用户名: 密码: 验证码:
几种双光子吸收材料的分子设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双光子吸收在许多高科技领域都有重要的应用,设计和合成具有大的双光子吸收截面的材料是这一领域发展的重要基础。本论文从设计筛选角度出发,对几种双光子吸收材料进行系统的理论研究,先利用密度泛函方法对分子的结构进行优化,得到基态平衡几何构型,在此基础上,再利用ZINDO方法、完全态求和公式(SOS)及自编的程序进行组态相互作用计算,得到分子的单光子和双光子吸收性质等信息,这为结构-双光子吸收性质间关系的建立奠定了基础,并且为实验研究提供了有价值的理论依据,为进一步探索具有大的双光子吸收响应的材料做出了重要贡献。同时使用同样的方法设计一些未知化合物,以期为合成研制新型的具有大的双光子吸收截面的材料提供理论依据。
Two-photon absorption response can be applied in many high-tech fields. Design and synthesis of materials with large two-photon absorption cross section is the important basis of its development. In this thesis, in order to design and select organic materials with large two-photon absorption response, we have performed systematic theoretical research of various organic materials. The density functional theory (DFT) has been applied to optimize the molecular equilibrium geometries. On the basis of the optimized structures, one- and two-photon absorption properties are obtained by ZINDO method combined sum-over-states (SOS) expression and self-compiled program. We have designed some unknown compounds using the same method so as to provide a theoretical basis of synthesizing novel materials with large two-photon absorption cross section. The following is the main content:
     1. The equilibrium geometries, electronic structures, one- and two-photon absorption properties for two series of linear molecules have been studied. The calculated results show that the maximum one-photon absorption (OPA) wavelength is increased with the stronger electron-donating or electron-accepting capability of the terminal substituent groups. Meanwhile, the maximum two-photon absorption (TPA) cross section values are obviously increased with the increased conjugation length and the stronger electron-donating or electron-accepting capability of the terminal substituent groups.
     2. The equilibrium geometries, electronic structures, one- and two-photon absorption properties for two series of bis(styryl)benzene molecules have been studied. The calculated results show that increasing the molecular dimension is a very effective method to enhance the values of the two-photon absorption (TPA) cross section. In addition, the intramolecular charge transfer is also a factor for the enhancement of the TPA efficiency.
     3. Two series of pseudo-octupolar molecules and a dipolar molecule have been investigated. The calculated results show that the two-photon absorption (TPA) cross section values are increased with the increased conjugation length and the stronger electron-donating or electron-accepting capability of the terminal substituent groups. Compared with the dipolar molecule, the pseudo-octupolar molecules have high transparency and larger TPA cross sections, which are promising TPA materials.
     4. The equilibrium geometries, electronic structures, one- and two-photon absorption properties for two series of three-branched molecules possessing different center have been studied. The calculated results show that the maximum one-photon absorption (OPA) intensities and the maximum two-photon absorption (TPA) cross sections values are gradually increased with the stronger electron-donating or electron-accepting capability of the terminal substituent groups. In addition, intramolecular charge transfer plays a very important role on the TPA.
     5. Three molecules possessing different center and terminal substituent groups have been investigated. Observing the two molecules with N(CH3)2 peripheral group, the maximum two-photon absorption cross sectionδmax of the molecule with boron (B) center is larger than that of the molecule with nitrogen (N) center. Comparing the two molecules with N center, theδmax is obviously increased with the change from N(CH3)2 to CN group. This indicates that the large intramolecular charge transfer is in favor of the TPA response.
引文
[1] R.R.Birge, B.Parsons, Q.W.Song, J.R.Tallent, In Molecular Electronics, J.Jortner, M.Ratner (eds). Blackwell Science: London, 1997; Chapt. 15.
    [2] M.G?ppert-Mayer, Ann.Phys., 1931, 9, 273.
    [3] 过巳吉,《非线性光学》,西北电讯工程学院出版社,1986 年 12 月,第 224 页。
    [4] D.A.Parthenopoulos, P.M.Rentzepis, Science, 1989, 245, 843.
    [5] W.Denk, J.H.Strickler, W.W.Webb, Science, 1990, 248, 73.
    [6] P.N.Prasad, D.J.Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers, Wily, New York, 1991.
    [7] J.D.Bhawalkar, G.S.He, P.N.Prasad, Rep.Prog.Phys., 1996, 59, 1041.
