用户名: 密码: 验证码:
冀西石湖金矿床地球化学特征、矿床成因及成矿预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文以地洼学说成矿学理论为指导,从石湖金矿区域成矿地质背景分析入手,应用岩石学、构造地质学、矿床学、同位素地球化学、矿床地球化学等多学科知识对石湖金矿床地质特征、矿床地球化学特征、矿床成因进行了系统和深入的研究,并在全面总结成矿规律的基础上,开展了成矿预测研究工作。
     首次论证了石湖金矿区经历了前地槽、地台及地洼三个大的构造发展演化阶段。前地槽主要为沉积期,构成了阜平群的原岩地层;吕梁期,区域上升成为地台;燕山期,地台活化,进入地洼阶段,区域发生大规模构造、岩浆活动,为石湖金矿床的重要形成时期。
     对矿床的近矿围岩、岩浆岩、以及矿石的微量元素、稀土元素地球化学特征进行了系统的研究,揭示了微量元素和稀土元素在成岩、成矿过程中所反映的地球化学行为特征,表明成矿元素金主要来源于矿源层(阜平群团泊口组)。硫、铅、碳同位素分析显示硫、铅、碳来源于地幔,矿石中石英包裹体气液相成分和氢氧同位素分析显示成矿流体为岩浆水和大气降水的混合流体。成矿物理化学特征表明矿床形成于超浅成、相对偏氧化的弱碱性中温成矿环境。
     运用爆裂法测温在石湖金矿进行成矿流体运移方向的研究。通过测定101-4主矿体各部位的爆裂温度、编制矿体垂直等温线图(纵投影图),判断出石湖金矿成矿流体是自矿区南端深部流向矿区北端浅部。对成矿流体运移方向的研究,从微观上解释了石湖金矿101-4矿体向南侧伏的形成机制。
     将矿床成矿作用与大地构造演化阶段联系起来,详细地阐述了石湖金矿床的成矿机理,认为矿床的形成具多大地构造演化阶段,多成矿物质来源、多控矿因素、多成矿作用和多成因类型的特点,提出石湖金矿床属产于太古代中级变质岩系、受断裂破碎带控制的燕山期岩浆改造混合热液型多因复成金矿床,并建立了与之相适应的成矿模式图。
     通过对控矿因素分析,总结出石湖金矿区断裂破碎带赋存工业矿体的条件为:①发育于阜平群团泊口组,因团泊口组为矿区的矿源层;②具有一定的规模,沿走向一般应在1000m以上;倾向延伸应大于400m;③须经历多期次多阶段的活动,活动次数多易形成多阶段矿化叠加;④伴有石英闪长玢岩脉的侵入,岩脉的侵入使断裂破碎带成为构造薄弱带,有利于成矿流体的进入和沉淀;⑤位于岩体外接触带的放射状断裂系统中,断裂破碎带走向为NW或NNW至SN向时最有利成矿。
     通过编制矿体厚度、品位等值线图,发现金矿化富集部位的连线同矿体的侧伏方向一致;研究发现石英矿物爆裂法测温的α—β相转变峰的出现率在矿体中具有一定的分布规律,从矿体浅部到深部α—β相转变峰出现率由高到低变化,据此规律预测矿床180m中段以下深部还具有很好的找矿前景。
     通过对成矿规律的研究,以矿体的侧伏规律、成矿流体的运移方向以及矿化在空间上所表现的各种富集变化规律为主要预测依据,提出了在101矿带的深部和南部具有良好的找矿前景,并经EH-4电导率成像系统勘查,圈出了101矿带南部和沿现有矿体侧伏方向的深部两个预测靶区,找矿潜力巨大。矿山近期对南部预测区进行了坑道工程验证,在180m、220m、260m三个中段均揭露到了厚度大、品位富的工业矿体。
Guided by Diwa metallogenic theory, starting from analyses ofregional metallogenic background of Shihu gold deposit, thecharacteristics of geology geochemistry and the genesis of deposit inShihu gold deposit are studied systematically and deeply by using theknowledge of petrology, structural geology, mineral deposit, isotopegeochemistry, geochemistry of mineral deposits, etc. On the basis ofsummarizing of metallogenic regularities in detail, researches ofprospecting prognosis have been done.
     The author, for the first time, has proved that Shihu mining area hasundergone three big developing evolution stages, ie. Pregeosyncline,platform and Diwa stages. The pregeosyncline is a main sedimentationperiod in which the protolith stratum of Fuping group was formed; duringLvliang movement period, the region was arised and platform formed;when Yanshan movement period, the platform was moved into Diwastage by activating, large-scale tectonic and magmatic activities happenedin that region, which was considered as the significant forming stage ofShihu gold deposit.
