用户名: 密码: 验证码:
低渗透油藏压裂注水机理及工艺参数优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是一个低渗油气藏资源比较丰富的国家,未动用的油气地质储量中,低渗油气藏占的比例很大。目前低渗透油藏主要采取注水开发,但由于低渗透油藏特殊的孔隙结构以及注水伤害等原因,导致注水困难,波及系数降低,采收率减小。目前增强注水主要有物理方法与化学方法,主要包括常规压裂增注、振荡、酸化等增注技术,但均存在有效期短、费用较高、二次伤害等问题。
     裂缝扩展注水技术是运用常规的水力压裂原理,在低渗透油藏注水井中实施的一种提高注水量的技术措施。低渗透油藏中,由于储层的渗透率较低、渗流阻力大、以及常规注入水水质的影响,使地层吸水能力差。在这种情况下,保持注水量不变,提高地面注水压力,当井底压力达到地层破裂压力时,就会在沿垂直于最小主应力方向产生裂缝。缝表面未受污染,吸水能力增强,此时若仍保持注水量不变,地面注水压力瞬间会自然下降到某一值。继续注水,由于水质、出砂等原因污染新裂缝表面,注水压力逐渐上升,当达到地层破裂压力时,在裂缝尖端,又会沿原裂缝方向产生新的裂缝,新缝表面渗透率增加,注水压力瞬间降低。以此类推,裂缝扩展呈现不规则的周期变化,缝长逐渐增加,直至合理的范围。
     论文以岩石力学和渗流力学为基础,对裂缝扩展注水技术的内在机理进行了系统研究。首先,研究了裂缝扩展注水的机理,形成了裂缝扩展注水的力学模型,建立了裂缝扩展周期、滤失系数以及裂缝扩展缝长增量的计算方法;其次,采用双向通信方法,把裂缝生长模拟与油藏模拟进行整合,形成了裂缝扩展注水动态模拟软件,并进行了裂缝扩展注水开发影响因素的规律性分析。最后以胜坨油田为工程背景,开展了裂缝扩展注水技术参数的优化设计。得到如下结论:
     对于低渗透油田,裂缝扩展注水技术对采收率的影响显著;对采收率有影响规律:0°裂缝的采出程度略低于理想状态下的采出程度,而45°和90°裂缝采出程度与理想注水采出程度一致;且裂缝扩展注水的采出程度远高于无压裂常规注水的采出程度。0°裂缝时波及系数最大,45°裂缝时次之,90°裂缝时更小,理想状态无裂缝时波及系数最小。注入量对裂缝扩展开发效果有影响:在本研究所用参数条件下,注入量为60方/天时,0°裂缝和无裂缝理想状态下采出程度基本一致,注入量80方/天时,有裂缝与无裂缝状态相比,采出程度有所降低;注入量100方/天时,采出程度降低幅度有所增大。
     水质对裂缝扩展注水的影响规律:无论水质好坏,90°和45°裂缝扩展对采出程度影响很小;0°裂缝时,水质好采出程度高,但影响幅度不大。水质对波及效率的影响很小。
     井距对裂缝扩展注水的影响规律是:随着井距的增加,任意角度裂缝的采出程度都在下降。井网类型对裂缝扩展注水的影响规律是:裂缝扩展注水与不压裂理想注水的规律一致,即反九点法的采出程度略有降低,其它井网相同。注水时机的影响规律是:越早注水,采出程度越高。但最终采收率相差并不是非常大。不论何种情况,与考虑注入量下降情况相比,裂缝扩展注水技术能够大程度提高采出程度,有着广阔的应用前景。
Low-permeability reservoirs are rich in China. The low-permeability reservoirs account for a large proportion in the unused oil and gas geological reserves. At present, low permeability reservoir development is mainly depend on water flooding, but the special pore structure and water damage lead to difficult in injecting water, this reduce the sweep efficiency and recovery. There are two main ways which physical methods and chemical methods to enhanced water, mainly including conventional fracture, oscillation and acid etc to increase injection flow rate, but there are short valid, higher cost and secondary damage and so on.