    [8] G.S.He, J.D.Bhawalkar, C.F.Zhao, P.N.Prasad, Appl.Phys.Lett., 1995, 67, 2433.
    [9] G.S.He, L.Yuan, N.Cheng, J.D.Bhawalkar, P.N.Prasad, L.L.Bott, S.J.Clarson, B.A.Reinhardt, J.Opt.Soc.Am.B, 1997, 14, 1079.
    [10] M. Albota, D. Beljonne, J.L. Brédas, J.E. Ehrlich, J. Fu, A.A. Heikal, E. Hess, T. Kogej, M.D. Levin, S.R. Marder, D. McCord-Maughon, J.W. Perry, H. R?eckel, M. Rumi, G. Subramaniam, W.W. Webb, X. Wu, C. Xu, Science, 1998, 281, 1653.
    [11] S.-J.Chung, K.-S.Kim, T.-C.Lin, G.S.He, J.Swiatkiewicz, P.N.Prasad, J.Phys.Chem.B, 1999, 103, 10741.
    [12] O.-K.Kim, K.-S.Lee, H.Y.Woo, K.-S.Kim, G.S.He, J.Swiatkiewicz, P.N. Prasad, Chem.Mater., 2000, 12, 284.
    [13] B.R.Cho, K.H.Son, S.H.Lee, Y.-S.Song, Y.-K.Lee, S.-J.Jeon, J.-H.Choi, H.Lee, M.Cho, J.Am.Chem.Soc., 2001, 123, 10039.
    [14] W.Zhou, S.M.Kuebler, K.L.Braun, T.Yu, J.K.Cammack, C.K.Ober, J.W.Perry, S.R.Marder, Science, 2002, 296, 1106.
    [15] M.Drobizhev, A.Karotki, Y.Dzenis, A.Rebane, Z.Suo, C.W.Spangler, J.Phys.Chem.B, 2003, 107, 7540.
    [16] F.Stellacci, C.A.Bauer, T.Meyer-Friedrichsen, W.Wenseleers, S.R.Marder, J.W.Perry, J.Am.Chem.Soc., 2003, 125, 328.
    [17] H.M.Kim, M.-Y.Jeong, H.C.Ahn, S.-J.Jeon, B.R.Cho, J.Org.Chem., 2004, 69, 5749.
    [18] L.Porrès, O.Mongin, C.Katan, M.Charlot, T.Pons, J.Mertz, M.Blanchard- Desce, Org.Lett., 2004, 6, 47.
    [19] R.Kannan, G.S.He, T.-C.Lin, P.N.Prasad, R.A.Vaia, L.-S.Tan, Chem.Mater. 2004, 16, 185.
    [20] G.S.He, C.F.Zhao, J.D.Bhawalkar, P.N.Prasad, Appl.Phys.Lett., 1995, 67, 3707.
    [21] C.F.Zhao, G.S.He, J.D.Bhawalkar, C.K.Park, P.N.Prasad, Chem.Mater., 1995, 7, 1979.
    [22] P.A.Fleitz, M.C.Brant, R.L.Sutherland, F.P.Strohkendl, J.R.Larson, L.R.Dalton, SPIE Proc., 1998, 91, 3472.
    [23] J.E.Ehrlich, X.L.Wu, L.-Y.Lee, Z.-Y.Hu, H.R?eckel, S.R.Marder,J.Perry, Opt.Lett., 1997, 22, 1843.
    [24] A.S.Dvornikov, PP.M.Rentzepis, Opt.Commun., 1995, 119, 341.
    [25] B.H.Cumpston, S.P.Ananthavel, S.Barlow, D.L.Dyer, J.E.Ehrlich, L.L.Erskine, A.A.Heikal, S.M.Kuebler, I.-Y.S.Lee, D.McCord-Maughon, J.Qin, H.R?eckel, M.Rumi, X.-L.Wu, S.R.Marder, J.W.Perry, Nature, 1999, 398, 51.
    [26] W.Denk, Proc.Natl.Acad.Sci.U.S.A., 1994, 91, 6629.
    [27] C.Xu, W.R.Zipfel, J.B.Shear, R.M.William, W.W.Webb, Proc.Natl.Acad. Sci.U.S.A., 1996, 93, 10763.
    [28] J.Mertz, C.Xu, W.W.Webb, Opt.Lett., 1995, 20, 2532.
