用户名: 密码: 验证码:
基于定量反馈理论的飞行模拟器运动平台控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
飞行模拟器是在地面上模拟飞机在空中飞行和在地面上运动的一种仿真设备。与用真实飞机训练驾驶员、进行飞行试验相比,这种设备具有安全性、经济性和无污染性等特点。在飞行模拟器各个组成部分中,六自由度运动系统占有极其重要的作用,它在计算机实时控制下可以提供六个自由度的瞬时过载动感。因此运动模拟系统性能优劣直接关系到飞行模拟逼真度,而飞行模拟系统控制策略的研究是提高飞行模拟器运动性能的关键技术之一。因此深入研究飞行模拟系统控制策略,设计出合理的控制器具有极其重要的意义。
     在查阅国内外大量相关文献基础上,本文首先综述了国内外飞行模拟器的现状和发展趋势,总结了飞行模拟器六自由度运动系统特点和各项关键技术的研究现状。同时对六自由度运动平台在其他领域的应用做了简要介绍。
     本文采用矩阵和向量分析方法,对六自由度运动平台运动学特性进行了研究。综合运用牛顿—欧拉方法、拉格朗日法对运动平台受力情况进行了详细分析。采用达郎贝尔原理和等效力法建立了运动系统上平台力平衡方程,采用凯恩方法建立了运动平台任务工作空间动力学方程。建立了运动平台关节工作空间动力学方程,对通道间交联耦合进行了分类。建立了通道间加速度交联耦合评价指标,对飞行模拟试验样机通道间加速度交联耦合进行了定量分析,为运动平台结构设计和通道间交联耦合评价提供了一种较好的借鉴依据。
     建立了六自由度运动系统单通道数学模型,分析了模型参数对系统性能的影响。建立了单通道状态空间闭环数学模型和随机典范状态空间灰箱辨识模型,定义了模型参数辨识准则函数,建立了准则函数雅克比矩阵和梯度矩阵的数学模型。
     本文设计了一种三维互不相关系统辨识激励信号发生器,对运动平台进行了闭环辨识试验。基于采集到的试验输入、输出数据对序列,采用基于LM准则函数寻优算法的预测误差法对各通道进行了模型参数辨识。在相同输入信号作用下,将状态空间辨识模型输出和实际系统输出进行了比较,比较结果说明两者的拟合率高达70%以上,从而证明了模型参数辨识值的合理性。
     本文依据飞行模拟器对其运动模拟系统运动性能的要求,对飞行模拟试验样机电控部分进行了改造。同时采用VC++语言结合RTX实时扩展系统设计了飞行模拟控制软件。依据飞行模拟试验样机控制系统设计指标要求,结合单通道辨识模型,利用定量反馈理论设计了一种二自由度QFT鲁棒控制器。按照控制系统设计指标要求,对六自由度运动系统进行了仿真和试验研究。研究结果表明,二自由度QFT鲁棒控制器能够较好地补偿液压动力机构非对称性对系统性能的影响,具有很强的抑制通道间负载交联耦合的能力,对参数时变性和未建模动态特性具有强鲁棒性,满足了规定的设计指标要求。研究结果同时证明,本文设计的试验样机电控系统和控制软件是成功的,阐述的理论和观点是正确的,设计的模型辨识算法和控制器是合理可行的。
Flight simulator is a kind of emulation vehicle that can simulate aircraft flying in the sky and moving on the ground. Comparing with training driver by using real airplane and flying experiment, flight simulator has an advantage in security, indestructibility, and non-pollution. Six-freedom motion system plays an important role in all composing parts of flight simulator, and it is actually a six-freedom instantaneous overload-simulating vehicle which is controlled real time by computer. So the performances of motion simulating system directly relate with fidelity of flight simulating, and the research of flight simulating system about control strategy is one of the key technologies of improving motion performance of flying simulator. Therefore, research for control strategies of flying simulating system and designing reasonable controller have the very important meaning.
     After synthesizing numerous related literatures and reference materials at home and abroad, the outline and current trend of domestic and oversea flight simulator is summarized in this paper, and characteristics, state-of-the-art of all kind of key issues of flying simulator 6-DOF moving simulation system is summarized. At the same time applications of six-freedom motion platform in other fields is introduced briefly.
     In this paper, kinematics characteristics of 6-DOF motion platform are studied by using analysis method of matrix and vector. Detailed analysis of forces received by motion platform is done by using Newton-Euler and Lagrange methods synthetically. Force equilibrium equations of motion system upper platform are built based on d’Alembert Principle and reduction method, and a task-workspace dynamic equation of motion platform is established by using Kane method. A joint-workspace dynamic equation is established,and the coupling between channels is classified. The acceleration coupling between channels evaluating index are built, based on which the acceleration coupling between channels of flight simulation test prototype is analyzed quantitatively, and which provide with a better basis for design of motion platform structure and evaluation of coupling between channels.