     The geochemical feature of the microelement and the rare earthelement of the country rock near orebody, magmatite and ore are studiedsystemactically, these reveales the geochemical action feature of themicroelement and rare earth element in the ore-forming process anddiagenetic stage, and the main ore—forming element Au is derived fromthe source bed (Tuanbokou formation of Fuping group). The data ofsulfur, lead and carbon isotopes show that sulfur, lead and carbon arederived from the mantle, the data of the compositions of gas and liquidphases in quartz inclusion and hydrogen, oxygen isotopes suggest that ore—forming fluids is a mixture of magmatic hydrothermal fluids andmeteoric water. The physical chemical features suggest that the depositemplaced in a near—surface, relative oxidized and weakly alkaline ore—forming environment.
     The moving direction of the ore—forming fluids is studied by means of decrepitation temperature in the Shihu gold deposit. Measure ofdecrepitation temperature and the vertical isothermal diagram of quartzinclusions at different levels in orebody 101-4 suggests that ore—formingfluids moved from south to north and from deep to shallow, whichexplains microcosmically the forming mechanism of pitch to south.
     Contacting the ore—forming process with the stage of geotectonicevolution, the mechanism of mineralization in Shihu gold deposit isstudied in detail. The author puts forward that the forming of the Shihugold deposit is of the characteristics of multistage geotectonic evolution,multisource ore- forming materials, multiore- controlling factors,multimineralization, multigenesis typle. Controlled by the fault belt, theShihu gold deposit is a polygenetic compound ore deposits which wasformed in the Archean mesometamorphic rock and reconstructed bymixed hydrothermal in Yanshan Epoch. And a related minerogeneticmodel has been set up.
     Through the analyses of ore—controlling factors, the conditions ofthe ore—beating fault belt are put forward as follows: 1) it developed inthe Tuanpokou formation of Fuping group which is the source bed of themining area; 2) it has a certain scale, which is over 1,000m along thestrike and 400m along at the dip; 3) it should undergo multistage andmultiphase movements, more movements number, easily formedmultistage mineralization pile; 4) accompanying intrusion of the quartzdiorite veins, it made that the fault belt became the structural weak zone,which is favourable for the access and precipitation of the ore fluid; 5) itis the best to mineralization when the fault belts locate in radiating faultsystem and their strike is NW—trending or NNW to SN—trending.
     The isogram of thickness and grade of the orebody suggests that theconnection line of the mineral concentration area is coinciding with thepitch direction of the orebody; and the appearing rate ofα—βpeak ofquartz decrepitation temperature has a distribution regulation, whichchanges from high to low with the depth of the orebody. This regulationsuggests that the deposit bellow the 180m bears a good prospectingperspective.
     Through the study of metallogenic regularities of the gold deposit, based mainly on the pitch regularity of the orebody, the moving directionof the ore—forming fluids and various mineral concentration regularity, itis supposed that deep and south domains of the deposit bear a goodprospecting perspective. Then two forecasting targets at the south of theorebelt 101 and depth along the pitch direction of the present orebody areoutlined integrating with the methods of EH-4 electrial conductivityimage system. Through the verfication of ore—searching by the tunnel,industrial orebody with big thickness and high grade, has been foundrecently at 180m, 220m and 260m level in the south forecasting area.
引文
[1] 崔琳.黄金牛市风高浪涨-2005年黄金市场回顾及2006年展望.稀有金属快报,2006,25(5):13-17
