用户名: 密码: 验证码:
纳米金刚石薄膜的制备机理及其机械性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学气相沉积(Chemical Vapor Deposition,CVD)金刚石膜是集优异的力学、电学、热学、声学和化学性能于一体的材料,在高科技领域有着广泛的应用前景。为了探索纳米晶对CVD金刚石薄膜机械性能的影响,本文对热丝CVD(Hot Filament CVD, HFCVD)法纳米金刚石薄膜的设备、工艺及机理等开展深入系统的研究,并对所制备的纳米金刚石薄膜的微结构和机械性能进行分析与评价,为CVD纳米金刚石薄膜的应用奠定基础。
     本文完成的主要工作和取得的成果如下:
     ①系统分析了微米晶粒的金刚石薄膜存在的缺陷和面临的不足以及纳米金刚石薄膜的优势与应用前景,研究了纳米金刚石薄膜的表征技术、沉积工艺与机理研究的发展。
     ②对双偏压HFCVD纳米金刚石薄膜制备系统开展了系统的研究,分析了HFCVD系统基本热交换过程,建立了气相和衬底温度场的三维有限元模型,综合分析了多种因素对衬底气相温度场的影响;设计了衬底多点无电刷测温装置和多试样连续沉积系统,提高了衬底温度实时测量的准确性与试样的制备效率。
     ③在双偏压HFCVD系统中,采用“双偏压成核、栅极偏压生长”工艺成功在单晶硅、多晶钼和YG8硬质合金等衬底上制备了高质量的纳米金刚石薄膜;Raman、SEM、AFM和XRD等现代理化分析手段表明所制备的纳米金刚石薄膜纯度较高,成核密度在1011cm-2以上,晶粒尺寸在数纳米至几十纳米,表面粗糙度Ra可达10nm左右;采用双偏压成核与生长交替进行的方法,成功制备了具有纳米表面结构的金刚石厚膜,对快速高质量制备纳米金刚石厚膜进行了有益的探索。
     ④从理论和实验两方面着手,深入探讨了双偏压特别是栅极偏压对纳米金刚石成核与生长过程的影响机理。系统研究了双偏压HFCVD系统的伏安特性,进行了栅极偏压和衬底偏压对金刚石成核与生长过程影响的实验研究,分析了栅极偏压和衬底偏压抑制金刚石晶粒长大的规律;深入分析了栅极正偏压和衬底负偏压在纳米金刚石膜制备过程中的影响机理,研究发现衬底偏流虽然能够显著的抑制金刚石晶粒的生长,但生长缺陷过多,而栅极偏流可以产生大量的氢原子,有利于提高纳米金刚石薄膜的质量。
     ⑤对纳米金刚石薄膜的机械性能展开系统的表征与研究,系统研究了纳米金刚石膜的显微硬度、弹性模量、断裂韧性、膜基结合性能以及摩擦系数。由于金刚石晶粒的减小,使得晶界密度大量增加,在晶界处的非金刚石成分增加,从而引起了纳米金刚石薄膜的弹性模量和显微硬度降低,但是韧性增大,光滑表面和晶界石墨的润滑使得纳米金刚石薄膜的摩擦系数显著降低(约为微米晶的1/3);此外,纳米金刚石薄膜极高的成核密度使其具有良好的膜基结合性能。过大衬底偏流会引起纳米金刚石膜的弹性模量和显微硬度的剧烈下降。
     ⑥利用有限元方法建立了金刚石膜热应力轴对称模型,深入系统分析了纳米金刚石膜的热应力分布规律以及工艺参数对薄膜热应力的影响规律;利用X射线衍射法测试分析了纳米金刚石膜的本征应力,系统分析了纳米效应对金刚石膜本征应力的影响规律与机理,晶粒的非金刚石成分使得纳米金刚石薄膜具有较大的压应力。
Chemical vapor deposited (CVD) diamond film has wide application prospects in many high-tech fields because of its extremely high hardness, low friction coefficient, excellent wear resistance and high thermal conductivity and other excellent performance. In order to explore the effect of nanocrystalline on the mechanical properties of CVD diamond film, study is carried out on the nanocrystalline diamond film (NCD) in this dissertation. The research contents include the CVD deposition system, growth process and mechanism and mechanical properties of NCD. All the results of this research provide the basis for the NCD application.
     The main work and the results obtained in this dissertation are as follows:
     1. The shortcomings of microcrystalline diamond film (MCD) and superiorities of NCD are analyzed firstly. The characterization technique, deposition process and mechanism and application foreground of NCD are reviewed.
