用户名: 密码: 验证码:
碾压混凝土坝仓面施工质量实时监控理论与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碾压混凝土坝施工工艺复杂、施工工期紧、施工强度大、技术要求高,给仓面施工质量控制带来了挑战。本文紧密结合碾压混凝土坝工程建设中施工质量控制领域的国际前沿科学问题,开展了碾压混凝土坝仓面施工质量控制理论与方法研究。以碾压混凝土坝仓面施工质量实时监控方法为理论基础,对相关的数学模型和应用技术进行了全方位、多角度的研究。提出了浇筑碾压质量实时监控与施工气候信息实时监控技术,实现了对碾压混凝土坝仓面施工过程质量的精细化、全天候实时监控和对仓面施工信息的动态高效集成管理与分析。这些研究成果一方面深化了碾压混凝土坝仓面施工质量控制的理论基础,填补了碾压混凝土坝仓面施工质量实时监控理论与方法研究的空白;另一方面,为碾压混凝土坝施工质量实时监控系统的建立做了开拓性的工作,取得了一系列的成果,主要包括:
     (1)构建了碾压混凝土坝仓面施工质量实时监控体系,建立了碾压混凝土坝仓面施工质量实时监控的数学模型。
     针对碾压混凝土坝仓面施工质量控制的关键科学问题,分析了碾压混凝土坝仓面施工质量控制的目标、项目和流程等关键要素,开展了碾压混凝土坝仓面施工质量实时监控理论与方法研究,提出了碾压混凝土坝仓面施工质量实时监控体系,建立了碾压混凝土坝仓面施工质量实时监控的数学模型,并实现了基于Web的碾压混凝土坝仓面施工质量实时监控三维可视化分析。该体系既丰富和发展了现有的碾压混凝土坝仓面施工质量控制理论,又为碾压混凝土坝仓面施工质量控制提供了新的思路。
     (2)提出了碾压混凝土坝浇筑碾压质量实时监控技术,实现了碾压层的自动辨识和监控参数的动态分析。
     针对碾压混凝土坝仓面施工质量实时监控的核心组成部分——浇筑碾压质量实时监控,建立了浇筑碾压质量实时监控目标函数,提出了碾压层自动辨识方法和监控参数动态分析方法,进而研发了碾压混凝土坝浇筑碾压质量实时监控系统,并基于Web网络实现了碾压混凝土坝浇筑碾压质量信息管理。该系统首次实现了对碾压混凝土坝浇筑碾压质量的实时监控,使浇筑碾压施工质量控制水平得到提升,在碾压混凝土坝施工质量控制研究领域具有开创性意义。
     (3)提出了碾压混凝土坝施工气候信息实时监控技术,建立了预测VC值损失量进行反馈控制的ANN模型。
     针对碾压混凝土坝仓面施工质量实时监控的重要组成部分——施工气候信息实时监控,建立了施工气候信息实时监控目标函数,提出了基于ANN模型预测VC值损失量进行反馈控制的方法,并研发了碾压混凝土坝施工气候信息实时监控系统。
     通过将施工气候信息纳入碾压混凝土坝仓面施工质量实时监控系统,将VC值损失量反馈至施工管理人员,并实时指导现场施工,为仓面施工质量控制研究开拓了新的方向。
     (4)研制开发了碾压混凝土坝仓面施工质量实时监控系统,该系统已成功应用于某水电站高碾压混凝土重力坝工程建设中。
     针对某水电站高碾压混凝土重力坝地处西南地区、夏季气温高、降雨集中,且工程规模大、施工工期紧等特点,研发了碾压混凝土坝仓面施工质量实时监控系统,实现了对大坝仓面施工过程主要环节精细化、全天候的实时监控与分析,提高了大坝仓面施工过程的质量控制水平和效率。
     该研究成果解决了传统施工质量控制手段无法远程、精细、实时控制施工质量和受人为因素影响较大的难题。不仅为碾压混凝土坝仓面施工与维护提供了决策依据,为碾压混凝土坝施工质量控制积累了大量宝贵的技术数据,也为类似碾压混凝土坝工程的仓面施工质量控制提供了参考。
The construction of roller-compacted concrete (RCC) dam has the characteristics of complex process, tight schedule, high construction intensity and high technical requirement, which brings a great challenge to construction quality control of the working unit of RCC dam. Combining with the international frontier issues on construction quality control of RCC dam, research on construction quality control method of the working unit of RCC dam is carried on in this paper. The mathematical model and their application are carried out from multi-direction based on the real-time monitoring method for construction quality of working unit of RCC dam. The roller compaction quality real-time monitoring technique and the construction climatic information real-time monitoring technique are presented. Meticulous, all-weather and real-time monitoring for construction quality of working unit is implemented. Dynamic and efficient integration management and analysis to information of construction is realized. There are two significances. Firstly, the real-time monitoring method for construction quality of working unit of RCC dam is a theoretic extension of construction quality control method of the working unit of RCC dam. Secondly, a pioneering work is done on the establishment of real-time monitoring system for construction quality of working unit of RCC dam. The conclusions of this study are listed as follows.