     Fraction Propagation injection technology is proposed as a new measure which apply the principle of conventional hydraulic fracturing to increase injection water in low permeability reservoir, because the low permeability and high flow resistance, as well as the conventional into the impact of water quality, this lead to bad absorbing capacity. Under such circumstances, maintaining constant injection of water, improving the ground water pressure, when the stress reached the formation fracture pressure, there will be along the perpendicular to the direction of minimum principal stress fractures. Fracture surface were not contaminated, water-absorbent capacity enhance, and the ground injection water pressure will be instant down to in value. If the injection of water remains unchanged at this time. Pressure will be increase because of water on quality, sand production etc factors pollute the new sand surface of fractures during continue injection water process, a gradual increase in water stress, when the formation fracture pressure reached breakdown pressure, in the tip along the original fracture direction will generate a new fractures, new fractures surface permeability increased, water injection pressure reduce down instantly. And so on, fracture propagation appears an irregular cycle, fracture length increase until the scope of reasonable.
     In this paper, based on rock mechanics and fluid mechanics in porous medium,system study on fracture propagation mechanism. Firstly, the mechanism of fracture propagation mechanism is studied and developed mechanical model, building fracture propagation cycle, filtration coefficient and incremental long of fracture propagation Secondly, the fracture growth simulation and reservoir simulation is integrated to form a fracture propagation injection dynamic simulation software through two-way communication method, and the affecting factors of fracture propagation injection development is analyzed. Finally taking Sheng tuo Oilfield as example, parameters of fracture propagation injection technology are designed and optimized. Get the following conclusions:
     For low-permeability oil fields, it is remarkable for fracture propagation injection technology to enhance recovery , fracture affect the direction of fracture propagation effect :zero degree fracture recovery was slightly lower than the ideal state of degree of recovery, however recovery of forty-five degree and ninety degree fractures in according with the ideal state; and degree of reserve recovery of fracture propagation injection is much higher than conventional fracture sweep efficiency . sweep efficiency of zero degree fracture is the largest ,forty-five degree fracture take second place, ninety degree fracture less that , and without fracturing is the smallest at the ideal state.
     The effect of Injection volume on fracture propagation: the parameters used in the study, oil zero degree fracture is according with ideal state in recovery when the rate of injection of sixty square every day, injection volume of eighty square every day, the recovery of fractures compared with no fracture status is reduced; when injection volume of one hundred square every day, the recovery of decrease appear increased.
     The effects of water quality on fracture propagation: the effect of ninety degree and forty-five fracture propagation on recovery is negligible whether water quality is bad or good, fractures, recovery is high with the better quality when zero fracture but the affect is small. Water quality has little affected on the sweep efficiency
     The effects of well spacing on fracture propagation: the recovery is on the decline at any angle fractures in with well spacing increasing. The effects of well pattern on fracture propagation: fracture propagation injection is consistent with the ideal water injection with no fracture. That is, inverted nine spot flooding pattern slightly reduce the degree of recovery, other pattern is same. The effects of timing of water injection on fracture propagation: the earlier in the injection, the higher in recovery. However, the difference of ultimate recovery is not very great. No matter what circumstances, fracture injection technology can improve recovery at a large extent compared to taking into injection rate decline and have broad application prospects.
引文
[1]康毅力.粘土矿物对砂岩储层损害的影响[J].钻井液与完井液,2000,17(5):36-40
    [2]赵凤兰,鄢捷年.国外保护油气层技术新进展--关于油气层损害机理的研究[J].钻井液与完井液,2003,20(2):42-47
    [3]闫飞,刘东.低渗透油田降压增注提高采收率技术研究[J].石油天然气学报, 2005,27(1):104-105
    [4]阎庆来.低渗透油层中单相液体渗流特征的实验研究[J].西安石油学院学报,1990,5(2):1-6
    [5]邱少玉,陈建民,唐华,张小静,李雪芹,余成燕.利用表面活性剂降压增注提高采收率技术[J].河南石油,2005,19(6):52-54
    [6]李道品.低渗透油田高效开发决策论[M].北京:石油工业出版社,2002
    [7]张学峰.缩膨剂HDS-01及其缩膨降压增注技术[J].油田化学,2004,21(2):142-167
    [8] MohanKK,FogLerH S.Colloidally induced smecticic fines migration:existance of microquakes[J].AICHEJ,1997,43(3):565 - 576.