     2. The study was carried out on the double bias hot filament CVD (HFCVD) system. The heat exchange of the HFCVD system was analyzed at first, then the substrate and atmosphere temperature field models are set up by the FEA method to investigate the large area HFCVD system. Multi-point substrate temperature measuring system and continuous deposition system are introduced to the HFCVD system to improve the measuring precision of the substrate temperature and the efficiency of sample preparation.
     3. By using the new method of double bias nucleation and grid bias growth, high purity and extremely smooth NCD was obtained on the different substrates such as single crystalline silicon, polycrystalline molybdenum and YG8 cemented carbide. Raman, SEM, XRD and AFM results show that the diamond films obtained have grain sizes less than 20nm, nucleation density higher than 1011cm-2 and the surface roughness less than 10nm. The thick diamond film with nanocrystalline surface was successfully obtained by the alternation between nucleation and growth process in the double bias HFCVD system.
     4. Effect of the grid bias and substrate bias on the NCD nucleation and growth process was studied in detail. It is shown from the experiment and theoretical analysis that the positive grid bias increases the activation, decomposition and ionization of hydrogen and methane molecules, while negative substrate bias helps positive carbon-containing ions bombard the substrate which leads to the high nucleation density of the diamond. It is shown that negative substrate bias will induce the increasing of non-diamond content in the film, while grid bias will generate a lot of hydrogen atoms that will maintain the purity of diamond film.
     5. The systematic characterization and invenstagation are carried out on the mechanical properties of NCD. The microhardness, Young’s modulus, fracture toughness, adhesion strength and friction coefficient of NCD were measured and analyzed respectively. The decrease of diamond grain size results in the increase of grain boundary density and non-diamond content in the grain boundary in the film. The microhardness and Young’s modulus will decrease with the decrease of diamond grain size, while fracture toughness will increase. The negative substrate bias current will induce the great decrease of microhardness and Young’s modulus. The NCD friction coefficient is only 1/3 of MCD because of its smooth surface and lubrication of graphite content in the diamond boundary. The NCD has good adhesion performance because of its high nucleation density. The mechanisms of the effect of nano-meter size effect on the NCD mechanical properties were studied in detail.
     6. Study on the thermal stress of the diamond film by FEA model was carried out. By the FEA model, the magnitude and distribution of thermal stress were revealed. The intrinsic stress was measured and analyzed by XRD method and the mechanism of the nano-meter size effect on the NCD intrinsic stress was studied in detail. The non-diamond content in the grain boundary will cause the compressive residual stresses in the NCD.
引文
[1] Robert F. Davis. Diamond films and coatings: development, properties, and applications. New Jersey: Noyes Publications, 1993.
    [2] Jes Asmussen, D. K. Reinhard. Diamond films Handbook. New York: Marcel Dekker, Inc, 2001