    [2] 宋瑞先,王有志,王振彭,等.河北金矿地质.北京:地质出版社,1994:9-319
    [3] 王文,王永生.国外典型矿床发现规律与启示.地质与勘探,2004,40(4):47—50
    [4] 王瑞延,毛景文,王东生,等.金属矿床地球化学的研究前沿.中国有色金属学会第五届学术年会论文集,2003,北京:63-65
    [5] 董树文,陈宣华,史静,等.国际地质科学发展动向.北京:地质出版社,2005
    [6] 卢焕章,李秉伦.包裹体地球化学.北京:地质出版社,1990:153-154
    [7] 范兽灏.爆裂法测温及地质—热晕找矿法.第十四届全国包裹体及地质流体学术研讨会论文集,2004,河北廊坊
    [8] 范啓灏.华南地区热液矿床矿(热)液运移方向同向性初步探讨.全国第二届矿床会议资料.1980,杭州
    [9] Boiron M C, Barakat A, Cathelineau M, et al. Geometry and P-V-T-X conditions of microfissural ore fluid migration: the Mokrsko gold deposit. Chemical Geology, 2001, 173 (1-3): 207-225
    [10] Wilde A R, Layer P, Mernagh T, et al. The giant Muruntau gold deposit: geologic, geochronologic, and fluid inclusion constraints on ore genesis. Economic Geology, 2001, 96 (3): 633-644
    [11] Taylor H P Jr. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. EconomicGeology, 1974, (69): 843-883
    [12] 张理刚.成岩成矿理论及找矿.北京:北京工业大学出版社,1989
    [13] A.Dolgopolova, R.Seltmann, C.Stanley. Isotope systematics of ore-bearing granites and host rocks of the Orlovka-Spokoinoe mining district, eastern Transbaikalia, Russia. Proceedings of the Eighth biennial SGA meeting, 2005, Beijing: 747-750
    [14] 王先彬,刘刚,陈践发,等.地球内部流体研究的若干关键问题.地学前缘,1996,3(3-4):105-118
    [15] Voicu G, Bardoux M, Stevenson R, et al. Nd and Sr isotope study of hydrothermal scheelite and host rocks at Omai, Guiana Shield: implication for ore fluid sources and flow path during the formation of orogenic gold deposits. Minerallium Deposit, 2000, 35 (4): 302-314
    [16] Monecke T, Kempe U, Monecke J, et al. Tetrad effect in rare earth element distribution patterns: a method of quantification with application to rock and mineral samples from granite-related rare metal deposits. Geochemical et Cosmochimica Acta, 2002, 66 (7): 1185-1196
    [17] Mathur R, Ruiz J and Munizaga F. Relaitionship between copper tonnage of Chilean base—metal porphyry deposits and Os isotope ratios. Geology, 2000, 28 (6): 555-558
    [18] Monecke T, Kempe U, Monecke J, et al. Tetrad effect in rare earth element distribution pattems: a method of quantification with application to rock and mineral samples from gramite-realted rare metal depostos. Geochimicaet Cosmocjomoca Acta, 2002, 66 (7): 1185-1196
    [19] Jiang N, Xu J, Song M. Fluid inclusion characteristics of mesothermal gold deposits in the Xiaoqinling district, Shanxi and Henan Provinces, People's Republic of China. Mineral deposits, 1999, 34:150-162
    [20] 岳可芬,郝英,张维平.深源CO_2及其对金的富集成矿作用.西北大学学报(自然科学版),2004,34(1):90-92
    [21] 翟裕生.走向21世纪的矿床学.矿床地质,2001,20(1):10-14
    [22] Cox D P and Singer D A. eds. Mineral deposit models. U. S. Geological Survey Bulletin 1693, U. S. Geological Survey, Reston, VA, United States. 1986, 1-379
    [23] Singer D A, Berger V I and Moring B C. Porphyry copper deposits of the world: database, maps, and preliminary analysis. Open-File Report-U.S. Geological Survey. Reston, VAUnited States, 2002.
    [24] Sharpe R and Gemmell J B. The Archean Cu-Zn Magnetite-rich Gossan Hill Voleaniehosted massive sulfide deposit, Western Australia: henesos of a multistage hydrothermal system. Economic Geology, 2002, 97 (3): 517-539
    [25] A. H. Hofstra, P.Emsbo, W.D.Christianesn, et al. Source of ore fluids in Carlin-type gold depsoits, China: lmpications for genetic models. Proceedings of the Eighth biennial SGA meeting, 2005, Beijing: 533-536
    [26] Wanty R B, Berger B R and Plumlee G S. Environmental models of mineral deposits: a state of the art. Geologica Hungarica(Serie Geologic), 1999, 24:97-106
    [27] Seal R R Ⅱ and Foley N K. editors. Progress on geoenvironmental models for selected mineral deposit types. Open-File-Report-U. S. Geological, 2002
    [28] Sillitoe R H. Some metallogenic features of gold and copper deposits related to alkaline rocks and consequences for exploration. Mineralium Deposita, 2002, 37 (1): 4-13