     In this paper, the mathematical model of single channel of 6-DOF motion system is established, and the influence of model parameters upon the system performance is analyzed. The single channel state space closed-loop mathematical model and general stochastic state space grey-box identification model are set up, and the criterion function for model parameters identification is defined, and the mathematical models for Jacobian matrix and gradient matrix of the criterion function are established.
     A kind of three-dimensional mutually non-correlative exciting signals generator is designed, and the closed-loop identification experiment of motion platform is done. The model parameters are identified by using predicted-error method, which is based on the LM algorithm used for the criterion function optimization. The state space identification model outputs are compared with the real system outputs under the effect of the same input signal, and the comparison results show that the close ratio is over 70%, which proves that the model parameters identified in this paper are reasonable.
     In accordance with flight simulator’s demand of motion simulation system motion performance, the electro-control part of flight simulation test prototype is reconstructed in this paper. At the same time the flight simulation control software is designed by using VC++ language and RTX real time extensive system. Based on the control system designing performance index demand of the flight simulation test prototype and the single channel identification model, a kind of 2-DOF QFT robust controller is designed by using quantitative feedback theory. Simulation and experiment researches on the 6-DOF motion system are performed based on the control system designing index demand. Research results show that the 2-DOF robust controller can compensate perfectly the influence on system performance caused by asymmetrical characteristic of power mechanism, and has the very strong ability of resisting the load coupling between channels and the strong robustness for parameters time-varying characteristics and non-modeled dynamic characteristics, which satisfies all designing performance index demand prescribed before. At the same time the research results prove that the electro-control system and control software of the test prototype designed in this paper are successful, and the theories and views set forth are right, and the model identification algorithm and the controller designed are reasonable and feasible.
引文
1 王行仁 . 飞行实时仿真系统及技术 . 北京航空航天大学出版社 . 1998:102~108, 116~117
    2 陈绍祖. 林克飞行模拟器. 模拟技术. 1989(4): 24
    3 李学国. 飞行训练模拟器的发展. 国际航空. 1989, (4): 45~47
    4 Allen L D. Evolution of Flight Simulator. AIAA-93-3545-CP, 1993
    5 梁恺. 航空仿真技术. 测控技术. 1998, (3): 8~10
    6 章晨. 90 年代飞行模拟器的发展动向. 国际航空.1992, (7): 10~11
    7 金子敏夫. 訓練用フライトシミュレータ.2000, (6): 1~3
    8 邢宝安. 中国空军飞行模拟器的发展与模拟训练. 国际航空. 1992,(7): 12~13
    9 王素静,吕杰,章伯定. 试飞院仿真技术发展中的几个问题. 飞行力学.1996,(12): 14~18
    10 王鹢, 赵琳, 沈晓蓉, 王文武. 潜艇航行训练模拟器视系统的设计. 哈尔滨工程大学学报. 2001, (2): 34~36
    11 空军第一飞行学院. Z9 直升机飞行模拟器鉴定报告.2000, (6): 1~2
    12 Steven R Markman. USAF in-flight simulation: a cost-effective operating approach. AIAA-93-3604-CP, 1993
    13 章伯定. 飞行模拟的新进展. 飞行力学. 1994, (3): 1~5
    14 B.Dasgupta, T.S.Mruthyunjaya. The Stewart Platform Manipulator: a Review. Mechanism and Machine Theory. 2000,35:15~40
    15 D. Stewart A Platform with Six Degree of Freedom. IME. Proc. 80, 1965, Part I(15):371~386
    16 刘文涛. 并联机床性能分析与研究. 哈尔滨工业大学博士学位论文. 2000: 1~2, 25~26
    17 李兵. 并联机床原型样机设计建造与性能分析. 哈尔滨工业大学博士学位论文, 1999,5: 5~10, 82~84
    18 S. Liu, W.L. Li, Y.C. Du and L. Fang. Forward kinematics of the Stewart Platform using hybrid immune genetic algorithm. Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation June, 2006, Luoyang, China. 2006: 2330~2335
    19 Yee C S, Lim K B. Forward kinematics solution of Stewart platform using neural networks. Neurocomputing. 1997, 16(40): 333~349