    [3]陈光华,张阳等编著.金刚石薄膜的制备与应用.北京:化学工业出版社,2004
    [4]戴达煌,周克菘等编著.金刚石薄膜沉积制备工艺与应用.北京:冶金工业出版社,2001
    [5] M. Dieter. Gruen, Shengzhong Liu, Alan R. Krauss, et al. Buckyball microwave plasmas: Fragmentation and diamond film growth. Journal of Applied Physics, 1994, 75 (3): 1758-1763
    [6]徐锋,左敦稳,王珉等. CVD金刚石厚膜的机械抛光及其残余应力的分析.人工晶体学报,2004, 33 (3): 436-440
    [7] Xu Feng, Zuo Dunwen, Wang Min. Study on Energy Density Needed in Nd:YAG laser polishing of CVD diamond thick-film. Proc. of 7th ICPMT, Suzhou, China, 2004: 382-387
    [8]徐锋.金刚石厚膜的加工技术研究[硕士学位论文].南京:南京航空航天大学,2002.3
    [9] A.P. Malshe, B.S. Park, W.D. Brown, et al.A review of techniques for polishing and planarizing chemically vapor-deposited (CVD) diamond films and substrates. Diamond and Related Materials, 1999, 8 (7): 1198-1213
    [10] Bernhard Dischler. Low-pressure synthetic diamond: manufacturing and applications. Springer series in materials processing, Springer, 2000
    [11]张立德,牟季美著.纳米材料与纳米结构.北京:科学出版社,2002
    [12] Vandenbulcke L, De Barros M I. Deposition, structure, mechanical properties and tribological behavior of polycrystalline to smooth fine-grained diamond coatings. Surface and Coatings Technology, 2001,146-147: 417-424
    [13]丁桂甫,曹莹,李新永等. CVD金刚石薄膜的微机械加工技术研究进展.金刚石与磨具磨料工程, 2003, 133 (1):6-11
    [14]王渭源,王效东,毛敏耀等.用作金刚石微电子和微机械器件的若干关键技术.科学通报, 1999, 44 (4): 355-360
    [15] Kazuya Unno, Takayuki Shibata, Eiji Makino. Micromachining of diamond probes for atomic force microscopy applications. Sensors and Actuators A, 2001,88 (3): 247-255
    [16] H. Bjorkmana, J. Anderssona, P. Hollmana, et al. Microstructured diamond dies for transfer moulding. Diamond and Related Materials, 2001,10 (1): 7-12
    [17] T. Shardaa, M. M. Rahamanb, Y. Nukayac, et al. Structural and optical properties of diamond and nano-diamond films grown by microwave plasma chemical vapor deposition. Diamond and Related Materials, 2001,10 (3-7): 561-567
    [18] N.A. Morrison, I.C. Drummond, C Garth, et al. Growth of CVD diamond films over bio-medical materials. Diamond and Related Materials, 1996, 5 (10):1118-1126
    [19]朱利兵,唐元洪,林良武.纳米金刚石薄膜的合成、表征及应用.人工晶体学报, 2004, 33 (6): 1052-1056
    [20] V. D. Frolor, A. V. Karabutor, et al. Similarity in field electron from nanocrystalline diamond and related materials. Diamond and Related Materials, 2001,10 (9-10): 1719-1726
    [21] D. M. Gruen. Nanocrystalline diamond films. Annual Review of Materials Science, 1999, 29:211-259
    [22]吕反修.具有广阔应用前景的纳米金刚石薄膜.物理, 2003, 32(6):383-390
    [23] K. H. Chen, D. M. Bhusari, J. R. Yang, et al. Highly transparent nano-crystalline diamond films via substrate pretreatment and methane fraction optimization. Thin Solid Films, 1998, 332: 34-39
    [24] Lee Joungchel, R. W. Collins, R. Messier. Low temperature plasma process based on CO2 rich CO/H2 mixtures for high rate diamond film deposition. Applied Physics Letter, 1997, 70 (12): 1527-1529.
    [25] Clark. G.J. Applied X-Ray (Fourth Edition). New York: McGraw-Hill Publishing Company, Ltd, 1995
    [26] Huimin Liu, David S. Dandy. Diamond chemical vapor deposition Nucleation and early growth stages. New Jersey: Noyes publitions, 1995
    [27]王季陶著.非平衡定态相图—人造金刚石的低压气相生长热力学.北京:科学出版社,2000
    [28] D. Zhou, A. R. Krauss, L. C. Qin, et al. Synthsis and electron field emission of nanocrystalline diamond thin films growth from N2/CH4 microwave plasmas. Journal of Applied Physics, 1997, 82 (9): 4546-4550