     (1) The real-time monitoring architecture for construction quality of the working unit of RCC dam is built. The mathematical model of real-time monitoring for construction quality of the working unit of RCC dam is established.
     Aiming at the key scientific problems of construction quality control of the working unit of RCC dam, the key factors of construction quality control of the working unit is analyzed, such as target, elements and process. Research on the real-time monitoring method for construction quality of the working unit of RCC dam is carried on. The real-time monitoring architecture for construction quality of the working unit is proposed. The mathematical model of real-time monitoring for construction quality of the working unit is established, and the web-based 3D visualization analysis of the real-time monitoring is proposed.
     This real-time monitoring architecture is not only an extension of the current theory of construction quality control of the working unit of RCC dam, but also provides a new way to control construction quality of the working unit of RCC dam.
     (2) The roller compaction quality real-time monitoring technique is proposed. Auto identification of rolling layers and dynamic analysis of the monitoring indicators are realized.
     Aiming at real-time monitoring of the roller compaction quality, which is the core component of the real-time monitoring for construction quality of the working unit of RCC dam, the objective function for the roller compaction quality real-time monitoring is established. Auto identification method of rolling layers and method of dynamically analyzing the monitoring indicators are proposed. The roller compaction quality real-time monitoring system of RCC dam is developed, and the web-based management of roller compaction quality information of RCC dam is realized.
     This system is firstly applied in the roller compaction quality real-time monitoring of RCC dam and improves the level of roller compaction quality control. It is a tremendous innovation to construction quality control of RCC dam.
     (3) The construction climatic information real-time monitoring technique is proposed. The ANN model for feedback control, which can predict the loss quantity of VC value, is established.
     Aiming at real-time monitoring of the construction climatic information, which is an important component of the real-time monitoring for construction quality of the working unit of RCC dam, controlling objective function for the construction climatic information real-time monitoring is established. The ANN model, which is used to predict the loss quantity of VC value, is established for feedback control. The construction climatic information real-time monitoring system of RCC dam is developed.
     By introducing construction climatic information to real-time monitoring system for construction quality of working unit of RCC dam, the loss quantity of VC value is send to the construction managers, and feedback guidance is provided to the constructors. It is a new research direction to construction quality control of the working unit of RCC dam.
     (4) The real-time monitoring system for construction quality of working unit of RCC dam is developed. This system has applied to control construction quality of the high RCC gravity dam of a hydropower project successfully.
     The real-time monitoring system for construction quality of working unit of RCC dam is developed based on the characteristics of the high RCC gravity dam of a hydropower project locates in southwest China such as high temperature in summer, concentrated rainfall, large scale and tight schedule. Meticulous, all weather and real-time monitoring and analyzing for the key links of construction process of working unit are realized. The quality control level and efficiency are improved during construction.
     With this monitoring system, construction quality is controlled remotely, meticulously and real-timely, and the influence of personal factors is decreased. The basis is provided for construction and maintenance of working unit of RCC dam, and many precious technical data are provided for construction quality control of RCC dam. This successful case provides reference for construction quality control of working unit of similar RCC dam.