    [29] Sillitoe R H. Gold-rich porphyry deposits, descriptive and genetic models and their role in exploration and discovery. Review in Economic Geology, 2000, 13: 315-345
    [30] 陈国达,杨心宜.活化构造成矿学.长沙:湖南教育出版社,2003
    [31] 曹新志,孙华山,徐伯骏.关于成矿预测研究的若干进展.黄金,2003,24(4):11-14
    [32] 刘石年.成矿预测学.长沙:中南工业大学出版社,1993
    [33] 卢作祥,范永香.成矿预测研究的几个问题.地球科学,1982,18(3):253-262
    [34] 赵鹏大.科学找矿及矿床预测基本理论和准则(矿产勘查).武汉:中国地质大学出版社,1990,10-17
    [35] 刘伟.广东河台金矿矿床成因及成矿规律研究:[硕士学位论文].长沙:中南大学,2004
    [36] 刘伟,戴塔根,黄满湘,等.广东河台金矿矿体赋存规律及找矿前景.黄金,2006,27(3):9-13
    [37] 赵鹏大,王景贵,饶明辉,等.中国地质异常.地球科学.中国地质大学学报,1995,20(2):117-127
    [38] 陈永清,张生元,夏庆霖,等.应用多重分形滤波技术提取致矿地球化学异常:以西南“三江”南段Cu、Zn致矿异常提取为例.地球科学—中国地质大学学报,2006,31(6):861-866
    [39] 赵鹏大,陈建平,张寿庭.“三联式”成矿预测新进展.地学前缘,2003,10(2):455-463
    [40] 孙华山,赵鹏大,张寿庭,等.基于5P成矿预测与定量评价的系统勘查理论与实践.地球科学—中国地质大学学报,2005,30(2):1999-205
    [41] P. Laznicka. Giant ore deposits: A quantitative approach. Global Tectonics and Metallogeny, 1993, Vol. 88, No. 1 and 2
    [42] P. Laznicka. Quantitative relationships among giant deposits of metals. Economic Geology, 1999, Vol. 94, No.4:455-473
    [43] 赵元艺,马志红,仲崇学.勘查地球化学方法和数据处理综述及发展方向.世界地质,1999,14(1):76-81
    [44] 谢学锦.进入21世纪的勘查地球化学.中国地质,2001,28(4):11-18
    [45] ZENIN M F. The Balikti porphyry-copper deposit in Almalyk. Middle Asia Geological Materials, 1937, 5: 39-61(in Russian)
    [46] KOTLYAR B B. Geochemical exploration in the former Soviet Union. Explor, 1996, 91: 1-10
    [47] DARNLEY A G CAMERON E M, RICHARDSON K A. The Federal-Provincial Uranium Reconnaissance Program. Uranium Exploration'75. Geological Survey of Canada, Paper, 1975, 26-75
    [48] ARCHER A R, MAIN C A. Casino, Yukon—A geochemical discovery of an unglaeiated Arizona-type porphyry. BOYLE R W. Geochemical Exploration, Proceedings of the 3rd International Geochemical Exploration Symposium. Canadian Institute of Mining and Metallurgy, 1971, Toronto: 67-77
    [49] 报摘.地球化学勘查成为找金属矿勘查重要手段,地质与勘探,2006,42(1):25
    [50] 王学求.矿产勘查地球化学:过去的成就与未来的挑战.地学前缘,2003,10(1):239-248
    [51] 李国廉,孙肇祥,单承恒.勘查地球化学在吉林省溜河地区地质找矿中的应用.矿产与地质,2005,19(6):629-633
    [52] CAMERON E M.Deep-penetrating Geochemistry. CAMIRO-Exploration Division, 1998, 117
    [53] KRISTIANSSON K, MALMQVIST L. Evidence for nondiffusive transport of Rn in the ground and a new physical model for the transport. Geophysics, 1982, 47 (1): 1444-1452
    [54] CLARKE J R, MEIER A L. Enzyme leaching of surficial geochemical samples for defining hydromorphic trace-element anomalies associated with precious/metal mineralized bedrock buffed beneath glacial overburden in northem Minnesota. GOLD, 1990, 90:189-207
    [55] 谢学锦,王学求.深穿透地球化学新进展,地学前缘,2003,10(1):225-238
    [56] 齐文秀,刘涛.金属矿物探新方法与新技术.地质与勘探,2005,41(6):62-66
    [57] 白大明,刘光海.甚低频电磁法在老硐沟氧化淋滤型金矿勘查中的应用 效果.地质与勘探,1998,34(2):46-49
    [58] 李才明,李军,余舟,等.几种不同类型金矿的高精度磁测异常特征.成都NI大学学报(自然科学版),2004,31(2):180-182
    [59] 洪德乐,魏文芹,王可勇.X射线荧光技术及其在江西金山地质找矿上的应用效果.地质科技情报,1993,12(3):89-92
    [60] 吴国学,李守义,陈国华,等.金矿勘查中的伽玛能谱测量—以黑龙江乌拉嘎金矿外围柳树河区为例.吉林大学学报(地球科学学报),2005,35(6):823-826
    [61] 王振东.浅层地震勘探应用技术.北京:地质出版社,1988:1-296
    [62] 肖骑彬,蔡新平,徐兴旺,等.浅层地震与MT联合技术在隐伏金属矿床定位预测中的应用.矿床地质,2005,24(6):676-682
    [63] 柳建新,刘春明,佟铁钢,等.双频激电法在西藏某铜矿多金属矿带的应用.地质与勘探,2004,40(2):59-61
    [64] 徐德利,李文良,卿敏,等.EH-4电法测量在峪耳崖金矿区的应用.地球学报,2004,25(1):79-82
    [65] 孟贵祥,兰险.EH-4电导率成像系统的特点及其在金属矿勘探中的应用.矿床地质,2006,25(1):36-42
    [66] 柳建新,胡厚继,刘春明,等.综合物探方法在深部接替资源勘探中的应用.地质与勘探,2006,42(4):71-74
    [67] Agterberg F P. Application of Imge Analysis and Multivariate Analysis to Mineral Resource. Economic Geology, 1981, 76: 1016-1031
    [68] 郭华东.航天飞机雷达SIR—C对西昆仑山新生代火山的探测.科学通报,1997,42(3):335-336
    [69] 赵震海,况顺达,王成相.黔东南地区遥感构造研究与金矿的关系.中国矿业,2006,15(5):80-84
    [70] 傅文杰,洪金益,朱谷昌.基于光谱相似尺度的支持向量机蚀变信息提取.地质与勘探,2006,42(2):69-73
    [71] 万丽,王庆飞,高帮飞,等.成矿预测数据统计方法,现代地质,2005,19(4):615-620
    [72] 胡旺亮,吕瑞英,高怀忠等.矿床统计预测方法流程研究.地球科学,1995,20(2):128-133.