    [29] D. Zhou, T. G. McCauley, L. C. Qin et al. Synthesis of nanocrystalline diamond thin films from Ar–CH4 microwave plasma. Journal of Applied Physics, 1998, 83 (1): 540-543
    [30] Y. F. Zhang, F. Zhang, Q. J. Gao, et al. The roles of argon addition in the hot filament chemical vapor deposition system. Diamond and Related Materials, 2001, 10 (8): 1523-1527
    [31] Yang Wubaoa, Kong Xiang, Yang Size, et al. Nano-crystalline diamond films prepared by microwave argon plasma vapor deposition on optical glass. Vacuum, 2003, 68 (1): 49–55
    [32]张志明,莘海维,戴永兵等.热丝CVD法生长纳米金刚石薄膜的研究.微细加工技术, 2003, (1): 27-33
    [33]龚辉,范正修,姜辛等.大面积均匀纳米金刚石薄膜制备研究.光学学报, 2002,22 (6): 718-722
    [34]杨国伟.非金刚石衬底表面气相生长金刚石薄膜的成核理论(I) -光滑表面衬底.人工晶体学报, 1995, 24(3): 251-257
    [35]杨国伟.非金刚石衬底表面气相生长金刚石薄膜的成核理论(II)-宏观粗糙表面衬底.人工晶体学报, 1995, 24(4): 334-340
    [36] W. Zhu. Growth and characterization of diamond film on nondiamond substrate forelectronica applications. Proc. IEEE,1991,79:621-625
    [37] S. Yugo. Generation of diamond Nuclei by electric field on nondiamond substrates for electronic application. Applied Physics Letter, 1991,58 (10): 1036-1040
    [38]杨国伟,余仲秋.偏压预处理在CVD金刚石成核中的作用.微细加工技术, 1996,(4): 71-74
    [39]王万录,廖克俊,方亮等.负衬底偏压热灯丝CVD金刚石膜成核的研究.人工晶体学报, 1999, 28 (1): 65-68
    [40] M. Katoh, M. Aori and H. Kawarada. Plasma-enhanced diamond nucleaion on Si. Journal of Applied Physics (JPN), 1994, 32(2): 194-196
    [41] G. Snchez, W.L. Wang , M.C. Polo, et al. Nucleation of diamond on silicon by biased HFCVD: a comparative study. Diamond and Related Materials, 1998,7 (2-5): 200-204
    [42] X. T. Zhou, H. L. Lai, H. Y. Peng, et al. Heteroepitaxial nucleation of diamond on Si (100) via doublebias-assisted hot filament chemical vapor deposition. Diamond and Related Materials, 2000, 9 (2): 134-139
    [43] C. S. Cojocaru, M. Larijani, D. S. Misra, et al. A new polarised hot filament chemical vapor deposition process for homogeneous diamond nucleation on Si (100). Diamond and Related Materials, 2004,13 (2): 270-276
    [44] K. Janischowsky, W. Ebert, E. Kohn. Bias enhanced nucleation of diamond on silicon (100) in a HFCVD system. Diamond and Related Materials, 2003,12 (3-7): 336-339
    [45] H. G. Busmann, A .Pageler, U Brauneck, et al. Grain boundaries and mechanical properties of nanocrystalline diamond films. Materials Science Forum, 2000, 343-346: 255-260
    [46] T. Sharda, T. Soga, T. Jimbo, et al. High compressive stress in nanocrystalline diamond films grown by microwave plasma chemical vapor deposition. Diamond and related materials, 2001,10 (3-7): 352-357
    [47] A. Erdemir, C. Bindal, et al. Friction and wear properties of smooth diamond film grown in fullerene + argon plasmas. Diamond and related Materials, 1996, 5 (9): 923-931
    [48]杨武保,吕反修,唐伟忠等. MPCVD法纳米金刚石膜的制备及分析.人工晶体学报. 2000,9(1): 54-58
    [49] W. Z. Lu, D.W. Zuo, M. Wang, et al. Study on EDM Polishing of CVD diamond films. Key Engineering Material, 2006, 315-316: 464-486.
    [50]卢文壮,左敦稳,王珉等.硼掺杂金刚石膜的电火花加工研究.中国机械工程, 2006, 17 (2): 204-207.
    [51]曹振中,左敦稳,黎向锋等. P型掺杂金刚石厚膜的电火花加工.人工晶体学报. 2005, 34 (3): 565-570
    [52] D. W. Zuo, S. L.Song, B. K. Xiang, et al. Some Key points for EACVD thick diamond film preparation. Key Engineering Materials, 2004, 258-259:517-521
    [53] T. DebRoy, K. Tankala, W. A. Yarbrough, et al. Role of heat transfer and fluid flow in the chemical vapor deposition of diamond. Applied Physics, 1990, 68 (5): 2424-2432
