth control in woody plants [M]. San Diego:Academic,1997.
    Kozlowski TT, Kramer PJ & Pallardy GS. The physiological ecology of woody plants [J]. San Diego: Academic,1991.
    Kullman L & Oberg L. Post-Little Ice Age tree line rise and climate warming in the Swedish Scandes:a landscape ecological perspective [J]. Journal of Ecology,2009,97:415-429.
    Kullman L.20th century climate warming and tree-limit rise in the southern Scandes of Sweden [J]. Ambio,2001,30(2):72-80.
    Kullman L. Demography of Betula pubescens ssp.tortuosa [B. tortuosa] sown in contrasting habitats close to the birch tree-limit in central Sweden [J]. Vegetatio,1986.65:1,13-20.
    Kullman L. Early holocene tree growth at a high elevation site in the northernmost scandes of Sweden (Lapland):A palaeobiogeographical case study based on megafossil evidence [J]. Geografiska Annaler Series A-Physical Geography,1999,81:63-74.
    Kuliman L. Little Ice Age decline of a cold marginal Pinus sylvestris forest in the wedish Scandes [J]. New Phytologist,1987,106:567-584.
    Kullman L. Rapid recent range-margin rise of tree and shrub species in the Swedish Scandes [J]. Journal of Ecology,2002,90(1):68-77.
    Kullman L. Structural change in a subalpine birth woodland in north Sweden during the past century [J]. Journal of Biogeography,1991,18:53-62.
    Kullman L. Tree limit dynamics of Betula pubescens ssp. tortuosa in relation to climate variability: evidence from central Sweden [J]. Journal of Vegetation Science,1993,4(6):765-772.
    Kurths J, Spiering C, Muller-Stoll W, et al. Search for solar periodicities in Miocene tree ring widths [J]. Terra Nova,1993,5:359-363.
    LaDeau SL. & Clark JS. Rising CO2 levels and the fecundity of forest trees [J]. Science,2001,292: 95-98.
    LaMarche VC & Fritts HC. Anomaly patterns of climate over the western United States 1700-1930, derived from principal component analysis of tree ring data [J]. Mon Weather Review,1971,99: 139-142.
    LaMarche VC, Graybill HC, Fritts HC, et al. Increasing atmospheric carbon dioxide:tree ring evidence for growth enhancement in natural vegetation [J]. Science,1984a,225:1019-1021.
    LaMarche VC. Frequency-dependent relationships between tree-ring series along an ecological gradient and some dendroclimatic implications [J]. Tree-Ring Bulletin,1974b,34:1-20.
    Lamarche VC. Paleoclimatic inferences from long tree-ring records [J]. Science.1974a.183: 1043-1048.
    LaMarche, VC & Hirschboeck KK. Frost rings in trees as records of major volcanic eruptions [J]. Nature,1984b,307:121-126.
    Lara A, Aravena JC, Villalba R, et al. Dendroclimatology of high-elevation Nothofagus pumilio forests at their northern distribution limit in the central Andes of Chile. Canadian Journal of Forest Research, 2001,31(6):925-936.
    Leal S, Eamus D, Grabner M, et al. Tree rings of Pinus nigra from the Vienna basin region (Austria) show evidence of change in climatic sensitivity in the late 20th century [J]. Canadian Journal of Forest Research,2008,38(4):744-759.
    Leal S, Melvin TM, Grabner M, et al. Tree-ring growth variability in the Austrian Alps:the influence of site, altitude, tree species and climate [J]. Boreas,2007,36:426-440.
    Leonelli G, Pelfini M, di Cella U, et al. Climate Warming and the Recent Treeline Shift in the European Alps:The Role of Geomorphological Factors in High-Altitude Sites [J]. Ambio,2011,40(3):264-273.
    Li JB, Cook ER, D'Arrigo R, et al. Common tree growth anomalies over the northeastern Tibetan Plateau during the last six centuries:implications for regional moisture change [J]. Global Change Biology,2008,14(9):2096-2107.
    Li ZS, Zhang QE & Ma KP. Tree-ring reconstruction of summer temperature for A.D.1475-2003 in the central Hengduan Mountains, Northwestern Yunnan, China [J]. Climatic Change,2012,110:455-467.