    [9]张黎明.稳定粘土用季铵型阳离子聚合物[J].石油与天然气化工,1995,24(1):34-37
    [10]李阳,曹刚.胜利油田低渗透砂岩油藏开发技术[J].石油勘探与开发,2005,32(1):123-126
    [11]王端平,时佃海,李相远等.低渗透砂岩油藏开发主要矛盾机理及合理井距分析[J].石油勘探与开发,2003,30(1):87-89
    [12]杨志冬,蔡圣权,秦爽等.低渗强水敏油藏整体防膨注水开采技术研究与应用[J].特种油气藏,2004,11(4):86-88
    [13]崔桂陵.粘土防膨剂[J].石油大学学报(自然科学版),1989,13(1):102-109
    [14]赵寿增.粘土稳定剂及粘土稳定技术[J].国外石油地质,1990,(9):78-83
    [15]朱金才,黄丽仙,史江恒,等.SSN-3粘土稳定剂的研制与应用[J].断块油气田,1998,5(5):63-65
    [16]戚保良,王宁,司玉梅.张店油田注水井粘土稳定剂配方的室内筛选[J].精细石油化工进展,2003,4(1):15-17
    [17]张森,田承村.阳离子聚合物防膨抑砂剂的合成与性能评价[J].断块油气田,2004,11(4):18-22
    [18]宁廷伟.胜利油田开发和应用的粘土稳定剂[J].油田化学,1999,16(1):77-78
    [19]杨正明等.注入水的水质对特低渗透油藏开发井网的影响[J].特种油气藏,2002,9(4):36-38
    [20]王小琳,武平仓,向忠远.长庆低渗透油田水质稳定技术研究[J].石油勘探与开发,2003,29(5):77-80
    [21]赵杏媛,王行信,张有瑜,等.中国含油气盆地粘土矿物[M].武汉:中国地质大学出版社,1995
    [22]赵杏媛.塔西南坳陷下奥陶统风化壳中迪开石的发现及其意义[J].新疆石油地质,1997,18(4):307-311
    [23]赵杏媛.塔里木盆地粘土矿物[M].武汉:中国地质大学出版社,2001
    [24]丁海涛,闫建文.大庆外围低渗透油田储层伤害分析[J].大庆石油地质与开发,2002,21(1):62-64
    [25]唐海,赵金洲,李军.注入水水质对储层适应程度评价方法研究[J].大庆石油地质与开发,2003,22(6):33-35
    [26]唐海,赵金洲,李军.注入水水质对储层适应程度评价方法研究[J].大庆石油地质与开发,2003,22(6):33-35.
    [27]朱义吾,赵做滋,巨全义等.油田开发过程中的结垢机理及防治技术研究[M].西安:陕西科技出版社,1995.