    [54] C.Wolden, S.Mitra, K.K.Gleason, Radiative heat transfer in hot-filament chemical vapor deposition diamond reactors. Applied Physics, 1992, 72 (8): 3750-3758
    [55]陈岩,黄荣芳,闻立时等.温度场对热丝化学气相沉积大面积生长金刚石膜的影响.材料研究学报, 1995, 9 (3): 245-248
    [56]戚学贵,陈则韶,王冠中.热丝法化学气相沉积金刚石系统温度分布与薄膜生长关系研究.材料工程, 2001, (11) :31-34
    [57]李建国,刘实,李依依等.热丝化学气相沉积金刚石薄膜空间场的数值分析.金属学报, 2005, 41 (4): 437-443
    [58]汪爱英,孙超,皱友生等. HFCVD金刚石薄膜温度场的数值研究.金属学报,2002,38 (11): 1228-1232
    [59]宋胜利,左敦稳,徐锋等.大面积热丝化学气相沉积系统衬底温度自回归模糊神经网络控制技术.机械工程学报, 2005, 41 (7): 136-140
    [60]宋胜利.大面积HFCVD金刚石制备的温度控制及其应用技术研究[博士学位论文].南京:南京航空航天大学, 2004.9
    [61]赵镇南著.传热学.北京:高等教学出版社, 2002
    [62]张学学,李桂馥编.热工基础.北京:高等教学出版社, 2000
    [63] F P Incropera, D P Dewitt著.葛新石,王义方,郭宽良译.传热的基本原理.合肥:安徽教育出版社,1985
    [64]常超.计算机编程控制HFCVD系统与金刚石薄膜及相关材料生长的研究[博士学位论文].合肥:中国科学技术大学, 2001
    [65]宋胜利,左敦稳,王珉.大面积HFCVD系统衬底温度场建模与分析.应用科学学报, 2003, 21 (4): 423-426
    [66]戚学贵,陈则韶.热丝CVD系统内衬底温度分布的数值研究.材料科学与工程,2002,19 (3): 29-33
    [67]应济,贾昱,陈子辰等.粗糙表面接触热阻的理论和实验研究.浙江大学学报(自然科学版), 1997. 31 (1): 104-109
    [68]沈军,马骏,刘伟强.一种接触热阻的数值计算方法.上海航天, 2002, 19 (4): 33-36
    [69]唐兴伦,范群波,张朝晖等编. Ansys工程应用基础-热与电磁学.北京:中国铁道出版社, 2002
    [70]李人宪编著.有限元法基础.北京:国防工业出版社,2002
    [71]卢文壮,左敦稳,王珉等.大面积HFCVD金刚石沉积设备的研究.机械设计与制造, 2003, (6): 81-83
    [72]曹振中.纳米金刚石膜生长机理及工艺研究[硕士学位论文].南京:南京航空航天大学,2005.3
    [73]朱胤,左敦稳,王珉等.计算机控制CVD金刚石生长系统的研究.人工晶体学报, 2003,32 (6): 605-609
    [74]崔建民主编.电工电子EDA仿真技术.北京:高等教育出版社, 2004
    [75]邱东江,吴惠桢,石成儒等.热丝碳化促进CVD金刚石成核增强的物理机制.功能材料, 2002, 33 (1): 46-48
    [76]徐锋,左敦稳,卢文壮等.连续多试样纳米金刚石膜沉积设备及工艺.南京航空航天大学学报, 2005,37 (S): 63-67
    [77]何贤昶,张志明,沈荷生等.钨和钽丝碳化后的结构变化及其对金刚石成膜质量的影响.上海交通大学学报, 1995,29(5):80-86
    [78]犬冢直夫,王景义译.金刚石薄膜的新合成方法.微细加工技术, 1990, (2-3): 41-45
    [79]孙心瑗,周灵平,李绍禄等.辅助方法对热丝CVD金刚石生长速率的影响.人工晶体学报, 2003,32 (4): 393-397
    [80]陈荣发,左敦稳,李多生等.甲烷浓度对等离子喷射金刚石厚膜生长稳定性的影响.金属学报, 2005,41 (10): 1091-1094
    [81] P. Keblinski, D. Wolf, F. Cleri, et al. On the nature of grain boundaries in nanocrystalline diamond. Materials Research Socity Bulltin, 1998,23(9):36-41
    [82] D. S. Knigh, W. B White. Characterization of diamond films by Raman spectroscopy. Materical Research. 1989, (4): 385-393
    [83] Joungchel Lee, R. W. Collins, and R. Messier. Low temperature plasma process based on CO-rich CO/H2 mixtures for high rate diamond film deposition Applied Physical Letter, 1997,70 (12): 1527-1529
    [84] B. Marcus, L. Fayette, Mermoux, et al. Analysis of the structure of multi-component carbon films by resonant Raman scattering. Journal of Applied Physics, 1994,76 (6): 3463-3470
    [85] E. J.Corat and D. G.Goodwin. Temperature dependence of species concentrations near the substrate during diamond chemical vapor deposition. Journal of Applied Physics, 1993, 72 (3): 2021-2029
    [86]张志明,莘海维,戴永兵等.热丝CVD法生长纳米金刚石薄膜的研究.微细加工技术, 2003, (1): 27-33
    [87] W. A. Yarbrough, K. Tankala, M. Mecray, et al. Hydrogen assisted heat transfer during diamond growth using carbon and tantalum filaments. Applied Physics Letters, 1992, 60 (17): 2068-2069
    [88] Randell Mills, Jayasree Sankar, Andreas Voigt, et al. Role of atomic hydrogen density and energy in low power chemical vapor deposition synthesis of diamond films. Thin Solid Film, 2005, 478: 77-90
    [89] S. M. Leeds, T. J. Davis, T. W. May, et al. Use of different excitation wavelength for the alysis of CVD diamond by laser Raman spectroscopy. Diamond Related Materials, 1998, 7 (2-5): 233 -237.