    [73] 辛洪波,邓均,王建国,等.山东焦家金矿新、老Ⅲ号脉数学地质分析,黄金科学技术,2005,13(3):1-6
    [74] Bonham-Carter G F, Agterberg F P and Wright D F. Intergration of geological datasets for gold exploration in Nova Scotia. Photogrammetric Engineering and Remote Sensing, 1988, 54 (11):1585-1592
    [75] Raines G L. Evaluation of weights of evidence to predict epithermal-gold deposits in the Great Basin of the western United States. Natural Resources Research, 1999, 8 (4): 257-276
    [76] Boleneus D E, Rains G L, Causey J D, et al. Assessment method for epithermal gold deposits in northeast Washington State using weight—of—evidence GIS modeling. USGS Open—File Report, 2001, 01-501: 1-52
    [77] 翟裕生,邓军,王建平,等.深部找矿研究问题.矿床地质,2004,23(2):142-149
    [78] 戴塔根.湖南有色金属生产矿山扩大接替资源的对策.地质通报,2005,24(10~11):1013-1015
    [79] 裴荣福,熊群尧,沈保丰,等.难识别及隐伏大矿、富矿资源潜力的地质评价.北京:地质出版社,2001:1-162
    [80] 彭省临,刘亮明.大型矿山接替资源勘查技术与示范研究.北京:地质出版社,2004.73-85
    [81] 刘亮明,王志强,彭省临,等.综合信息论在储量危机矿山深边部找矿中的应用—以铜陵凤凰山铜矿为例.地球科学,2002,37:444-452
    [82] 张宝林,蔡新平,韩金良,等.资源危机金矿深部与外围找矿前景的若干判别标志.地质与勘探,2001,37(2):44-46
    [83] 苏梅,继勇.青山遮不住—辽宁凤城青城子铅矿外围地质找矿重大发现记.国土资源,2006,63:14-21
    [84] 韩进朝.河北省土岭—石湖金矿区构造控矿条件分析.黄金,1997,18(8):7-10
    [85] 杨殿范,李高山,贾克实,等.太行山区土岭、石湖金矿床成矿条件及成因探讨.长春地质学院学报,1991,21(1):47-53
    [86] 崔艳合.土岭—石湖金矿床中黄铁矿的成分特征及其找矿意义.岩石矿物学杂志,1993,12(4):371-381
    [87] 牛树银,李红阳,孙爱群,等.幔枝构造理论与找矿实践.北京:地震出版社,2002
    [88] 张亚雄,陈松岭,彭省临,等.河北灵寿县土岭—石湖金矿田控矿构造研究.大地构造与成矿学,1996,20(1):71-80
    [89] 张亚雄,朱惠超,陈松岭,等.石湖金矿成矿规律与找矿预测.中南工业大学学报,1995,26(5):570-574
    [90] 张亚雄,胡祥昭.麻棚岩体特征及其与金矿成因关系研究.中南矿冶学院学报,1994,25(3):275-281
    [91] 杨殿范,李高山,贾克实.河北石湖金矿区控矿构造特征与成矿预测.河北地质学院学报,1992,15(5):516-520
    [92] 喻学惠,任建业,张俊霞.太行山中段铜.金成矿条件及找矿方向.北京:地质出版社,1996
    [93] 傅朝义.河北省变质核杂岩及其金矿床:[博士学位论文].长沙:中南大学,1999
    [94] 陈锦荣.河北省唐县大石峪及外围金矿床地质特征及其成因.黄金地质科技,1992,34(4):21-26
    [95] 杨殿范,刘荣访,李高山,等.太行山区土岭、石湖金矿区地球化学及其找矿标志.吉林地质,1991,4:70-78
    [96] 刘荣访.河北省灵寿县石湖金矿的构造地球化学特征.北京地质,2001,13(4):13-19
    [97] 陈锦荣.太行山北段土岭—石湖金矿床地质特征及成因.黄金地质科技,1993(4):10-16
    [98] 陈国达.中国成矿大地构造图(1:400万).长沙:中南工业大学出版社,1999
    [99] Shuyin Niu, Aiqun Sun, Huabin Hu, et al. The formation of a mantle-branch structure in western Shandong and its constraints on gold mineralization. Proceedings of the Eighth biennial SGA meeting, 2005, Beijing: 37-39
    [100] 刘占坡,高祥林,黎益仕.太行山重力梯级带的密度结构及其地质解释.地震地质,2003,25(2):266-273
    [101] 王启超,张少卿.太行山阜平超群的地质时代及地层划分.华北地质矿产杂志,1996,11(3):443-446