    [29] W.Denk, K.Svoboda, Neuron, 1997, 18, 351.
    [30] R.H.K?hler, J.Cao, W.R.Zipfel, W.W.Webb, M.R.Hansen, Science, 1997, 276, 2039.
    [31] J.D.Bhawalkar, N.D.Kumar, C.F.Zhao, P.N.Prasad, J.Clin.Laser.Med. Surg., 1997, 15, 201.
    [32] G.S.He, G.C.Xu, P.N.Prasad, B.A.Reinhardt, J.C.Bhatt, R.McKellar, A.G.Dillard, Opt.Lett., 1995, 20, 435.
    [33] G.S.He, J.Zieba, J.T.Bradshaw, M.R.Kazierczak, P.N.Prasad, Opt. Commun., 1993, 104, 102.
    [34] J.D.Bhawalkar, G.S.He, P.N.Prasad, Opt.Commun., 1995, 199, 587.
    [35] G.S.He, J.D.Bhawalkar, P.N.Prasad, Opt.Lett., 1995, 20, 1524.
    [36] T.-C.Lin, S.-J.Chung, K.-S.Kim, X.Wang, G.S.He, J.Swiatkiewicz, H.E.Pudavar, P.N.Prasad, Advances in Polymer Science, 2003, 161, 157.
    [37] M.T.Zhao, Y.Cui, M.Samoc, P.N.Prasad, M.R.Unroe, B.A.Reinhardt,J.Chem.Phys., 1991, 3, 864.
    [38] M.Sheik-Bahae, A.A.Said, E.W.Van Stryland, Opt.Lett., 1989, 14, 955.
    [39] M.Sheik-Bahae, A.A.Said, T.H.Wei, D.J.Hagan, E.W.Van Stryland, IEEE J.Quantum Electron, 1990, 26, 760.
    [40] B.A.Reinhardt, L.L.Brott, S.J.Clarson, A.G.Dillard, J.C.Bhatt, R.Kannan, L.Yuan, G.S.He, P.N.Prasad, Chem.Mater., 1998, 10, 1863.
    [41] T.Kogej, D.Beljonne, F.Meyers, J.W.Perry, S.R.Marder, J.L.Brédas, Chem.Phys.Lett., 1998, 298, 1.
    [42] J.Zyss, I.Ledoux, Chem.Rev., 1994, 94, 77.
    [43] L.Grajcar, G.Berthier, J.Faure, J.-P.Fleury, Theor.Chim.Acta., 1987, 71, 299.
    [44] J.J.Wolff, S.F.Nelsen, R.D.Powell, J.Org.Chem., 1991, 56, 5908.
    [45] P.Lazzeretti, J.A.Tossell, J.Mol.Struct.(Theochem), 1991, 236, 403.
    [46] H.H.Cady, A.C.Larson, Acta Crystallogr., 1965, 18, 485.
    [47] S.-J.Chung, K.-S.Kim, T.-C.Lin, G.S.He, J.Swiatkiewicz, P.N.Prasad, J.Phys.Chem.B, 1999, 103, 10741.
    [48] P.Macak, Y.Luo, P.Norman, H. ?gren, J.Chem.Phys., 2000, 113, 7055.
    [49] W.-H.Lee, H.Lee, J.-A Kim, J.-H.Choi, M.Cho, S.-J.Jeon, B.R.Cho, J.Am.Chem.Soc., 2001, 123, 10658.
    [50] S.-J.Chung, T.-C.Lin, K.-S.Kim, G.S.He, J.Swiatkiewicz, P.N.Prasad, G.A.Baker, F.V.Bright, Chem.Mater., 2001, 13, 4071.
    [51] R.Kannan, G.S.He, T.-C.Lin, P.N.Prasad, R.A.Vaia, L.-S.Tan, Chem. Mater., 2004, 16, 185.
    [52] H.J.Lee, J.Sohn, J.Hwang, S.Y.Park, H.Choi, M.Cha, Chem.Mater., 2004, 16, 456.
    [53] B.R.Cho, K.H.Son, S.H.Lee, Y.-S.Song, Y.-K.Lee, S.-J.Jeon, J.H.Choi, H.Lee, M.Cho, J.Am.Chem.Soc., 2001, 123, 10039.
    [54] B.R.Cho, M.J.Piao, K.H.Son, S.H.Lee, S.J.Yoon, S.-J.Jeon, M.Cho, Chem.Eur.J., 2002, 8, 3907.