引文
[1]田育功,碾压混凝土快速筑坝技术,北京:中国水利水电出版社,2010
    [2]王圣培,中国碾压混凝土筑坝技术的发展,中国水力发电工程学会,第五届碾压混凝土坝国际研讨会论文集(上册),中国贵州贵阳:贵州省科学技术协会,2007,58~70
    [3]贾金生,陈改新,马锋玲等,碾压混凝土坝发展水平和工程实例,北京:中国水利水电出版社,2006
    [4]涂怀健,黄巍,碾压混凝土筑坝施工技术综述,水利学报,2007,36(S1):36~42
    [5]沈崇刚,中国碾压混凝土坝的发展成就与前景(上),贵州水力发电,2002,16(02):1~7
    [6]沈崇刚,中国碾压混凝土坝的发展成就与前景(下),贵州水力发电,2002,16(03):1~5,12
    [7]孙恭尧,王三一,冯树荣,高碾压混凝土重力坝,北京:中国电力出版社,2003
    [8]马岚,杜志达,江垭大坝碾压混凝土施工质量控制,水力发电,1999,(07):24~27
    [9]肖承杰,徐利君,江垭大坝混凝土施工质量控制,东北水利水电,2000,18(10):11~13
    [10]朱素华,黄恩福,沙牌碾压混凝土高拱坝施工技术与质量控制,水利水电技术,2004,35(10):31~34
    [11]刘建林,王长富,沙牌RCC施工质量控制的体会,四川水力发电,2003,22(01):83~86,89
    [12]蒲洪,刘建林,沙牌拱坝碾压混凝土施工现场质量控制的方法和措施,水电站设计,2003,19(04):102~106
    [13]陈祖荣,方彦栓,吴秀荣等,光照水电站碾压混凝土高坝快速筑坝技术,水利水电施工,2009,(02):22~26
    [14]余丕玉,光照水电站碾压混凝土坝施工期温度控制措施,企业科技与发展,2009,(10):120~123
    [15]秦秀芬,光照水电站碾压混凝土重力坝温度控制,红水河,2009,28(02):25~29
    [16]宁钟,张建,龙滩大坝碾压混凝土质量控制的关键要素,水力发电,2007,33(04):69~72
    [17]王述银,覃理利,龙滩碾压混凝土层间结合质量控制标准研究,中国水力发电工程学会,第五届碾压混凝土坝国际研讨会论文集(上册),中国贵州贵阳:贵州省科学技术协会,2007,269~277
    [18]周宜红,杨磊,刘景平,龙滩碾压混凝土夏季施工质量控制标准研究,人民长江,2002,33(04):29~30
    [19]李翼,龙滩水电站水工碾压混凝土的质量控制要点,水电站设计,2006,22(01):18~22
    [20]谢映怀,龙滩水电站左岸大坝碾压混凝土施工,人民长江,2008,39(09):21~22
    [21]雷兴顺,欧阳松,张勇,大朝山拦河坝碾压混凝土施工质量控制,水利技术监督,2001,(05):22~24
    [22]徐锐,大朝山水电站大坝碾压混凝土施工控制,云南水力发电,2000,16(03):27~29
    [23]李吉,从恩施云龙河电站建设看碾压混凝土拱坝质量控制,中国水力发电工程学会,2008年碾压混凝土筑坝技术交流研讨会论文集,中国云南普洱:中国水力发电工程学会碾压混凝土筑坝专委会、中国水利学会碾压混凝土筑坝专委会,2008,228~230
    [24]焦阳太,高福平,汾河二库碾压混凝土施工技术与质量控制,中国水电工程学会碾压混凝土筑坝专业委员会、中国水利学会碾压混凝土筑坝专业委员会,碾压混凝土筑坝技术交流论文汇编,中国广西百色:中国水力发电工程学会碾压混凝土筑坝专委会,2003,94~100
    [25]官春光,吴金灶,孙步金等,戈兰滩水电站大坝碾压混凝土质量控制,中国水力发电工程学会,2008年碾压混凝土筑坝技术交流研讨会论文集,中国云南普洱:中国水力发电工程学会碾压混凝土筑坝专委会、中国水利学会碾压混凝土筑坝专委会,2008,215~224
    [26]申逸,回龙抽水蓄能电站碾压混凝土坝施工质量控制,人民长江,2008,39(07):29~30
    [27]刘东升,回龙抽水蓄能电站上库主坝碾压混凝土施工质量控制,水利水电技术,2004,35(07):76~77
    [28]游梦雄,某电站碾压混凝土施工现场质量控制的几点尝试,水利科技,2009,(01):68~69,71
    [29]段云岭,郑桂水,碾压混凝土坝施工进度与质量控制的新措施,水力发电,2002,(02):19~23
    [30]龙志宏,碾压混凝土坝施工质量控制,中国水国发电工程学会碾压混凝土坝专业委员会、中国水利学会碾压混凝土坝专业委员会、贵州省科学技术协会等,2004年全国碾压混凝土坝筑坝技术交流会论文集,中国贵州贵阳:中国水力发电工程学会,2004,29~34
    [31]高明友,樊洪,沙沱水电站碾压混凝土仓面质量控制,中国水力发电工程学会碾压混凝土筑坝专业委员会、中国水利学会碾压混凝土筑坝专业委员会,中国碾压混凝土筑坝技术(2010),中国贵州贵阳:中国水力发电工程学会碾压混凝土筑坝专业委员会,2010,102~104
    [32]黄志斌,吴元东,索风营水电站大坝碾压混凝土质量控制,贵州水力发电,2005,19(01):65~67
    [33]谢祥明,谢彦辉,石爱军,高温干燥气候条件下碾压混凝土层面质量控制,华北水利水电学院学报,2007,28(04):27~29
    [34]朱海琳,关于严寒地区碾压混凝土重力坝施工质量控制的方法,内蒙古水利,2010,(01):132~133
    [35]周厚贵,舒光胜,景洪电站高气温条件下大坝碾压混凝土连续施工研究,葛洲坝集团科技,2009,(01):1~5