    [102] 赵永利,肖文暹.太行山阜平隆起南段太古宙变质地层划分对比及时代讨论.河北地质矿产信息,2002,4:2-9
    [103] 肖庆辉,邱瑞照,邓晋福,等.中国花岗岩与大陆地壳生长方式初步研究.中国地质,2005,32(3):343-351
    [104] 陈斌 翟明国.太行山北段中生代岩基的成因和意义:主要和微量元素地球化学证据.中国科学:D辑,2002,32(11):896-907
    [105] 陈斌,田伟.太行山中生代岩浆作用过程中的壳幔岩浆混合作用-岩石学和地球化学证据.地学前缘,2006,13(2):140-147
    [106] 刘锡文.浅谈冀东北地区的大地构造演化规律与金矿成矿规律.大地 构造与成矿学,1992,16(4):355-365
    [107] 陈国达.地洼学说讲义.中国科学院长沙大地构造研究所,1985
    [108] 陈国达.地壳的第三基本构造单元一地洼区.科学通报,1959(3):94-95
    [109] 高太忠,赵伦山.山东牟乳金矿带成矿演化机理探讨.大地构造与成矿学,2001,25(2):155-160
    [110] 张季生,王海燕.燕山地区重、磁特征分析与构造分区.地球学报,2005,26(4):349-4354
    [111] 徐义刚.太行山重力梯度带的形成与华北岩石圈减薄的时空差异性有关.地球科学—中国地质大学学报,2006,31(1):14-22
    [112] 周新华,张宏富.中生代华北岩石圈地幔高度化学不均—性与大陆岩石圈转型.地球科学—中国地质大学学报,2006,31(1):8-13
    [113] 徐桂林,申宗义,邓绍颖.洪山火山机构含矿特征与成矿条件分析.河北地质,2006,3:12-15
    [114] 李昌存,韩秀丽,邹继兴.栾木场金矿石英流体包裹体及成矿预测.矿物岩石,1999,19(1):55-57
    [115] 刘海田,任久峰.大河南金矿田地球化学特征及地化找矿模型初探.河北地质矿产信息,2003,4:32-36
    [116] 李义,王玉富.太行山北段金矿赋存规律研究.地质与勘探,1992,28(5):6-12
    [117] 贺同兴,卢良兆,李树勋,等.变质岩岩石学.北京:地质出版社,1979:1-240
    [118] 蔡剑辉,阎国翰,许保良,等.太行山—大兴安岭东麓晚中生代碱性侵入岩岩石地球化学特征及其意义.地球学报,2006,27(5):447-459
    [119] 武汉地质学院岩石教研室.岩浆岩岩石学(上、下册).北京:地质出版社,1980:1-116
    [120] 卢武长.稳定同位素地球化学.成都:成都地质学院发行组,1986,1-334
    [121] 许虹,李鸿超,李高山.土岭.石湖金矿床黄铁矿找矿矿物学研究.地质找矿论丛,1992,7(4):67-73
    [122] 张步升,王守一,李金海.石湖金矿矿床特征及金的赋存机理研究.贵金属地质,1997,6(3):183-187
    [123] Shikazono N, Shimizu. The Ag/Au ratio of native gold and the geochemical environment of gold vein deposits in Japan. Mineralium Deposit, 1987, 22(4):309-314
    [124] 徐述平,朱洪岭,张华全.胶东大磨曲家金矿控矿断裂及成矿规律.黄金科学技术,2006,14(2):11-22
    [125] 牛树银,王宝德,孙爱群,等.冀西北黄土梁金矿控矿构造分析及深部矿体预测.地质与勘探,2003,39(4):17-20
    [126] 戴塔根,龚铃兰,张起钻.应用地球化学.长沙:中南大学出版社,2005:1-268
    [127] 牟保磊.元素地球化学.北京:北京大学出版社,1999
    [128] 刘本立.地球化学基础.北京:北京大学出版社,1994:1-167
    [129] Norman D I, Kyle P K and Charles B.. Analysis of trace elements including REE in fluid inclusion liquid. Econ. Geol., 1989, 84: 161-166
    [130] Ghazi A M, Vanko D A, Roedder E, et al. Inductively coupled plasma-mass spectrometry. Geochim. Cosmochim. Acta, 1993, 57 (18): 4513~4516
    [131] Banks D A, Yardely B W D, Campell A R, et al. REE composi2 tion of an aqueous magmatic fluid inclusions study from the Capitan pluton. New Mexico, USA. Chem. Geol., 1994, 13:: 259-272
    [132] 王中刚,于学元,赵振华,等.稀土元素地球化学.北京:科学出版社,1989:1-495