    [90] Dischler, Wild. Low-pressure synthetic Diamond. Springer. 1998
    [91] Feng Bin, Liao Kejun, Wang Wanlu et al. Effect of negative bias on diamond film growth on Mo substrate. Microfabrication Technology, 1998, (4): 65-69
    [92]马志斌,汪建华,邬钦崇. CVD条件对金刚石薄膜/钼基体界面层的影响.武汉化工学院学报, 2001,23 (3): 39-42
    [93] D. Schwarzbach, R. Haubner and B. Lux. Internal stresses in CVD diamond layers. Diamond Related Materials, 1994,3 (4-6): 757-764
    [94] A. K. Mehlmann, S. Berger, A. Fayer, S. F. Dirnfeld, et al. Investigation of cobalt behaviour during diamond deposition on cemented carbides. Diamond and Related Materials, 1994, 3 (4-6): 805-809
    [95]黎向锋.在电沉积层上化学气相沉积金刚石薄膜的基础研究. [博士学位论文].南京:南京航空航天大学, 1999.9
    [96]汪浩,朱鹤孙,沈明荣等. CVD金刚石薄膜的成核机制.材料研究学报, 1998,12 (6): 570-574
    [97]张志明,何贤昶,沈荷声等. CVD金刚石涂层刀具附着力的研究.上海交通大学学报, 1998, 3 (32): 103~106
    [98]卢文壮.基于过渡层在硬质合金上沉积CVD金刚石薄膜的研究. [硕士学位论文].南京:南京航空航天大学, 2002.8
    [99] S. A. Catledge, P. Baker, J. T. Tarvin, et al. Multilayer nanocrystalline/microcrystalline diamond films studied by laser reflectance interferometry. Diamond and Related Materials, 2000,9 (8): 1512-1517
    [100] F. Xu, D. W. Zuo, W. Z. Lu et al. Study on the synthesis mechanism of nanocrystalline diamond thick films. Materials Science Forum, 2007, 532-533: 121-124
    [101]莘海维.纳米金刚石复合薄膜及微压力传感器的研究. [博士学位论文].上海:上海交通大学,2002.6
    [102] P.W. May, J.A. Smith, Yu. A. Mankelevich. Deposition of NCD films using hot filament CVD and Ar/CH4/H2 gas mixtures. Diamond and Related Materials, 2006, 15 (2-3): 345-352
    [103] M. Tssuda, M. Nakajima, S. Okiawa. Epitaxial growth of mechanism of diamond crystal in CH4-H2 plasma. Journal of American chemistry society. 1986,108:5780-5783
    [104]薛增泉,吴全德编著.电子发射与电子能谱.北京:北京大学出版社, 1993
    [105]杨津基编著.气体放电.北京:科学出版社, 1983
    [106] D.G. Goodwin, G.G. Gavillet. Numerical modeling of the filament-assisted diamond growth environment. Journal of applied Physics, 1990,68 (12), 6393-6400
    [107] Lifang Dong, Yuhong Zhang, Boqin Ma et al. Monte Carlo simulation of spatial distribution of atomic hydrogen in electron assisted CVD. Diamond and Related Materials, 2002, 11 (7): 1448-1452
    [108]崔景标,马玉蓉,方容川.用原位发射谱研究电子增强热丝CVD金刚石膜生长过程.中国科学(A辑). 1996,26 (11): 1038-1043
    [109] Meyyappon M, Kreskovsky J P. Glow discharge silulation through solution to the moments of the Boltzmaan transport equation. Journal of Applied Physics, 1990,68 (4): 1506-1512
    [110] S. T. Pai. Analyatic approach to glow discharge theory: the physical model. Journal of Applied Physics, 1992,71 (12): 5820-5825
    [111]杨国伟,毛友德. CVD金刚石膜在光滑衬底表面成核研究德进展.微细加工技术, 1995, (4): 43-46
    [112]黄元盛,刘正义,邱万奇. CVD金刚石薄膜二次形核机制的研究.材料科学与工程, 2001, 9 (1): 50-52
    [113] T. N. Rhodin, D. Walton. Metal surface: Structure, energetic and kinetics. Ohio:American Society for metal, Metal park, 1963
    [114] D. G. Goodwin. Scaling laws for diamond chemical-vapor deposition. I. Diamond surface chemistry. Journal of Applied Physics, 1993, 74 (11): 6888-6894
    [115] D. G. Goodwin. Scaling laws for diamond chemical-vapor deposition. II. Atomic hydrogen trans. Journal of Applied Physics, 1993, 74 (11): 6895-6906