    [28] Mungan N.Permeability Reduction Through Changes in pH and Salinity.JPT,1965,12:1449-1453
    [29] Khilar K C and Foglar H S. Water Sensitivity of Sandstones.SPE,1983,2:55-64
    [30]王欣,张达明,樊世忠.储层中微粒分散/运移的理论研究.钻井液与完井液,1991,8(3):51-60
    [31]丁海涛,闫建文.大庆外围低渗透油田储层伤害分析[J].大庆石油地质与开发,2002,21(1):62-64
    [32]王鑫,张志翔,单永卓.低渗透油田注水井解堵规律的探讨[J].大庆石油地质与开发,2004,23(3):70-71
    [33]王宪文.注水水质对低渗透油藏开发指标的影响研究[D].硕士学位论文,南充:西南石油大学,2004
    [34] A .S.Abou-Sayed,SPE,K.S.Zaki,SPE,G.G.Wang,SPE,and M.D.Sarfare,SPE,Advantek Intl. A Mechanistic Model for Formation Damage and Fracture ProPagation During Water Injection,SPE 94606,2005
    [35]阮敏,压敏效应对低渗透油田开发的影响,西安石油学院学报[J]. 2001,16(7):40-41
    [36]王凤江,单文文.低渗透气藏水力压裂研究[J].天然气工业,1999,19(3):61-62
    [37]赵惊蛰,李书恒,屈雪峰.特低渗油藏压裂开发技术[J].石油勘探与开发,2003,29(5):91-93
    [38] Blanton T L.Propagation of hydraulically and dynamically in-duced fractures in naturally fractured reservoirs[R].SPE 15261,1986:1-15
    [39] Warpinski N R,Teufel L W.Influence of geologic discontinuities on hydraulic fracture propagation[J].JPT,1987,28(3):209-220
    [40] Renshaw C E,Pollard D D.An experimentally verified criterion for propagation across unhonded frictional interfaces in brittle,linear elastic materials[J].International Journal of Rock Me-chanics Mining Science and Geomechanics,1995,32 (3):237-249
    [41] Reugelsdijk L J L,de Pater C J,Sato K.Experimental hydraulic fracture propagation in multi-fractured medium[R].SPE 59419,2000:1-8
    [42] [5]Peacock D C P,Mann A.Controls on fracturing in carbonate rocks[R].SPE 92980,2005:1-6
    [43] Warpinski N R,Lorenz J C,Branagan P T,et al.Examination of a cored hydraulic fracture in a deep gas well[R].SPE 26302,1993
    [44] BiotMA,Medlin W L,Masse L.Fracture penetration through an interface[R].SPE 10372,1983
    [45] He M Y,Hutchinson J W.Crack deflection at an interface between dissimilar elastic materials[J].International Journal of Solids and Structures,1989,25(9):1053-1067
    [46] PERKINS T K, KERN L R. Width of hydraulic fractures[J]. JPT, 1961,(9):937-949
    [47] PALMER I D, DARROLL H B Jr. Three-dimension Hydraulic Fracture Propagationin the Presence of Stress Variations[R]. SPE 10849,1982
    [48] Blanton T L.An experimental study of interaction between hydraulically induced and pre-existing fractures[R].SPE 10847,1982:1-13
    [49]李道品.低渗透油田开发[C].北京:石油工业出版社,1999.2-4
    [50]史成恩,李健,雷启鸿等.特低渗透油田井网形式研究及实践[J].石油勘探与开发,2002,29(5):59-61
    [51]刘昌江.FEWD在胜利油田难动用剩余储量开发中的应用[J].石油钻探技术,2004,32(1):40-42
    [52]吉德利.水力压裂技术新发展[M].北京:石油工业出版社,1995:935-959
    [53] Roland F Krueger.An overview of formation damage and well productivity in oilfield operation. Journal of Petroleum Engineers,1986,2:131~152
    [54] Kenneth E Porter. An overview of formation damage. Journal of Petroleum Engineers,1989,8:780~787
    [55]张绍槐,罗平亚,编著.保护储集层技术.北京:石油工程出版社,1993
    [56] Prats M.Effect of vertical fractures on reservor behavor incompressible fluids case[J].SPEJ(June 1961)105-18;Trans AIME,222
    [57] S.H. Advani, J.K. Lee: Finite element model simulations associated with hydraulic fracturing.SPE. J, 1982, Vo1.22: 209-218
    [58] Prats M.Effect of vertical fractures on reservor behavor incompressible fluids case[J].SPEJ(June 1961)105-18;Trans AIME,222.