    [133] 陈柏林,杨屹,王小凤,等.阿尔金北缘大平沟金矿床成因.矿床地质,2005,24(2):169-178
    [134] 叶得金,张作衡,赵彦庆.北祁连山西段鹰咀山蚀变碎裂岩型金矿床控矿因素和成因.地球学报,2003,24(4):311-318
    [135] Boynton, W. V. Cosmochemsitry of the rare earth elements: meteorite studies. Dev. Geochem, 1984, 2:63-114
    [136] Ohmoto H. Systematics of Sulphur and Carbon Isotones in Hydrothmal Ore Deposits. Econ.Geol, 1972, V67
    [137] Ohmoto H. Geochemistry of Hydrothmal Ore deposits. 2nd edition.H.(?) Barnes eds, fohe wiley.New York, 1979
    [138] Ohmoto H. Stable geochemistry of ore deposits.Rev.Mineral.1986, 491-559
    [139] Rye R. O, Ohmoto. H.Sulpher and carbon istopes and ore genisis, a review, Econ. Geol, 1974, 69: 824-826
    [140] Chaussidon M, Lorand JP. Sulphur isolope composition of orogenic spinel iherzolile massifs from arige(N. E. Pyrenees, France).. An ion microproble stadv. Geochim Cosmoehim Acta, 1990, 54: 2835-2846.
    [141] 李毅,徐文忻,刘悟辉,等.滇黔桂地区微细浸染型金矿硫铅同位素地球化学研究.地球学报,2005,26(增刊):168-170
    [142] 毛景文,李厚民,王义天,等.地幔流体参与胶东金矿成矿作用的氢氧碳硫同位素证据.地质学报,2005,79(6):839-857
    [143] 齐文,候满堂.镇旬矿田泥盆系和志留系铅锌矿的成矿地质条件分析.中国地质,2005,32(3):452-462
    [144] 梁一鸿,张宏颖.十八倾壕金矿床硫同位素组成的构造学意义.地质与勘探,2004,40(6):1-4
    [145] Rye, R. O., P.M. Bethke, M.D. Wasserman. The stable isotope geochemistry of acid sulfate alteration. Economic Geology, 1992, Vol. 87:225-262
    [146] Doe B R, Zartman R E. Plumbotectonies 1, the Phanerozoic. In:Barnes H L.ed., Geochemistry of Hydrothermal Ore Deposits, 2nd Ed., Holt, Rinehart and Winston, New York, 1979:22-70
    [147] 韩秀丽,李昌存,赵光军.河北省易县栾木厂金矿床地质特征.黄余,1999,20(3):5-8
    [148] 卢欣祥,尉向东,于在平,等.小秦岭—熊耳山地区金矿的成矿流体特征.矿床地质,2003,22(4):377-385
    [149] 汤倩,邸文.同位素地球化学及其在地学研究中的应用.中山大学研究生学刊(自然科学、医学版),2006,27(3):97-109
    [150] 卢焕章,李秉伦.包裹体地球化学.北京:地质出版社,1990:153-154
    [151] 胡受奚,叶瑛,方长泉.交代蚀变岩岩石学及其找矿意义.北京:地质出版社,2004:1-104
    [152] 杨金中,沈远超,刘铁兵,等.山东蓬家夼金矿床成矿流体地球化学特征.矿床地质,2000(3):235-244
    [153] 王莉娟,朱和平.新疆准噶尔盆地西缘哈图金矿成矿流体.中国地质,2006,33(3):666-671
    [154] 刘伟,黄满湘,欧阳玉飞.广东河台金矿成矿流体特征.矿产与地质,2005(5):469-474
    [155] 刘伟,刘建军,王光明,等.湖南桥口铅锌矿床成矿流体特征.湖北地矿,2004,18(2):14-18
    [156] 陈克强,高振家,李龙.有关深部流体地质填图和立体地质填图的几个问题.地质通报,2003:994-990
    [157] 沈远超,刘铁兵,曾庆栋,等.中国金矿床成矿预测的理论与方法.北京:地质出版社,2001:1-202
    [158] 刘文均,郑容才.花垣铅锌矿床成矿流体特征及动态.矿床地质,2000,19(2):173-181
    [159] 银剑钊,史红云.张家口—宣化地区金矿床地质.北京:地质出版社,1994:1-116
    [160] 陈柏林.金矿床和金成矿作用研究进展.地质论评,2001,47(1):111-112