    [36]曹海,夏世法,林锋等,浅谈某严寒地区碾压混凝土坝施工质量控制,南水北调与水利科技,2010,8(03):149~152
    [37]蒋廷军,李虎章,沙沱水电站碾压混凝土高温季节温控措施,中国水力发电工程学会碾压混凝土筑坝专业委员会、中国水利学会碾压混凝土筑坝专业委员会,中国碾压混凝土筑坝技术(2010),中国贵州贵阳:中国水力发电工程学会碾压混凝土筑坝专业委员会,2010,7~10
    [38]李文莉,王伟锋,崔国明,石漫滩碾压混凝土坝在特殊气象条件下的施工,河南水利,1998,(03):43~44,36
    [39]杨火冰,特殊气象条件对碾压混凝土连续施工的影响,人民长江,2006,37(04):56~57,97
    [40]宗建伦,天花板水电站高温季节大坝碾压混凝土施工质量控制,水力发电,2011,37(06):71~73,90
    [41]罗文灵,潘旭勇,严寒地区碾压混凝土重力坝施工质量控制,水利建设与管理,2008,(07):29~31
    [42]潘玉志,杨立忱,孙秀春,江垭大坝混凝土施工质量控制,水利水电技术,1998,29(02):35~38
    [43]黄有爱,碾压混凝土坝工程质量控制与检测,人民长江,1999,30(06):36~37
    [44]黄开信,棉花滩碾压混凝土坝施工质量管理,中国水电工程学会碾压混凝土筑坝专业委员会、中国水利学会碾压混凝土筑坝专业委员会,碾压混凝土筑坝技术交流论文汇编,中国广西百色:中国水力发电工程学会碾压混凝土筑坝专委会,2003,64~68
    [45]杨槐,许满山,方波浪,棉花滩水电站碾压混凝土坝施工质量监控,水电发电,2001,(07):58~59
    [46]陈广平,贵州北盘江光照水电站大坝碾压混凝土施工质量控制,人民珠江,2009,(04):55~57
    [47]覃向学,贵州光照电站大坝碾压混凝土施工质量控制监理措施,科技资讯,2009,(25):132
    [48]杨槐,方波浪,钟宝全,龙滩水电站左岸大坝碾压混凝土质量控制实践,中国水力发电工程学会碾压混凝土筑坝专委会、中国水利学会碾压混凝土筑坝专委会、龙滩水电开发有限公司等,庆祝坑口碾压混凝土坝建成20周年暨龙滩200m级碾压混凝土坝技术交流会论文汇编,中国广西龙滩:中国水力发电工程学会,2006,150~155
    [49]左建明,雷萍,百色水利枢纽碾压混凝土主坝施工进度与质量控制监理,广西水利水电,2004,(S1):136~138
    [50]余圣刚,赵全胜,余奎,蔺河口水电站拱坝碾压混凝土施工质量控制,水力发电,2004,30(02):48~51
    [51]苗嘉生,陈世其,普定碾压混凝土拱坝现场质量控制,水力发电,1995,(10):38~41,44
    [52]彭兰波,梯子洞水电站大坝碾压混凝土施工质量控制,人民长江,2009,40(01):104~106
    [53] Matsushima M, Yasuda N, Advanced control for VC-value of roller-compacted dam concrete using artificial neural networks, Advances in Engineering Computational Technology, Edinburgh, UK: 1998, 207~214
    [54] Bennett BC, Rugh MP, Stiady JL, Controlling RCC mix workability for Olivenhain dam construction, Roller Compacted Concrete Dams, Madrid, Spain: 2003, 923~932
    [55] Stiady JL, Bennett BC, Developing database and reporting system softwares for quality control testing, Roller Compacted Concrete Dams, Madrid, Spain: 2003, 1057~1066
    [56] Coumoulos DG, Koryalos TP, Lean RCC dams - laboratory testing methods and quality control procedures during construction, Roller Compacted Concrete Dams, Madrid, Spain: 2003, 233~238
    [57] Chevva Krishnaiah, Shirke J M, Ghosh N, Assessment of concrete quality using non-destructive techniques, Ghatghar project, Maharashtra, India, Bulletin of Engineering Geology and the Environment, 2008, 67(1): 65~70
    [58] Marulanda A, Castro A, Sanchez FA, Ensuring quality control when building RCC dams, Roller Compacted Concrete Dams, Madrid, Spain: 2003, 995~1003