    [59] S.H. Advani, H. Khattab, J.K. Lee: Hydraulic fracture geometry modeling, prediction, andcomparisons. SPE, 1985, No. 13863
    [60] S.H. Advant, J.K. Lee, H. Khattab, et al: Fluid flow and structural response modeling associated with the mechanics of hydraulic fracturing. SPE Formation Evaluation, SPE Transactions. 1986:309-318
    [61] M. P. Cleary: Comprehensive design formulae for hydraulic fracturing. SPE, Sept. 1980No.9259
    [62] Settari,M.P. Cleary: Development and testing of a pseudo-three-dimensional model of hydraulic fracture geometry. SPE, 1985, No.10505
    [63] J C.H. Yew, T.A. Koelsch: Study on the mechanics of hydraulic fracturing.EXXON Production Research Company Special Report. EPR. 15PR.80
    [64] C.K. Lu, C.H. Yew: On bonded half-planes containing two arbitrarily oriented cracks sturdy of containment of the hydraulically induced fractures
    [65] M.J. Bouteca: Analytical model for hydraulic fracturing. Theory and field test. SPE, No13276
    [66] Raymaond, L.R. and Binder,G.G.Productivity of Wells in Vertically Fractured,DamagedFormations,JPT,1967,120-130
    [67]王鸿勋,张士诚.水力压裂设计数值计算方法[M].北京:石油工业出版社,1997.
    [68]赵金洲,任书泉.考虑温度影响时裂缝几何尺寸的数值计算模型和方法[J].石油学报,1987,8(1):71-81
    [69]王鸿勋.水力压裂原理[M].北京:石油工业出版社,1987
    [70]练章华,孟英峰,康毅力,等.裂缝性气藏射孔完井优化设计[J].天然气工业,2005,25(9):54-56
    [71]王小鲁,许正豪,李江涛,等.水驱多层砂岩气藏射孔层位优化的实用方法[J].天然气工业,2004,24(4):57
    [72]王祖文,郭大立,邓金根,等.射孔方式对压裂压力及裂缝形态的影响[J].西南石油学院学报,2005,27(5):47-50
    [73] Hossain M M,Rahman M K,Rahman S S.A comprehensive monograph for hydraulic fracture initiation from deviated wellbores under arbitrary stress regimes[C].SPE 54360,2000
    [74] Zhang G Q,Chen M,Wang X S,et al.Influence of perforation on formation fracturing pressure[J].Petroleum Science,2004,1(3):56-61
    [75]张士诚,王世贵,张国良,等.限流法压裂射孔方案优化设计[J].石油钻采工艺,2000,22(2):60-63
    [76]肖国华.不动管柱分层酸化压裂工艺管柱研究.石油机械,2004,32(2):49~51,55
    [77]岳慧.高压分层酸化管柱的研制和应用.石油机械,2001,29(2):44~46
    [78]李志明,张金珠.地应力与油气勘探开发[M].北京:石油工业出版社,1997
    [79]张景和,孙宗颀.地应力与裂缝测试技术在石油勘探开发中的应用[M].北京:石油工业出版社,2001
    [80] Morales R.H.Brady B.H.Three-dimensional analysis and visualtion of the wellbore and the fracturing process in inclined wells[J].SPE 25889,1993.