    [55] A.Abbotto, L.Beverina, R.Bozio, A.Facchetti, C.Ferrante, G.A.Pagani, D.Pedron, R.Signorini, Chem.Commun., 2003, 2144.
    [56] A.Adronov, J.M.J.Fréchet, G.S.He, K.-S.Kim, S.-J.Chung, J.Swiatkiewicz, P.N.Prasad, Chem.Mater., 2000, 12, 2838.
    [57] M.Drobizhev, A.Karotki, A.Rebane, C.W.Spangler, Opt.Lett., 2001, 26, 1081.
    [58] M.Drobizhev, A.Karotki, Y.Dzenis, A.Rebane, Z.Suo, C.W.Spangler, J.Phys.Chem.B, 2003, 107, 7540.
    [59] E.Vogel, J.Heterocycl.Chem., 1996, 33, 1461.
    [60] B.Jiang, S.-W.Yang, E.J.Jr.Wayne, Chem.Mater., 1997, 9, 2031.
    [61] S.M.Kuebler, R.G.Dennings, H.L.Anderson, J.Am.Chem.Soc., 2000, 122, 339.
    [62] T.E.O.Screen, K.B.Lawton, G.S.Wilson, N.Dolney, R.Ispasoiu, T.Goodson III, S.J.Martin, D.D.C.Bradley, H.L.Anderson, J.Mater.Chem., 2001, 11, 312.
    [63] K.Ogawa, T.Zhang, K.Yoshihara, Y.Kobuke, J.Am.Chem.Soc., 2002, 124, 22.
    [64] T.E.O.Screen, J.R.G.Thome, R.G.Denning, D.G.Bucknall, H.L.Anderson, J.Am.Chem.Soc., 2002, 124, 9712.
    [65] M.Drobizhev, A.Karotki, A.Rebane, Chem.Phys.Lett., 2001, 334, 76.
    [66] M.Drobizhev, A.Karotki, M.Kruk, A.Rebane, Chem.Phys.Lett., 2002, 355, 175.
    [67] M.Drobizhev, A.Karotki, M.Kruk, A.Krivokapic, H.L.Anderson, A.Rebane, Chem.Phys.Lett., 2003, 370, 690.
    [68] A.Karotki, M.Drobizhev, M.Kruk, C.Spangler, E.Nickel, N.Mamardashvili, A.Rebane, J.Opt.Soc.Am.B, 2003, 20, 321.
    [69] M.B.Masthay, L.A.Findsen, B.M.Pierce, D.F.Bocian, J.S.Lindsey, R.R.Birge, J.Chem.Phys., 1986, 84, 3901.
    [1] E.U.Condon, G.H.Shotley, The Theory of Atomic Spectra, Cambridge, 1953.
    [2] 王志中编著,现代量子化学计算方法,吉林大学出版社,1998.
    [3] J.C.Slater, The Quantum Theory of Atomic Structure, McGraw-Hill, 1960, Vol. 1.
    [4] J.A.Pople and D.L.Bveridge, Approximate Molecular Orbital Theory, Mcgraw-Hill, 1970.
    [5] N.Mataga, K.Nishimoto, Z.Physik.Chem(Frankfrut), 1957, 13, 140.
    [6] R.Pariser, R.G.Parr, J.Chem.Phys. , 1953, 21, 767
    [7] K.Weiss, Private Communication 1970.
    [8] J.Ridley and M.Zerner, Theor.Chim.Acta. , 1966, 4, 235.
    [9] A.Ishitany et al., Theor.Chim.Acta(Bel.), 1973, 32, 111.
    [10] P.Blak et al., Rec.Trav.Chim., 1975, 76, 907.
    [11] P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 1964, 136, B864.
    [12] W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev., 1965, 140, A1133.
    [13] J. C. Slater, Quantum Theory of Molecular and Solids. Vol. 4: The Self-Consistent Field for Molecular and Solids McGraw-Hill: New York, 1974.
    [14] D. R. Salahub and M.C. Zerner, eds., The Challenge of d and f Electrons ACS: Washington, D.C., 1989.
    [15] R.G. Parr and W. Yang, Density-functional theory of atoms and molecules Oxford Univ. Press: Oxford, 1989.
    [16] J. A. Pople, P. M. W. Gill and B. G. Johnson, Kohn-Sham density-functional theory within a finite basis set, Chem. Phys. Lett. 1992, 199, 557.