    [59] Dolen Timothy P, Richardson Alan T, White William R, Quality Control / Inspection - Upper Stillwater Dam, Proceedings of the Conference of Roller Compacted Concrete II, New York, USA: 1988, 277~293
    [60] Moser DE, Steffen RD, Britto C, et al, Quality control RCC of Dona Francisca dam, Roller Compacted Concrete Dams, Madrid, Spain: 2003, 1013~1019
    [61] Gama HR, Bandeira OM, Lacerda SS, RCC quality control applied in the structures of 1st and 2nd construction stages of the HPP Tucurui, Roller Compacted Concrete Dams, Madrid, Spain: 2003, 959~968
    [62] Lopez J, Aridah MF, Schrader E, RCC quality control for Mujib dam, Roller Compacted Concrete Dams, Madrid, Spain: 2003, 983~994
    [63] Choi YK, Neighbors JD, Reichler JD, Cold weather placement of RCC, Journal of Materials in Civil Engineering, 2003, 15(2): 118~124
    [64] Shi Jonathan J, Yang L, Experimental Study on the Impact of Rainfall on RCC Construction, Journal of Construction Engineering and Management-ASCE, 2010, 136(5): 477~483
    [65] Cui Bo, Zhong DengHua, Zhang Ping, et al, The application of computer graphic technology on monitoring roller compaction quality of rock-fill dam, Proceedings of the 2009 Sixth International Conference on Computer Graphics, Imaging and Visualization (CGIV 2009), Piscataway, NJ, USA: IEEE, 2009, 520~524
    [66] Zhong DengHua, Cui Bo, Liu DongHai, et al, Theoretical research on construction quality real-time monitoring and system integration of core rock-fill dam, Science in China Series E: Technological Sciences, 2009, 52(11): 3406~3412
    [67]赵川,吴敏,沈嗣元等,堆石坝填筑质量GPS监控及附加质量法检测密度技术,云南水力发电,2009,25(06):101~105
    [68]钟登华,刘东海,崔博,高心墙堆石坝碾压质量实时监控技术及应用,中国科学:技术科学,2011,41(08):1027~1034
    [69]李仕奇,刘琼芳,晋国辉,糯扎渡水电站高心墙堆石坝施工技术,水力发电,2010,36(01):11~13,19
    [70]朱自先,黄宗营,蒙毅,糯扎渡心墙堆石坝填筑施工质量控制,水利水电技术,2010,41(05):18~22
    [71]刘东海,王光烽,实时监控下土石坝碾压质量全仓面评估,水利学报,2010,41(06):720~726
    [72]崔博,心墙堆石坝施工质量实时监控系统集成理论与应用,博士学位论文,天津大学,2010
    [73]燕乔,毕明亮,王立彬,碾压混凝土坝施工质量实时动态监控系统,三峡大学学报(自然科学版),2009,31(04):5~8
    [74]余志奇,黄声享,陈志兰等,Surfer 8.0在GPS实时监控系统公路碾压试验中的应用,测绘信息与工程,2007,32(01):31~33
    [75]汪玉卉,高速公路施工质量GPS监控技术,绿色科技,2011,(02):147~150,152
    [76]梁英,阎朝坤,基于GPS的路面施工机群监控系统研究,福建电脑,2007,(09):148~149
    [77] Navon R, Shpatnitsky Y, Field experiments in automated monitoring of road construction, Journal of Construction Engineering and Management-ASCE, 2005, 131(04): 487~493.