    Liang EY & Eckstein D. Dendrochronological potential of the alpine shrub Rhododendron nivale on the south-eastern Tibetan Plateau [J]. Annals of Botany,2009,104:665-670.
    Liang EY, Liu B, Zhu LP, et al. A short note on linkage of climatic records between a river valley and the upper timberline in the Sygera Mountains, southeastern Tibetan Plateau [J]. Global and Planetary Change.2011a,77:97-102.
    Liang EY, Shao XM & Qin NS. Tree-ring based summer temperature reconstruction for the source region of the Yangtze River on the Tibetan Plateau [J]. Global and Planetary Change,2008,61(3-4): 313-320.
    Liang EY, Shao XM & Xu Y. Tree-ring evidence of recent abnormal warming on the southeast Tibetan Plateau [J]. Theoretical and Applied Climatology,2009,98:9-18.
    Liang EY, Shao XM, Eckstein D, et al. Topography-and species-dependent growth responses of Sabina przewalskii and Picea crassifolia to climate on the northeast Tibetan Plateau A-1435-2010 [J]. Forest Ecology and Management,2006,236(2-3):268-277.
    Liang EY, Wang YF, Eckstein D, et al. Little change in the fir treeline position on the southeastern Tibetan Plateau after 200 years of warming [J]. New Phytologist,2011b,190(3),760-769.
    Liang EY, Wang YF, Xu Y, et al. Growth variation in Abies georgei var. smithii along altitudinal gradients in the Sygera Mountains, southeastern Tibetan Plateau [J]. Trees-Structure and Function,2010. 24(2):363-373.
    Linderholm HW & Linderholm K. Age-dependent climate sensitivity of Pinus sylvestris L. in the central Scandinavian Mountains [J]. Boreal Environment Research,2004,9:307-317.
    Liu LS, Shao XM & Liang EY. Climate signals from tree ring chronologies of the upper and lower treelines in the Dulan region of the Northeastern Qinghai-Tibetan Plateau [J]. Journal of Integrative Plant Biology,2006a,48:278-285.
    Liu Q, Yao X, Zhao C, et al. Effects of enhanced UV-B radiation on growth and photosynthetic responses of four species of seedlings in subalpine forests of the eastern Tibet plateau [J]. Environmental and Experimental Botany,2011,74:151-156.
    Liu WH, Gou XH, Yang MX, et al. Drought reconstruction in the Qilian mountains over the last two centuries and its implications for large-scale moisture patterns [J]. Advances in Atmospheric Sciences, 2009a,26(4):621-629.
    Liu Y, An ZS, Linderholm HW, et al. Annual temperatures during the last 2485 years in the mid-eastern Tibetan Plateau inferred from tree rings [J]. Science in China Series D-Earth Sciences,2009b,52(3): 348-359.
    Liu Y, An ZS, Ma HZ, et al. Precipitation variation in the northeastern Tibetan Plateau recorded by the tree rings since 850 AD and its relevance to the Northern Hemisphere temperature [J]. Science in China Series D-Earth Sciences,2006b,49:408-420.
    Liu Y, Bao G, Song HM, et al. Precipitation reconstruction from Hailar pine (Pinus sylvestris var. mongolicd) treerings in the Hailar region, Inner Mongolia, China back to 1865 AD [J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2009c,282:81-87.
    Liu Y, Park WK, Cai QF, et al. Monsoonal precipitation variation in the East Asia since A.D. 1840-Tree-ring evidences from China and Korea [J]. Science in China Series D-Earth Sciences,2003, 46(10):1031-1039.
    Liu Y, Tian H, Song H, et al. Tree ring precipitation reconstruction in the Chifeng-Weichang region, China, and East Asian summer monsoon variation since A.D.1777 [J]. Journal of Geophysical RESEARCH,2010,115, D06103, doi:10.1029/2009JD012330.
    Lloyd AH & Fastie CL. Recent changes in treeline forest distribution and structure in interior Alaska [J]. Ecoscience,2003.10(2):176-185.
    Lloyd AH & Fastie CL. Spatial and temporal variability in the growth and climate response of treeline trees in Alaska [J]. Climatic Change,2002,52:481-509.