    [17] B. G. Johnson and M. J. Frisch, An implementation of analytic second derivatives of the gradient-corrected density functional energy, J. Chem. Phys. 1994, 100, 7429.
    [18] J. K. Labanowski and J. W. Andzelm, eds. Density Functional Methods in Chemistry, Springer-Verlag: New York, 1991.
    [19] 周世勋,《量子力学》,上海科学技术出版社,1963,p65.
    [20] 过巳吉,《非线性光学》,西北电讯工程学院出版社,1986,p5.
    [21] B.J.Orr, T.F.Ward, Molec.Phys., 1971, 20, 513.
    [22] M.G?ppert-Mayer, Ann.Phys., 1931, 9, 273.
    [23] B.Dick, R.M.Hochstrasser, H.P.Trommmsdorf, Resonant Molecular Optics: Nonlinear Optical Properties of Organic Molecules and Crystals, 1987, Vol. 12, p. 159.
    [24] J.D.Bhawalkar, G.S.He, P.N.Prasad, Rep.Prog.Phys., 1996, 59, 1041.
    [1] J.H.Strickler, W.W.Webb, Opt.Commun., 1991, 16, 1780.
    [2] B.H.Cumpston, S.P.Ananthavel, S.Barlow, D.L.Syer, J.E.Ehrlich, L.L.Erskine, A.A.Heikal, S.M.Kuebler, J.-Y.S.Lee, D.McCord-Maughon, J.Qin, H.R?ckel, M.Rumi, X.-L.Wu, S.R.Marder, J.W.Perry, Nature, 1999, 398, 51.
    [3] S. Maruo, O. Nakamura, S. Kawata, Opt. Lett. 22 (1997) 132.
    [4] S. Kawata, H.-B. Sun, T. Tanaka, K. Takada, Nature 412 (2001) 697.
    [5] S. Maruo, K. Ikuta, Proc. Soc. Photo-Opt. Instrum. Eng. 3937 (2000) 106.
    [6] W. Denk, Proc. Natl. Acad. Sci. USA 91 (1994) 6629.
    [7] H.Stiel, K.Teuchner, A.Paul, W.Freqer, D.Leupold, J.Photochem.Photobiol.A, 1994, 80, 289.
    [8] J.D.Bhawalkar, N.D.Kumar, C.-F.Zhao, P.N.Prasad, J.Clin.Laser Surg., 1997, 15, 201.
    [9] G.S.He, G.C.Xu, P.N.Prasad, B.A.Reinhardt, J.C.Bhatt, A.G.Dillard, Opt.Lett., 1995, 20, 435.
    [10] J.E.Ehrlich, X.-L.Wu, L.-Y.Lee, Z.-Y.Hu, H. R?ckel, S.R.Marder, J.W.Perry, Opt.Lett., 1997, 22, 1843.
    [11] P.A.Fleitz, M.C.Brant, R.L.Sutherland, F.P.Strohkendl, J.R.Larson, L.R.Dalton, Proc.SPIE Int.Soc.Opt.Eng., 1998, 91, 3472.
    [12] M. Albota, D. Beljonne, J.-L. Brédas, J.E. Ehrlich, J.-Y. Fu, A.A.Heikal, S.E. Hess, T. Kogej, M.D. Levin, S.R. Marder, D. McCord-Maughon, J.W. Perry, H. Rockel, M. Rumi, G. Subramaniam,W.W.Webb, X.L. Wu, C. Xu, Science 281 (1998) 1653.
    [13] B.A. Reinhardt, L.L. Brott, S.J. Clarson, A.G. Dillard, J.C. Bhatt, R. Kannan, L. Yuan, G.S. He, P.N. Prasad, Chem. Mater. 10 (1998)1863.
    [14] S.-J. Chung, K.-S. Kim, T.-C. Lin, G.S. He, J. Swiatkiewicz, P.N. Prasad, J. Phys. Chem. B 103 (1999) 10741.
    [15] O.-K. Kim, K.-S. Lee, H.Y. Woo, K.-S. Kim, G.S. He, J. Swiatkiewicz, P.N. Prasad, Chem. Mater. 12 (2000) 284.
    [16] G. Chen, S. Mukamel, J. Phys. Chem. 100 (1996) 11080.
    [17] R.R. Tykwinski, U. Gubler, R.E. Martin, F. Diederich, C. Bosshard, P. GQnter, J. Phys. Chem. B 102 (1998) 4451.