    [116]王必本.金刚石薄膜的核化机制及其应用研究. [博士学位论文].重庆:重庆大学,2001
    [117]闵乃本著.晶体生长基础.上海:上海科学技术出版社, 1982
    [118]王万录,廖克俊,方亮等.负衬底偏压热灯丝CVD金刚石膜成核的研究.人工晶体学报, 1999, 28 (1): 65-68
    [119] W. L. Wang, K. J. Liao et al. Nucleation enhancement of diamond film by ion bombarding and electron emitting. Acta Physics Sinica (Overseas Edition), 1997,6 (7): 517-521
    [120] M. Yoshimoto, K. Yoshida, H. Maruta, et al. Epitaxial diamond growth on sapphire in an oxidizing environment. Nature,1999, 399: 340-342
    [121]林良武,唐元洪,朱利兵.原子氢在纳米金刚石薄膜生长中的作用.无机材料学报, 2006, 20 (5): 1263-1269
    [122]马丙现,姚宁,杨仕娥.氢的强化刻蚀对金刚石薄膜品质的影响与sp2杂化碳原子的存在形态.物理学报, 2004,53 (7): 2287-2291
    [123] D.M Gruen, Xianzheng A.R Krauss, et al. Deposition and characterization of nanocrystalline diamond films. Journal of Vacuum Science & Technology A (Vacuum, Surfaces, and Films), 1994,12 (4): 1491-1495
    [124] P. C. Redfern, D. A . Horner, L. A. Curtiss, et al. Theoretical studies of growth of diamond (110) from dicarbon. Journal of Physical Chemistry, 1996,28 (11): 11654-11663
    [125]张宇锋.纳米金刚石薄膜的形核与生长[硕士学位论文].北京:北京大学,2002
    [126] T.G. McCauley, D. M. Gruen, A. R. Krauss, Temperature dependence of the growth rate for nanocrystalline diamond films deposited from an Ar/CH4 microwave plasma. Applied Physics Letters, 1998,73 (12): 1646-1648
    [127]张泰华,杨业敏.纳米硬度技术在表面工程力学性能检测中的应用.中国机械工程,2002, 13 (24): 2148-2151
    [128]张泰华,杨业敏.纳米硬度技术的发展和应用.力学进展,2002, 32 (3): 349-364
    [129]张泰华.微/纳米力学测试技术及其应用.北京:机械工业出版社, 2004
    [130]谢存义.纳米压痕技术在材料科学中的应用.物理, 2001, 30 (7): 432-435
    [131] A. Bolshakov, G. M. Pharr. Journal of Materials Research, 1998 ,13 (4): 1049-1058
    [132] Pharr G M, Oliver W C, Brotzen. On the generality of relationship among contact stiffness, contact area, and elastic modulus during indentation testing. Journal of Materials Research, 1992, 7(3): 613-617
    [133] Pharr G M. Measurement of mechanical properity by ultra-low load indention. Materials Science Engineering A, 1998, 253(1-2): 151-159
    [134]高建明.材料力学性能.武昌:武汉工业大学出版社, 2004.8
    [135]杨武保.微波等离子体辅助化学气相沉积纳米金刚石薄膜研究[博士学位论文].北京:北京科技大学,2001
    [136]方静华,项金钟,周桢来等.纳米金刚石薄膜的制备特点及特性.材料导报, 2003,17(10):44-47
    [137]周宇松,吴希俊.纳米金属的力学性能.力学进展,2001, 31 (1): 62-69
    [138]李学敏,汪家道,陈大融等.纳米压痕法研究金刚石薄膜的力学性能.硅酸盐学报, 2005, 33 (12): 1539-1543
    [139] Chin-Chen Chiu, Yung Liou, Yung-Der Juang. Elastic modulus of and residual stress in diamond films. Thin solid film, 1995, 260:118-123
    [140]刘志平,王加春,杨育林.类金刚石膜的力学性能及其工具应用.工具技术, 2005, 39 (12): 30-33
    [141]常明,孙伟,邢金华.模拟纳米晶体原子分布及X射线散射理论图案.物理学报, 1997, 46 (7): 1319-1325
    [142]常明,杨保和,常皓.纳米晶体微观畸变与弹性模量的模拟研究.物理学报, 1999, 48 (7): 1215-1222
    [143]高建明.材料力学性能.武昌:武汉工业大学出版社, 2004.8
    [144]田林海,宗瑞磊,朱晓东等.轰击能量对离子束辅助磁控溅射沉积Cr2N薄膜断裂韧性的影响.中国有色金属学报, 2005, 15 (10): 1520-1525
    [145]简小刚,孙方宏,赵国伟等.金刚石薄膜膜基界面结合强度测量技术的研究进展.金刚石与磨料磨具工程. 2002, (3): 3-7
    [146]王必本,王万录,廖克俊等.离子的轰击对Si衬底上金刚石核附着力的影响.物理学报, 2001, 50 (2): 251-255
    [147]金曾孙,姜志刚,胡航.热阴极DC-PCVD方法制备的金刚石厚膜的生长特性和内应力.新型炭材料, 2003 ,18 (1): 65-68
    [148]钱劲,张大成,赵亚博等.微电子机械系统中的残余应力问题.机械强度, 2001, 23 (4): 393-401
    [149]袁发荣,伍尚礼著.残余应力测试与计算.长沙:湖南大学出版社,1987.