    Lloyd AH & Graumlich LJ. Holocene dynamics of treeline forests in the Sierra Nevada [J]. Ecology, 1997,78:1199-1210.
    Lloyd AH. Ecological histories from Alaskan tree lines provide insight into future change [J]. Ecology. 2005,86(7):1687-1695.
    Lo YH, Blanco JA, Seely B, et al. Relationships between climate and tree radial growth in interior British Columbia, Canada [J]. Forest Ecology and Management,2010,259(5):932-942.
    Long RR & Davis DD. Growth variation of white oak subjected to historic levels of fluctuating air pollution [J]. Environment Pollution,1999,106:193-202.
    Lopez BC, Satiate S, Gracia CA, et al. Wood anatomy, description of annual rings, and responses to ENSO events of Prosopis pallida H.B.K, a wide-spread woody plant of arid and semi-arid lands of Latin America [J]. Journal of Arid Environments,2005,61:541-554.
    Lv LX & Zhang QB. Asynchronous recruitment history of Abies spectabilis along an altitudinal gradient in the Mt Everest region [J]. Journal of Plant Ecology-UK,2012,5(2):147-156.
    Makinen H, Nojd P, Kahle H-P, et al. Large-scale climatic variability and radial increment variation of Picea abies (L.) Karst. in central and northern Europe [J]. Trees,2003,17(2):173-184.
    Marlow GP, Michael JS, Rolf WM, et al. Holocene treeline and climate change in the sub alpine zone near Stoyoma Mountain, Cascade Mountains, southwestern British Columbia, Canada [J]. Arctic Antarctic Alpine Res,2000,32(3):73-83.
    Massaccesi G, Roig FA, Pastur G, et al. Growth patterns of Nothofagus pumilio trees along altitudinal gradients in Tierra del Fuego, Argentina [J]. Trees-Structure and Function,2008,22(2):245-255.
    McClenahen JR. Potential dendroecological approaches to understanding forest decline [A]. In:Lewis TE ed. Tree rings as indieators of ecosystem health [C], Boca Raton:CRC Press,1995:59-79.
    McLaughlin SB, Downing DJ, Blasing TJ, at al. An analysis of climate and competition as contributors to red spruce in high elevation Appalachian forests of the eastern United States [J]. Oecologia,1987, 72(4):487-501.
    Merrens EJ & Peart DR. Effects of hurrican damage on individual growth and stand structure in a hardwood forest in New Hampsphire USA [J]. Journal of Ecology,1992,80:787-795.
    Messerli B & Ives JD. Mountains of the world:a global priority [M]. Parthenon:New York,1997.
    Moiseev P. Effect of climatic changes on radial increment and age structure formation in high-mountain larch forests of the Kuznetsk Ala Tau [J]. Russian Journal of Ecology,2002,33:7-13.
    Morales MS, Villalba R, Grau HR, et al. Rainfall-controlled tree growth in high-elevation subtropical treelines [J]. Ecology,2004,85:3080-3089.
    Motta R & Nola P. Growth trends and dynamics in subalpine forest stands in the Varaita Valley (Italy) and their relationships with human activities and global change [J]. Journal of Vegetation Science,2001, 12:219-230.
    Munier A, Hermanutz L, Jacobs JD, et al. The interacting effects of temperature, ground disturbance, and herbivory on seedling establishment:implications for treeline advance with climate warming [J]. Plant Ecology,2010,210:19-30.
    Neuwirth B, Esper J, Schweingruber FH, et al. Site ecological differences to the climatic forcing of spruce pointer years from the Lotschental, Switzerland [J]. Dendrochronologia,2004,22:69-78.
    North M, Chen JQ, Oakley B, et al. Forest stand structure and pattern of old-growth western hemlock/Douglas-fir and mixed-conifer forests [J]. Forest Science,2004,50(3):299-311.
    Norton DA, Palmer JG, Ogden J. Dendroecological studies in New Zealand. L An evaluation of age estimates based on increment cores [J]. New Zealand Journal of Botany,1987,25:373-383.
    Nowacki GJ & Abrams MD. Radial-growth averaging criteria for reconstructing disturbance 523 histories from presettlement-origin oaks [J]. Ecological Monographs,1997,67:225-249.