    [18] S. Hahn, S. Kim, M. Cho, J. Phys. Chem. B 103 (1999) 8221.
    [19] Xin Zhou, Ai-Min Ren, Ji-Kang Feng, Chem. Eur. J. 10 (2004) 5623.
    [20] M. Cha, W.E. Torruellas, G.I. Stegeman, W.H.G. Horsthuis, G.R. M?hlmann, J. Meth, Appl. Phys. Lett. 65 (1994) 2648.
    [21] T. Kogej, D. Beljonne, F. Meyers, J.W. Perry, S.R. Marder, J.L. Brédas, Chem. Phys. Lett. 298 (1998) 1.
    [22] B.J. Orr, J.F. Ward, Mol. Phys. 20 (1971) 513.
    [23] D.M. Bishop, J.M. Luis, B. Kirtman, J. Chem. Phys. 116 (2002) 9729.
    [24] B. Dick, R.M. Hochstrasser, H.P. Trommsdorff, in: D.S. Chemla, J. Zyss (Eds.), Nonlinear Optical Properties of Organic Molecules and Crystals, Vol. 2, Academic Press, Orlando, FL, 1987, pp. 167–170.
    [25] Sheng. Yao, Kevin D. Belfield, J. Org. Chem. 70 (2005) 5126–5132.
    [26] Martinus H.V. Werts, Said. Gmouh, Olivier. Mongin, Thomas. Pons,Mireille. Blanchard-Desce, J. Am. Chem. Soc. 126 (2004) 16294-16295.
    [27] M. Rumi, J.E. Ehrlich, A.A. Heikal, J.W. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T.C. Parker, H. R?ckel, S. Thayumanavan, S.R. Marder, D. Beljonne, J.-L. Brédas, J. Am. Chem. Soc. 122 (2000) 9500.
    [28] R. Gompper, H.J. Mair, K. Polborn, Synthesis 6 (1997) 696.
    [29] H. Stiel, A. Volkmer, I. Rückmann, A. Zeug, B. Ehrenberg, B. R?der, Opt. Commun. 155 (1998) 135.
    [30] C. Zhang, Y. Song, F.E. Kühn, Y. Wang, X. Xin, W.A. Herrmann, Adv. Mater. 14 (2002) 818.
    [1] D.R.Kanis, M.A.Ratner, T.J.Marks, Chem.Rev., 1994, 94, 195.
    [2] D.S.Chemla, J.Zyss, “Nonlinear Optical Properties of Organic Molecules and Crystals” Academic Press, New York, 1987.
    [3] P.N.Prasad, D.J.Williams, “Introduction to Nonlinear Optical Effects in Molecules and Polymers”, Wiley, Chichester, 1991.
    [4] D.A.Parthenopoulos, P.M.Rentzepis, Science 1989, 245, 843.
    [5] A.S.Dvornikov, P.M.Rentzepis, Opt.Commun. 1995, 119, 341.
    [6] B.H.Cumpston, S.P.Ananthavel, S.Barlow, D.L.Dyer, J.E.Ehrlich, L.L.Erskine, A.A.Heikal, S.M.Kuebler, I.-Y.S.Lee, D.McCord-Maughon, J.Qin, H.R?ckel, M.Rumi, X.-L.Wu, S.R.Marder, J.W.Perry, Nature 1999, 398, 51.
    [7] (a) W.Denk, J.H.Strickler, W.W.Webb, Science 1990, 248, 73. (b) J.Mertz, C.Xu, W.W.Webb, Opt.Lett. 1995, 20, 2532.
    [8] W.Denk, K.Svovoda, Neuron 1997, 18, 351.
    [9] R.H.K?hler, J.Cao, W.R.Zipfel, W.W.Webb, M.R.Hansen, Science 1997, 276, 2039.
    [10] C.Xu, W.R.Zipfel, J.B.Shear, R.M.William, W.W.Webb, Proc.Natl. Acad.Sci.U.S.A. 1996, 93, 10763.
    [11] W.Denk, Proc.Natl.Acad.Sci. U.S.A. 1994, 91, 6629.
    [12] P.A.Fleitz, M.C.Brant, R.L.Sutherland, F.P.Strohkendl, J.R.Larson, L.R.Dalton, SPIE Proc. 1998, 3472, 91.