    [150] G. Kleer, R. Kassner, E.M. Meyer, et al. Effect of process parameters on the residual stresses and the wear behavior of aluminum nitride physical vapor deposition coatings Surface and Coating Technology, 1992, 54-55 (1-3): 167-172
    [151] Yang Jiao-xi, Li Cheng-ming, Chen Guang-chao, et al. Analysis of residual stress distribution in DC arc plasma jet CVD high quality diamond films by Raman spectroscopy. Journal of Synthetic Crystals, 2004,33 (4): 674-678
    [152]方亮,王万录,王健等.金刚石薄膜内应力研究现状.材料导报, 1999,13 (6): 39-41
    [153]邵淑英,范正修,范瑞瑛等.薄膜应力研究.激光与光电子学进展, 2005,42 (1): 22-27
    [154] P. R .Chalker, A .M .Jones, Johns, et al. Evaluation of internal stresses present in chemical vapor deposition diamond films. Surface and Coating Technology, 1991, 47 (1-3): 365-374
    [155] R. J. Jaccodine, W. A. Schlegel. Measurement of strains at Si-SiO2 interface. Journal of Applied Physics. 1966,37 (6): 2429-2434
    [156] A. Killis, J. F. Lenest, A. Gandini, et al. Correlation among transport properties in ionically conducting cross-linked networks. Solid State Ionics. 1984,14 (3): 231-237
    [157]米谷茂著.残余应力的产生和对策.北京:机械工业出版社, 1983
    [158] B .D .Culllity, Element of X–ray Diffraction, Addison-Wesley. Reading, MA ,2nd edn.,1978
    [159] Michler, Y. von Kaenel, J. Stiegler, et al. Complementary application of electron microscopy and micro Raman spectroscopy for microstucture, stress, and bonding defectioninvestigation of heteroepitaxial chemical vapor deposited diamond films. Journal of Applied Physics, 1998, 83 (1): 187-196
    [160]黄天斌,刘敬明,钟国仿等.大面积无衬底自支撑金刚石厚膜沉积.北京科技大学学报,2000,22 (3): 234-237
    [161] S. J. Bull. The effect of creep on the residual stress in vapor deposited thin film. Surface and Coating Technology, 1998,107 (2-3): 101-105
    [162] J. Mencik. Mechanics of Components with Treated or Coated Surfaces. Dordrecht: Kluwer Academic, 1995.
    [163] J. Michler, M Mermoux, Y von Kaenel, et al. Residual stress in diamond films: origins and modellng. Thin Slid Flim, 1999, 357 (2): 189-201
    [164]黄天斌,刘敬明,唐伟忠等.大面积金刚石膜沉积过程中的热应力分析.北京科技大学学报, 2000,22 (2): 153-155
    [165] J. H. Jeong, S.Y. Lee, W.S. Lee, et al. Mechanical analysis for crack-free release of chemical vapor deposited diamond wafers. Diamond and Related Materials, 2002,11 (8): 1597-1605
    [166] QiHua Fan, J Gracio, E Pereia. Rsidual stresses in chemical vapour deposited diamond films. Diamond and Related Materials, 2000,9 (9-10): 1739-1743
    [167]周祖源,陈广超,周有良等. DC Plasma Jet CVD金刚石自支撑膜体结构的控制生长及其表面粗糙度的研究.人工晶体学报, 2005,34 (1): 21-24
    [168] O. Durand, R. Bisaro, C. J. Brierley, et al. Residual stress in chemical vapor deposition free-standing diamond film by X-ray diffraction analyses. Materials Science and Engineering A. 2000, 228 (2): 217-222.
    [169]范玉殿,周志峰.薄膜内应力的起源.材料科学与工程, 1996,14 (1): 5-12
    [170] J. D. Finegan, R. W. Hoffman Stress anisotropy in evaporated iron films. Applied Physics, 1959,30 : 597-603
    [171] F A Doljack, R W Hoffman. The origins of stress in thin nickel films. Thin solid film, 1972,12 (1): 71-74
    [172] D. W. Hoffman, C. M. Kulka. Determination of film stresses during sputter deposition using an in situ probe. Journal of Vaccum Science (A), 1985,3 (6): 2600-2604
    [173] J Michler, M Mermoux, Y von Kaenel, et al. Residual stress in diamond films: origins and modellng. Thin Slid Flim, 1999, 357 (2): 189-201

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700