    Oberhuber W & Kofler W. Topographic influence on radial growth of Scots pine (Pious sylvestris L.) at small spatial scales [J]. Plant Ecology,2000,146:231-240.
    Oberhuber W. Influence of climate on radial growth of Pinus cembra within the alpine timberline ecotone. Tree Physiology,2004,24:291-301.
    Oreskes N. Beyond the Ivory Tower:The Scientific Consensus on Climate Change [J]. Science,2004, 306(5702):1686.
    Orwig DA & Abrams MD. Variation in radial growth responses to drought among species, site, and canopy strata [J]. Trees,1997,11:474-484.
    Paton DM, Slattery HD, Willing RR. Low root temperature delays dehardening of frost resistant eucalyptus shoots [J]. Annals of Botany,1979,43:123-124
    Payette S, Fortin MJ & Gamache I. The subarctic forest-tundra:the structure of a biome in a changing environment [J]. BioScience,2001.51:709-718.
    Payette S, Fortin MJ & Morneau C. The recent sugar maple decline in southern Quebec:probable causes deduced from tree rings [J]. Canadian Journal of Forest Research,1996.26:1069-1078.
    Peng JF, Gou XH, Chen FH, et al. Altitudinal variability of climate-tree growth relationships along a consistent slope of Anyemaqen Mountains, northeastern Tibetan Plateau [J]. Dendrochronologia,2008, 26(2):87-96.
    Perkin DL, Swetnam TW. Dendroecological assessment of whitebark pine in the Sawtooth-Salmon River region, Idaho [J]. Canadian Journal of Forest Research,1996,26(12):2123-2133.
    Peterson DW & Peterson DL. Effects of climate on radial growth of subalpine conifers in the North Cascade Mountains [J], Canadian Journal of Forest Research,1994.24 (9):1921-1932.
    Pu YL, Liu SQ, Zhang SR, et al. Slope-directive variation of mountain soil basic attributes in the northern Hengduan Mountains regions [J]. Journal of Soil and Water Conservation,2008,22(6): 112-117.
    Richman MB. Rotation of principal components [J]. Journal of Climatology,1986,6:293-335.
    Rigozo NR, Nordemann DJR, Echer E, et al. Solar variability effects studied by tree-ring data wavelet analysis [J]. Advances in Space Research,2002,29(12):1985-1988.
    Rinn F. TSAPWin:time series analysis and presentation for dendrochronology and related applications. Version 0.55. User reference. RINNTECH:Heidelberg, Germany,2003.
    Rogers A & Humphries S. A mechanistic evaluation of photosynthetic acclimation at elevated CO2[J]. Globle Change Biology,2000,6:1005-1011.
    Ruffner CM & Abrams MD. Relating land-use history and climate to the dendroecology of a 326-year-old Quercus prinus talus slope forest [J]. Canadian Journal of Forest Research,1998,28(3): 347-358.
    Sapkota IP & Oden PC. Gap characteristics and their effects on regeneration, dominance and early growth of woody species [J]. Journal of Plant Ecology-UK,2009,2(1):21-29.
    Savva Y, Oleksyn J, Reich P, et al. Interannual growth response of Norway spruce to climate along an altitudinal gradient in the Tatra Mountains, Poland [J]. Trees-Structure and Function,2006,20(6): 735-746.
    Schweingruber FH. Tree rings and environment:dendroecology [M]. Vienna, Haupt,1996.
    Shao XM, Huang L, Liu HB, et al. Reconstruction of precipitation variation from treerings in recent 1000 years in Delingha, Qinghai [J]. Science in China Series D-Earth Sciences,2005,48(7):939-949.
    Smith MD, Knapp AK, & Collins SL. A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change [J]. Ecology,2009,90(12):3279-3289.
    Speer JH. Fundamentals of tree-ring research [D]. The University of Arizona Press:Tucson,2010.
    Splechtna BE, Dobry J & Klinka K. Tree-ring characteristics of subalpine fir (Abies lasiocarpa (Hook.) Nutt.) in relation to elevation and climatic fluctuations [J]. Annals of Forest Science,2000,57(2): 89-100.
    Stevens GC, and Fox JF. The causes of treeline [J]. Annual Review of Ecology and Systematic,1991, 22:177-191.