    [81]李根生,黄中伟,牛继磊等.地应力及射孔参数对水力压裂影响的研究进展[J].石油大学学报(自然科学版),2005,29(4):136~141
    [82]苗和平,王鸿勋.水平井压后产量预测及裂缝数优选.石油钻采工艺,1992;14(6):51-56
    [83] MONTES G,BARTOLOME P,UDIAS A L.The use of genetic algorithms in well placement optimization[C].SPE Latin American and Caribbean Petroleum Engineering Conference,Buenos Aires,Argentina:SPE,2001
    [84] BURAK Y,LOUIS J D,KHALID A.Optimization of nonconventional well type,location and trajectory[C].SPE Annual Technical Conference and Exhibition,San Antonio,Texas:SPE,1990
    [85]宁正福,韩树刚,程林松等.低渗透油气藏压裂水平井产能计算方法.石油学报,2002;23(2):68-71
    [86]宋付权,刘慈群,张盛宗.低渗透油藏中水平井的产能公式分析.大庆石油地质与开发,1999;18(3):33-35
    [87] Horne R N. Relative Productivities and Pressure Transient Modeling of Horizontal Wells with Multiple Fractures[J]. SPE 29891,1995
    [88] Soliman M Y, Hunt James L,EI Rabaa A M. Fracturing Aspects of Horizontal Wells[J]. JPT, 1990,42(8):966-973
    [89]郎兆新,张丽华,程林松.压裂水平井产能研究[J].石油大学学报(自然科学版),1994,18(2):43~46
    [90]俞绍诚.陶粒支撑剂和兰州压裂砂长期裂缝导流能力的评价[J].石油钻采工艺,1987,11(2):93-99
    [91]熊友明.国内外泡沫压裂技术发展现状[J].钻采工艺,1992,15(1):46-55
    [92]钱斌.高温泡沫压裂液流变研究[J].钻采工艺,1988,11(4):55-60
    [93] Harris P C. Dynamic fluid-loes characteristics of nitrogen foam fracturing fluids[J]. JPT, Oct 1985:1852 - 1857
    [94]王振铎,王晓泉,卢拥军.二氧化碳泡沫压裂技术在低渗透低压气藏中的应用[J].石油学报,25(3):66-69
    [95]刘从彪,檀为建,彭松良,等.泡沫压裂设计中的计算公式[J].石油钻采工艺,1997,19(3):88-91
    [96]丁云宏,丛连铸,卢拥军,等.CO2泡沫压裂液的研究与应用[J].石油勘探与开发,2002,29(4):103-105.
    [97]王志刚,王树众,林宗虎,等.超临界CO2/胍胶泡沫压裂液流变特性研究[J].石油与天然气化工,2003,32(1):42-45
    [98] Warnock W E,Harris P C,King D S.Successful field applications of CO2 foam fracturing fluids in the Aek-La-Tex Region[R].SPE 11932,1985:80-89.
    [99] King S R. Liquid CO2 for stimulation of low-permeability reservoirs[R].SPE 11616,1983:145-151
    [100]丁云宏,丛连铸.CO2泡沫压裂液的研究与应用[J].石油勘探与开发,2002,29(4):103-105
    [101] Craft J R,等.二氧化碳泡沫与甲醇压裂在Canyon气层的成功应用[J].胡奥林(译).油气田开发工程译丛,1993,(4):10-15
    [102]赵惊蛰,李书恒,屈雪峰,等.特低渗透油藏开发压裂技术[J].石油勘探与开发,2002,29(5):93-95
    [103]刘蜀知,任书泉.三维水力压裂裂缝中的温度场模型[J].低渗透油气田,1996,1(2):47-50
    [104]刘蜀知,任书泉.水力压裂裂缝三维延伸数学模型的建立与求解[J].西南石油学院学报,1993,15(增刊):103-105
    [105] Hmed H El-Banbi,W D McCain Jr.Investigation of well productivity in gas-condensate reservoirs.SPE 59773
    [106] Gherson Penuela,Faruk Civan.Prediction of the gas-condensate well productivity.Journal of Petroleum Science and Engineering,2000;28:95-110