    [13] G.S.He, J.D.Bhawalkar, C.F.Zhao, P.N.Prasad, Appl.Phys.Lett. 1995, 67, 2433.
    [14] J.E.Ehrlich, X.L.Wu, L.-Y.Lee, Z.-Y.Hu, H.Roeckel, S.R.Marder, J.Perry, Opt.Lett. 1997, 22, 1843.
    [15] J.D.Bhawalkar, G.S.He, P.N.Prasad, Rep.Prog.Phys. 1996, 59, 1041.
    [16] (a) G.S.He, C.F.Zhao, J.D.Bhawalkar, P.N.Prasad, Appl.Phys.Lett. 1995, 67, 3703. (b) C.F.Zhao, G.S.He, J.D.Bhawalkar, C.K.Park, P.N.Prasad, Chem.Mater. 1995, 7, 1979.
    [17] J.D.Bhawalkar, N.D.Kumar, C.F.Zhao, P.N.Prasad, J.Clin.Med.Surg. 1997, 37, 510.
    [18] M. Cha, W.E. Torruellas, G.I. Stegeman, W.H.G. Horsthuis, G.R. M?hlmann, J. Meth, Appl. Phys. Lett. 65 (1994) 2648.
    [19] T. Kogej, D. Beljonne, F. Meyers, J.W. Perry, S.R. Marder, J.L. Brédas, Chem. Phys. Lett. 298 (1998) 1.
    [20] B.J. Orr, J.F. Ward, Mol. Phys. 20 (1971) 513.
    [21] D.M. Bishop, J.M. Luis, B. Kirtman, J. Chem. Phys. 116 (2002) 9729.
    [22] M. Albota, D. Beljonne, J.-L. Brédas, J.E. Ehrlich, J.-Y. Fu, A.A.Heikal, S.E. Hess, T. Kogej, M.D. Levin, S.R. Marder, D. McCord-Maughon, J.W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W.W.Webb, X.L. Wu, C. Xu, Science 281 (1998) 1653.
    [23] B. Dick, R.M. Hochstrasser, H.P. Trommsdorff, in: D.S. Chemla, J. Zyss (Eds.), Nonlinear Optical Properties of Organic Molecules and Crystals, Vol. 2, Academic Press, Orlando, FL, 1987, pp. 167–170.
    [24] Wang, Y.; Ranasinghe, M. I.; Goodson III, T. G. J. Am. Chem. Soc. 2003, 125, 9562.
    [25] Das, G. P.; Yeates, A. T.; Dudis, D. S. Chem. Phys. Lett. 2002, 361,71.
    [26] Gompper, R.; Mair, H. J.; Polborn, K. Synthesis 1997, 696.
    [1] I.Ledoux, J.Zyss, J.Siegel, J.-M.Lehn, Chem.Phys.Lett. 1990, 172, 440.
    [2] J.Zyss, J.Chem.Phys. 1993, 98, 6583.
    [3] J.Zyss, C.Dhenaut, T.Chau Van, I.Ledoux, Chem.Phys.Lett. 1993, 206, 409.
    [4] J.Zyss, I.Ledoux, Chem.Rev. 1994, 94, 77.
    [5] L.Grajcar, G.Berthier, J.Faure, J.-P.Fleury, Theor.Chim.Acta., 1987, 71, 299.
    [6] J.J.Wolff, S.F.Nelsen, R.D.Powell, J.Org.Chem., 1991, 56, 5908.
    [7] P.Lazzeretti, J.A.Tossell, J.Mol.Struct.(Theochem), 1991, 236, 403.
    [8] S.-J.Chung, K.-S.Kim, T.-C.Lin, G.S.He, J.Swiatkiewicz, P.N.Prasad, J.Phys. Chem.B 1999, 103, 10741.
    [9] P.Macak, Y.Luo, P.Norman, H.?gren, J.Chem.Phys. 2000, 113, 7055.
    [10] W.-H.Lee, H.Lee, J.-A.Kim, J.-H.Choi, M.Cho, S.-J.Jeon, B.R.Cho, J.Am.Chem. Soc. 2001, 123, 10658.
    [11] B.R.Cho, M.J.Piao, K.H.Son, S.H.Lee, S.J.Yoon, S.-J.Jeon, M.Cho, Chem.Eur.J. 2002, 8, 3907.