    Stueve KM, Cerney DL, Rochefort RM, et al. Post-fire tree establishment patterns at the alpine treeline ecotone:Mount Rainier National Park, Washington, USA [J]. Journal of Vegetation Science,2009,20(1): 107-120.
    Szeicz JM & MacDonald GM. Age-dependent tree-ring growth responses of subartic white spruce to climate [J]. Canadian Journal of Forest Research,1994,24(1):120-132.
    Szeicz JM & Macdonald GM. Recent white spruce dynamics at the subarctic alpine treeline of north-western Canada [J]. J of Ecology,1995,83(5):873-885.
    Takahashi K, Azuma H & Yasue K. Effects of climate on the radial growth of tree species in the upper and lower distribution limits of an altitudinal ecotone on Mount Norikura, central Japan [J]. Ecological Research,2003,18(5):549-558.
    Takahashi K. Regeneration and coexistence of two subalpine conifer species in relation to dwarf bamboo in the understorey [J]. Journal of Vegetation Science,1997.8(4):529-536.
    Tan LC, Cai YJ, Yi L. et al. Precipitation variations of Longxi, northeast margin of Tibetan Plateau since AD 960 and their relationship with solar activity [J]. Climate of the Past.2008.4:19-28.
    Taylor AH & Qin ZS. Regeneration patterns in old-growth Abies-Betula forests in the Wolong natural reserve, Sichuan, China [J]. Journal of Ecology.1988,76(4):1204-1218.
    Taylor AH & Qin ZS. Tree regeneration after bamboo dieback in Chinese Abies-Betula forests [J]. Journal of Vegetation Science,1992,3(2):253-260.
    Taylor AH, Jiang SHW, Zhao LJ, et al. Regeneration patterns and tree species coexistence in old-growth Abies-Picea forests in southwestern China [J]. Forest Ecology and Management,2006,223(1-3): 303-317.
    Tian Q, Gou XH, Zhang Y, et al. Tree-ringbased drought reconstruction (a.d.1855-2001) for the Qilian Mountains, northwestern China [J]. Tree-Ring Research,2007,63:27-36.
    Tolunay D. Air poilution effects on annual ring widths of forest trees in mountainous land of Izmir (Turkey) [J]. Water, Air, and Soil Pollution:Focus,2003,3:227-242.
    Tranquillini W. Physiological ecology of the alpine treeline [M]. New York:Springer,1997.
    Vaganov EA, Hughes MK, Kirdyanov AV, et al. Influence of snowfall and melt timing on tree growth in subarctic Eurasia [J]. Nature,1999,400.149-151.
    Veblen TT & Kitzberger T. Inter-hemispheric comparison of fire history:The Colorado Front Range, U.S.A., and the Northern Patagonian Andes. Argentina [J]. Plant Ecology,2002,163:187-207.
    Vieira J, Campelo F & Nabais C. Age-dependent responses of tree-ring growth and intra-annual density fluctuations of Pinus pinaster to Mediterranean climate [J]. Trees,2009,23:257-265.
    Villalba R, Grau HR, Boninsegna JA, et al. Tree-ring evidence for long-term precipitation changes in subtropical South America [J]. International Journal of Climatology.1998,18:1463-1478.
    Walther GR, Post E, Convey P, et al. Ecological responses to recent climate change [J]. Nature,2002, 416:389-395.
    Wang GX, Bai W, Li N, et al. Climate changes and its impact on tundra ecosystem in Qinghai-Tibet Plateau, China [J]. Climatic Change,2010, doi:10.1007/s 10584-010-9952-0.
    Wang J, Duan B & Zhang Y. Effects of experimental warming on growth, biomass allocation, and needle chemistry of Abies faxoniana in even-aged monospecific stands [J]. Plant Ecology,2012,213(1): 47-55.
    Wang L, Duan JP, Chen J, et al. Temperature reconstruction from tree-ring maximum density of Balfour spruce in eastern Tibet, China [J]. International Journal of Climatology,2010b,30:972-979.
    Wang T, Ren HB & Ma KP. Climatic signals in tree ring of Picea schrenkiana along an altitudinal gradient in the central Tianshan Mountains, northwestern China [J]. Trees,2005,19(6):735-741.