    [107] Bachman,RC,Harding TG,Settari,A and Walters,DA:Coupled Simulation of Reservoir Flow,Geomechanics,and Formation Plugging With Application to High-Rate Produced Water Reinjection,SPE 79695,2003
    [108] Tran,D,Settari,A and Nghiem,L:New Iterative Coupling Between a Reservoir Simulator and a Geomechnics Module,SPE 78192,2002
    [109] Van Den Hoek,PJ,Impact of Induced Fractures on Sweep and ReservoirManagement in Pattem Floods , SPE AnnualTechnical Conference and Exhibition,Houston,Texas,September 2004,Paper SPE 90968
    [110] J .Rungamornrat,M.F.Wheeler,and M.E.Mear,U.of Texas at Austin, A Numerical Technique for Simulating Nonplanar Evolution of Hydraulic Fractures, SPE 96968,2005
    [111]姚飞,王晓泉.水力裂缝起裂延伸和闭合的机理分析[J].钻采工艺,2000,23(2):21-24
    [112]张保平,申卫兵.岩石弹性模量与毕奥特(Biot)系数在压裂设计中的应用[J].石油钻采工艺,1996,18(3):60-78
    [113]蒋廷学,朗兆新,单文文,等.低渗透油藏压裂井动态预测的有限元方法[J].石油学报,2002,23(5):53-58
    [114]吴继周,曲德斌,刘继伟.水力压裂裂缝几何形状的数值模拟及影响因素分析[J].大庆石油地质与开发,1990,l9(4):64-70
    [115]蒋廷学,汪永利,丁云宏,等.压裂方案经济优化的智能专家系统研究[J].石油学报,2004,25(1):66-69
    [116]王新纯,李彤,王秀臣.压裂系统工程[M].北京:石油工业出版社,2002:194-210
    [117]刘洪,胡永全,赵金洲等.重复压裂气井三维诱导应力场数学模型.石油钻采工艺,2004;26(2):57~61
    [118]刘洪.重复压裂造新缝力学机理研究[D].南充:西南石油学院博士学位论文,2003
    [119]胡永全,林辉,赵金洲,等.重复压裂技术研究[J].天然气工业,2004,24(3):72-75
    [120]张士诚,唐汝众,孟祥和,等.重复压裂技术的研究与应用[J].世界石油工业,1995,2(7):39-46
    [121]宋翔虎,杜华章.深井压裂工艺管柱的研究[J].石油机械,2006,34 (7):72-74
    [122]赵以文.香豆硼冻胶压裂液[J].油田化学,1994,11(1):39-44
    [123]李爱山,杨彪,鞠玉芹,等.黏弹性表面活性剂压裂液流变性研究[J].石油勘探与开发.2007,34(1):89-92
    [124]任勇,郭建春,赵金洲,等.酸化压裂井停泵压力三维分析模型和解释方法[J].石油勘探与开发,2006,33(5):634-637
    [125]陈馥,李钦.压裂液伤害性研究[J].天然气工业,2006,26(1):109-111
    [126]卢拥军.香豆胶水基压裂液研究与应用[J].钻井液与完井液,1996,13(1):13-16
    [127]李勇明,郭建春,赵金洲.裂缝性油藏压裂井产能数值模拟模型研究与应用[J].石油勘探与开发,2005,32(2):126-128
    [128]张汝生,卢拥军,舒玉华,等.一种新型低伤害合成聚合物冻胶压裂液体系[J].油田化学,2005,22(1):45-47
    [129]蒋山泉,陈馥,张红静,等.新型聚合物压裂液的研制及评价[J].西南石油学院学报,2004,26(4):21-23.
    [130]范学平,徐向荣.地应力对岩心渗透率伤害实验及机理分析[J].石油勘探与开发,2002,29(2):117-119
    [131]马发明,桑宇连续油管水力喷射压裂关键参数优化研究[J].天然气工业,2008,28(1): .76-78
    [132]王鸿勋,张士诚.水力压裂设计数值计算方法[M].北京:石油工业出版社,1998.
    [133]韩大匡,陈钦雷,囝存章.油藏数值模拟基础[M].北京:石油工业出版社,2000.6-45
    [134]于东海,任允鹏,王针,等.多层系油藏剩余油分布的精细数值模拟技术[J].油气地质与采收率,2002,9(5):34-36
    [135]张建国,雷光伦,张艳玉.油气层渗流力学[M].北京:石油大学出版社,1999.139-159
    [136]陈兆芳,张建荣,陈月明,等.油藏数值模拟自动历史拟合方法研究及应用[J].石油勘探与开发,2003,30(4):82-84

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700