    [78] R Navon, Goldschmidt E, Y Shpatnisky, A concept proving prototype of automated earthmoving control, Automation in Construction, 2004, 13(02):225~239
    [79] R Navon, Y Shpatnitsky, A model for automated monitoring of road construction, Construction Management and Economics, 2005, 23(09): 941~951
    [80] Oloufa Amr A., Do Won-seok, Thomas H Randolph, Automated monitoring of compaction using GPS, Proceedings of the 1997 5th ASCE Construction Congress: Managing Engineered Construction in Expanding Global Markets, 1997, 1004~1011
    [81] Oloufa AA, Do Won-Seek, Thomas HR. An automated system for quality control of compaction operations: receiver tests and algorithms, Proceedings of 16th International Symposium on Robotics and Automation in Construction, Madrid, Spain: 1999, 67~71.
    [82] Do Won-Seok, Oloufa Amr A., Thomas H Randolph, Evaluation of global positioning system devices for a quality control system for compaction operations, Transportation Research Record, 1999: 67~74
    [83] Oloufa A A, Quality control of asphalt compaction using GPS-based system architecture, Robotics & Automation Magazine, 2002, 9(01): 29~35.
    [84] R. Anderegg, Dominik A. von Felten, Kuno Kaufmann, Compaction monitoring using intelligent soil compactors, GeoCongress 2006: Geotechnical Engineering in the Information Technology Age, 2006: 41~46
    [85] David J. White, Mark J. Thompson, Kari Jovaag, et al, Field evaluation of compaction monitoring technology: phase II, Lowa State University, 2006
    [86] David J. White, Max Morris, Mark Thompson, Power-based compaction monitoring using vibratory pad foot roller, GeoCongress 2006: Geotechnical Engineering in the Information Technology Age, 2006: 44~49
    [87] R. Edward Minchin, David C. Swanson, H. Randolph Thomas, Computer methods in intelligent compaction, 2005 ASCE International Conference on Computing in Civil Engineering, 2005: 1145~1155
    [88] Michael A. Mooney, Robert V. Rinehart, Filed monitoring of roller vibration during compaction of subgrade soil, Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(03): 257~265
    [89] M. Hossain, J. Mulandi, L. Keach, et al, Intelligent compaction control, Airfield and Highway Pavements: Meeting Today's Challenges with Emerging Technologies - proceedings of the 2006 Airfield and Highway Pavement Specialty Conference, 2006: 304~316
    [90]张润利,贺杰,刘力松,等,压实度连续检测系统信号处理的探讨,河北工业大学学报,2003,32(04):99~102
    [91]张润利,刘剑,肖艳军,振动压路机-路基土壤系统的数学模型,中国工程机械学报,2004,2(02):171~175
    [92]李光明,张润利,张周魁,冲击压路机的冲击轮运动浅析,中国工程机械学报,2003,1(01):77~79
    [93]周熊,叶平,基于AT89S52的车载压实度检测仪设计,国外电子元器件,2007,(05):6~8