    [12] D.Beljonne, W.Wenseleers, E.Zojer, Z.Shuai, H.Vogel, S.J.K.Pond, J.W.Perry, S.R.Marder, J.-L.Brédas, Adv.Funct.Mater. 2002, 12, 631.
    [13] G.Alcaraz, L.Euzenat, O.Mongin, C.Katan, I.Ledoux, J.Zyss, M.Blanchard- Desce, M.Vaultier, Chem.Commun. 2003, 2766.
    [14] L.Porrès, O.Mongin, C.Katan, M.Charlot, T.Pons, J.Mertz, M.Blanchard-Desce, Org.Lett. 2004, 6, 47.
    [15] R.Kannan, G.S.He, T.C.Lin, P.N.Prasad, R.A.Vaia, L.-S.Tan, Chem.Mater. 2004, 16, 185.
    [16] H.J.Lee, J.W.Sohn, J.H.Hwang, S.Y.Park, Chem.Mater. 2004, 16, 456.
    [17] S. Maruo, O. Nakamura, S. Kawata, Opt.Lett. 1997, 22, 132.
    [18] B.H. Cumpston et al., Nature 1999, 398, 51.
    [19] S. Kawata, H.-B. Sun, T. Tanaka, K. Takada, Nature 2001, 412, 697.
    [20] S. Maruo, K. Ikuta, Proc.Soc.Photo-Opt Instrum.Eng. 2000, 3937, 106.
    [21] H.E. Pudavar, M.P. Joshi, P.N. Prasad, B.A. Reinhardt, Appl.Phys.Lett. 1999, 74, 1338.
    [22] W. Denk, Proc.Natl.Acad.Sci.U.S.A. 1994, 91, 6629.
    [23] R.M. Williams, D.W. Piston, W.W. Webb, Fed.Am.Soc.Exp.Biol.J. 1994, 8, 804.
    [24] R. Kannan et al., Chem. Mater. 13 (2001) 1896.
    [25] K.D. Belfield et al., Chem. Mater. 16 (2004) 4634.
    [26] J.E. Rogers et al., J. Phys. Chem. A 111 (2007) 1899.
    [27] C. Barsu, C. Andraud, N. Amari, S. Spagnoli, P.L. Baldeck, J. Nonlinear Opt. Phys. 14 (2005) 311.
    [28] O. Mongin, L. Porre`s, L. Moreaux, J. Mertz, M. Blanchard-Desce, Org. Lett. 4 (2002) 719.
    [29] Sheng Yao, K.D. Belfield, J. Org. Chem. 70 (2005) 5126.
    [30] M. Cha, W.E. Torruellas, G.I. Stegeman, W.H.G. Horsthuis, G.R. M?hlmann, J. Meth, Appl. Phys. Lett. 65 (1994) 2648.
    [31] T. Kogej, D. Beljonne, F. Meyers, J.W. Perry, S.R. Marder, J.L. Brédas, Chem. Phys. Lett. 298 (1998) 1.
    [32] B.J. Orr, J.F. Ward, Mol. Phys. 20 (1971) 513.
    [33] D.M. Bishop, J.M. Luis, B. Kirtman, J. Chem. Phys. 116 (2002) 9729.
    [34] B. Dick, R.M. Hochstrasser, H.P. Trommsdorff, in: D.S. Chemla, J. Zyss (Eds.), Nonlinear Optical Properties of Organic Molecules and Crystals, Vol. 2, Academic Press, Orlando, FL, 1987, pp. 167–170.
    [35] M. Albota, D. Beljonne, J.-L. Brédas, J.E. Ehrlich, J.-Y. Fu, A.A.Heikal, S.E. Hess, T. Kogej, M.D. Levin, S.R. Marder, D. McCord-Maughon, J.W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W.W.Webb, X.L. Wu, C. Xu, Science 281 (1998) 1653.
    [36] X.H. Zhou, J.C. Yan, J. Pei, Org. Lett. 5 (2003) 3543.
    [37] Y. Morel, A. Irimia, P. Najechalski, Y. Kervella, O. Stephan, P.L. Baldeck, C. Andraud, J. Chem. Phys. 114 (2001) 5391.
    [38] M. Parent, O. Mongin, K. Kamada, C. Katan, M. Blanchard-Desce, Chem. Commun. (2005) 2029.
    [39] O. Mongin, L. Porrès, C. Katan, T. Pons, J. Mertz, M. Blanchard-Desce, Tetrahedron Letters 44 (2003) 8121.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700