    Wang T, Zhang QB & Ma KP. Treeline dynamics in relation to climatic variability in the central Tianshan Mountains, northwestern China [J]. Global Ecology and Biogeography,2006,15(4):406-415.
    Wardle P & Coleman MC. Evidence for rising upper limits of four native New Zealand forest trees. New Zealand Journal of Botany,1992.30(3):303-314.
    Weisberg PJ and Baker WL. Spatial variation in tree regeneration in the forest-tundra ecotone. Rocky Mountain National Park, Colorado [J]. Canadian Journal of Forest Research,1995,25,1326-1339.
    Wellburn A. Air pollution and acid rain:The Biological Impacts [M]. New York:longman Scientific &Technical,1988.
    Wigley TML, Briffa KR, Jones PD. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology [J]. Journal of Climate and Applied Meteorology,1984,23: 201-213.
    Wilmking M, Juday GP, Barber VA, et al. Recent climate warming forces contrasting growth responses of white spruce at treeline in Alaska through temperature thresholds [J]. Global Change Biology,2004, 10:1724-1736.
    Wilson RJS, Luckman BH. Dendroclimatic reconstruction of maximum summer temperatures from upper treeline sites in Interior British Columbia, Canada [J]. Holocene,2003,13,851-861.
    Wimmer, R. & M. Grabner. Effects of climate on vertical resin duct density and radial growth of Norway spruce (Picea abies (L.)Karst.) [J]. Trees,1997,11:271-276.
    Wu XD & Shao XM. Status and prospects of dendrochronological study in Tibetan Plateau [J]. Dendrochronologia,1995,13:89-98.
    Yamamoto S. Forest gap dynamics and tree regeneration [J]. Journal of Forest Research,2000,5(4): 223-229.
    Yang B, Kang XC, Brauning A, et al. A 622-year regional temperature history of southeast Tibet derived from tree rings [J]. Holocene,2010,20:181-190.
    Yao XQ & Liu Q. The effects of enhanced ultraviolet-B and nitrogen supply on growth, photosynthesis and nutrient status of Abies faxoniana seedlings [J]. Acta Physiologiae Flantarum,2009,31(3): 523-529.
    Yao YH, Zhang BP, Han F, et al. Spatial pattern and exposure effect of altitudinal belts in the Hengduan Mountains [J]. Journal of Mountain Science,2010,28(1):11-20.
    Yu DP, Wang QL, Wang GG, et al. Dendroclimatic response of Picea jezoensis along an altitudinal gradient in Changbai Mountains [J]. Science in China Series E-Technological Sciences,2006, 49(Suppl.):150-159.
    Yu GR, Liu YB, Wang XC, et al. Age-dependent tree-ring growth responses to climate in Qilian juniper (Sabina przewalskii Kom.)[J]. Trees,2008,22:197-204.
    Zhang QB & Hebda RJ. Variation in radial growth patterns of Pseudotsuga menziesii on the central coast of British Columbia, Canada [J]. Canadian Journal of Forest Research,2004.34:1946-1954.
    Zhang QB, Alfaro RI, & Hebda RJ. Dendroecological studies of tree growth, climate and spruce beetle outbreaks in Central British Columbia, Canada [J]. Forest Ecology and Management,1999, 121:215-225.
    Zhang QB, Cheng GD, Yao TD. et al. A 2326-year tree-ring record of climate variability on the northeastern Qinghai-Tibetan Plateau [J]. Geophysical Research Letters,2003,30(14):1739-1742.
    Zhang YJ, Dai LM & Pan J. The trend of tree line on the northern slope of Changbai Mountain [J]. Journal of Forestry Research,2001,12(2):97-100.
    Zhang YX & Wilmking M. Divergent growth responses and increasing temperature limitation of Qinghai spruce growth along an elevation gradient at the northeast Tibet Plateau [J]. Forest Ecology and Management,2010,260:1076-1082.
    Zhu HF, Shao XM, Yin ZY, et al. August temperature variability in the southeastern Tibetan Plateau since AD 1385 inferred from tree rings [J]. Palaeogeography Palaeoclimatology Palaeoecology,2011, 305:84-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700