    [94]周熊,叶平,CF卡在采煤机振动检测中的应用,微计算机信息,2008,(11):293~299
    [95]化雪荟,刘南平,陈大力,基于蓝牙技术的智能振动检测系统设计,机电工程技术,2008,37(08):21~22
    [96]刘松,刘南平,于振生,基于MSC1211芯片的智能压力检测系统的设计,天津师范大学学报,2008,28(03):52~55
    [97]刘松,刘南平,基于无线通信的机载振动压路机压实度检测系统,仪表技术与传感器,2008,(01):19~20
    [98]陈大力,刘南平,化雪荟,基于ARM的大中型电机振动测量系统设计,自动化技术与应用,2009,28(07):88~91
    [99]曹源文,宁甲琳,李富清,等,ICP加速度传感器在路基压实度测量中的应用,筑路机械与施工机械化,2006,(12):57~61
    [100]宁甲琳,曹源文,吴梁,压实度连续检测方法的研究,建筑机械化,2006,(11):38~40
    [101]吴梁,曹源文,宁甲琳,无线通讯技术在压实度连续检测中的应用,筑路机械与施工机械化,2006,(10):54~56
    [102]宁甲琳,曹源文,一种新型压实度连续检测方法,重庆交通学院院报,2007,26(01):74~77
    [103]宁甲琳,曹源文,吴梁,压实度连续检测研究,建设机械技术与管理,2007,(01):77~78
    [104]曹源文,宁甲琳,吴梁,压实度连续检测方法的验证,建筑机械,2007,(01):75~77
    [105]居彩梅,车载式压实度检测仪,硕士学位论文,长安大学,2001
    [106]吴仁智,黄海芳,孔庆华,等,振动压路机性能的计算机仿真计算方法,工程机械,1995,(06):11~14
    [107]吴仁智,振动压路机质量参数的匹配分析,工程机械,1999,(07):16~17
    [108]吴仁智,刘钊,肖文斌,压路机振动轮偏振压实的建模分析,中国工程机械学报,2006,4(02):164~169
    [109]严世榕,闻邦椿,振动压路机的一种非线性动力学仿真,建筑机械,1999,(02):35~37
    [110]严世榕,闻邦椿,压实过程振动压路机的分岔混沌分析,筑路机械与施工现代化,2000,17(06):11~13
    [111]严世榕,闻邦椿,沥青混凝土摊铺机压实机构非线性动力学仿真,建筑机械化,2000,(04):10~13
    [112]严世榕,闻邦椿,振动压路机跳起现象动力学分析,建设机械技术与管理,2000,(02):16~18
    [113]严世榕,闻邦椿,振动压路机的一种非线性动力学特性研究,福州大学学报,2000,28(05):64~67
    [114]严世榕,闻邦椿,振捣器几个参数对摊铺机压实机构的非线性动力学特性影响分析,振动与冲击,2000,19(03):26~29
    [115]严世榕,闻邦椿,宫照民,等,摊铺机压实机构的一种非线性动力学理论研究中国公路学报,2000,13(03):123~126
    [116]严世榕,闻邦椿,摊铺机压实机构的一种动力学模型及其运动分析,建筑机械,2000,(03):28~29
    [117]秦四成,程悦荪,李忠,等,振动压路机振动轮-土壤系统动力学分析,同济大学学报,2001,29(09):1026~1031
    [118]秦四成,程悦荪,李忠,等,振动压路机振动轮减振支承系统动力分析,农业机械学报,2001,32(06):88~91
    [119]秦四成,程悦荪,李忠,等,振动压实下土壤基础密实程度在线监测研究,农业工程学报,2001,17(05):15~18
    [120]秦四成,程悦荪,李忠,双钢轮振动压路机液压系统动态性能试验分析,筑路机械与施工机械化,2003,(03):19~20
    [121]何建和,严世榕,振动压路机的一种新模型及其动力学特性研究,福建电脑,2004,(01):29~30
    [122]何建和,振动压路机动力学特性及新型密实度仪研究开发,硕士学位论文,福州大学,2004
    [123] Eric Tall, Mark Ginsburg, Late Night ActiveX, Beijing: China Machine Press, 1997
    [124]钟登华,李明超,王刚等,水利水电工程三维数字地形建模与分析,中国工程科学,2005,7(07):65~70
    [125] Toussaint, Scanning the issue: computational geometry (special issue intro.), Proceedings of the IEEE, 1992, 80(09): 1347~1363
    [126] Dobkin, David P., Computational geometry and computer graphics, Proceedings of the IEEE, 1992, 80(09): 1400~1411
    [127] Colin Flangan, The Bresenham Line-Drawing Algorithm, Beijing: Science Press, 1990
    [128]中华人民共和国国家能源局,DL/T5112-2009,水工碾压混凝土施工规范,北京:中国电力出版社,2009
    [129]王静龙,多元统计分析,北京:科学出版社,2008
    [130] Hagan M T, Menh M B, Training feed-forward networks with the Marquardtalgorithm. IEEE Transactions on Neural Networks, 1994, 5(06): 989~993

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700