    [161] 杨再红.河北东坪金矿床围岩蚀变与成矿预测.地质与勘探,2003,39(2):34-39
    [162] 杨立强,邓军,郭良胜,等.胶东金矿成矿时代和矿床成因研究评述.自然科学通报,2006,16(7):797-802
    [163] 冯钟燕,陈廷礼,赵永超.太行山北段中生代成矿时间演化.地学前缘,1999,6(2):343-349
    [164] 廖超林,王岳军,彭头平.太行山南段早元古代基性脉岩的~(40)Ar—~(39)Ar年代学及其构造意义.大地构造与成矿学,2003,27(4):354-361
    [165] 罗照华,邓晋福,李玉文,等.太行山构造岩浆带K—Ar法同位素年龄分析.现代地质,1996,10(3):344-349
    [166] 牛树银,孙爱群,许传诗,等.太行山北段金矿成矿规律研究.华北地质矿产杂志,1998,13(1):1-108
    [167] 王光志,崔毫,徐孟罗,等.华北地块南缘地质构造演化与成矿.北京:冶金工业出版社,1997
    [168] 陈国达.关于多因复成矿床的一些问题.大地构造与成矿学,2000,24(3):199-201
    [169] 张荣华,胡书敏,张雪彤,等.重要金属矿来源—迁移—堆积过程和化学动力学.北京,科学出版社,2006,1-224
    [170] 曾庆栋,沈远超,杨金中,等.山东省乳山金矿隐伏矿体定位预测.地质与勘探,1999,35(2):3-6
    [171] 邹为雷,李光明,沈远超.山东省文登市西院下金矿成矿规律及深部矿体定位预测.地质与勘探,2000,36(6):52-54
    [172] 吴辉,段焕春,汪树栋,等.甘肃礼县金山金矿床品位变化特征及其找矿预测.地质与勘探,2006,42(2):19-23
    [173] 陈桥,胡克,姜兵田.灵山沟金矿矿化富集规律研究.地质找矿论丛,2004,19(2):114-117
    [174] 李金祥,吴文根,张忠义.胶东西北部金矿床的侧幕式分布及其在探矿中的应用.有色金属(矿山部分),2004,56(4):15-17
    [175] 辛后田,李俊健,沈保丰,等.新泰市岳家庄金矿构造控矿特征.前寒武纪研究进展,2000,23(1):35-43
    [176] Sanderson D J, Roberts, Gumiel E A fractal relationship between vein thickness and gold grade in drill core from La Codosera, Spain. Economic Geology and the Bulletin of the Society of Economic Geologists, 1994, 89 (1): 168-173
    [177] Thomas M, Brace G, Jochen M. Fractal distributions of veins in drill core from the Hellyer VHMS deposit, Australia:Constraints on the origin and evolution of the mineralization system. Mineral Deposit, 2001, 36: 406-415
    [178] Manderbrot B B. The fractal geometry of nature. New York: W H Freeman, 1982
    [179] Falconer K J. Fractal Geometry: Mathematical Foundation and Application. New York: John Wilry and Sons Feder J. Fractals. New York and London: Plenum Press, 1988
    [180] 李存有,施立达.包裹体爆裂法测试中石英α—β峰的产生原因及找矿意义.贵金属地质,1999,8(1):35-37
    [181] 李存有,施立达.包裹体爆裂参数在金矿找矿中的应用.地质科技情报,1998,17(增刊):125-130
    [182] 戴自希,王家枢.矿产勘查百年.北京:地震出版社,2004,1-230
    [183] 范永香,阳正熙.成矿规律与成矿预测.徐州:中国矿业大学出版社,2003,1-280
    [184] 黄满湘.湖南麻阳铜矿控矿因素分析与找矿.中南矿冶学院学报,1991,22(5):10-13
    [185] 戴塔根,陈国达.锡矿山锑矿控矿构造—“三层楼”模式及意义.中南工业大学学报,1998,30(4):1-5
    [186] 戴塔根,吴湘滨,胡斌.雪峰古陆西南缘区域地球化学场对成矿的控制作用田.地质地球化学,2001,29(3):100-103
    [187] 徐述平,朱洪岭,张华全.胶东大磨曲家金矿控矿断裂及成矿规律.黄金科学技术,2006,14(2):11-22
    [188] 王世称.大型、超大型金矿床密集区综合信息预测.北京:地质出版社,2001:1-163
    [189] 孙书山.中国金矿地质勘查成就和展望.地质与勘探,1997,33(2):12-17

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700