    20 Lee Taeyoung, Shin Jaekyung. Forward kinematics of the general 6-6 Stewart platform using algebraic elimination. Mechanism and Machine Theory. 2001, 36: 1073~1085
    21 Bonev I A,. Ryu J. A new method for solving the direct kinematics of general 6-6 Stewart platform using three linear extra sensors. Mechanism and Machine Theory, 2000,35(1):423~436
    22 Ancredi L, Teillaud M. Application de la géométrie synthétique au problème de modélisation géométrique directe des robots parallèles. Mechanism and Machine Theory. 1999,34(2): 255~269
    23 Husty M L. An algorithm for solving the direct kinematics of general stewart-gough platforms. Mechanism and Machine Theory. 1996, 31(4): 365~380
    24 Chen X S, Chen Z L. Synthesis of a Stewart platform for a specific workspace with a genetic algorithm. High Technology Letters. 2004, 10(1):66~69
    25 Gosselin C M. Determination of the Workspace of 6-DOF Parallel Manipulators. Journal of Mechanical Design. 1990, 112(3):331~336
    26 Hunt K H. Structural kinematics of in-parallel-actuated robot-arms. ASME J. of Mech. Trans. and Auto in Des. 1983, 105: 705~712
    27 Gosselin C M. Singularity analysis of closed-loop kinematics chains. IEEE Trans, on Rob, & Aut., 1990,6(3): 281~290
    28 Ficher E F. A Stewart platform-based manipulator: General theory and practical construction. International Journal of Robotics Research. 1986, 5(2):157~182
    29 Z. Huang, L. H. Chen, and Y. W. Li. The Singularity Principle and Property of Stewart Parallel Manipulator. Journal of Robotic System. 2003, 20(4):167~179
    30 B. H. Patricia and S. Moshe. Singularity Analysis of a Class of Parallel Robots Based on Grassmann-Cayley Algebra. Mechanism and Machine Theory. 2006, 41(8):958~970
    31 李铁民, 汪劲松, 杨向东等. 基于 Stewart 平台数控机床的轨迹规划研究中国机械工程. 1999, 10(10): 1118~1120
    32 方菲,刘平安. 抛物线过渡的并联机器人线性轨迹规划. 华东交通大学学报. 2005, 22(4):113~116
    33 Fang S Q, Franitza D, Verhoeven R. Optimum motion planning for tendon-based Stewart platforms. Proceeding of the 11th World Congress in Mechanism and Machine Science, Tianjin, China. 2004:186~190
    34 郑亚青,刘雄伟. 六自由度绳牵引并联机构的运动轨迹规划. 机械工程学报. 2005, 41(2):77~81
    35 范守文,徐礼钜,甘泉. 一种新型并联机床的最优轨迹规划. 电子科技大学学报. 2003, 32(1):51~55
    36 袁立鹏,许宏光,赵可定. 基于改进遗传算法的坦克发动机道路模拟测试平台轨迹寻优. 2006, 36(2):237~241
    37 杨灏泉. 飞行模拟器六自由度运动系统及其液压伺服系统的研究. 哈尔滨工业大学博士学位论文. 2002: 14
    38 G. Lebret, K. Liu and F. L. Lewis. Dynamic Analysis and Control of a Stewart Platform Manipulator. Journal of Robotic Systems. 1993, 10(5): 629~655
    39 C. D. Zhang,S. M. Song. An Efficient Method for the Inverse Dynamic of Manipulators Based on the Virtual Work Principle. Journal of Robotic Systems. 1993, 10 (5): 605~627
    40 B. Dasgupta, T. S. Mruthyunjaya. Closed-From Dynamic Equations of the General Stewart Platform through the Newton-Euler Approach. Mechanism & Machine Theory. 1998, 33(7): 993~1012
    41 J. Kovecses, J. C. Piedboeuf and C. Lange. Dynamics Modeling and Simulation of Constrained Robotic Systems. IEEE ASME Transactions on Mechatronics. Institute of Electrical and Electronics Engineers Inc., 2003, 8(2): 165~177
    42 C. T. Chen. A Lagrangian Formulation in Terms of Quasi-coordinates for the Inverse Dynamics of the General 6-6 Stewart Platform Manipulator. JSME International Journal. 2003, 46(3): 1084~1090
    43 W. Khalil, S. Guegan. Inverse and Direct Dynamic Modeling of Gough-Stewart Robots. IEEE Transactions on Robotics. Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ 08855-1331,United States, 2004, 20(4): 754~762
    44 Y. Ting, Y. S. Chen, H. C. Jar. Modeling and Control for A Gough-Stewart Platform CNC Machine. Proceeding of the 2004 IEEE International Conference on Robotics & Automation. New Orleans, 2004:535~540
    45 杨钢,李宝仁,傅晓云. 气动人工肌肉并联机器人平台. 机械工程学报. 2006, 42(7):39~45
    46 中島大輔, 一柳健. プレスの電氣-油圧複合制御の研究. 东京工科大学一柳健研究所资料汇编. 2000, 5: 5~7
    47 L. C. Lin, M. U. Tsay. Modeling and Control of Micropositioning Systems Using Stewart Platform. Journal of Robotic Systems. 2000, 17(1):17~52
    48 Kawamura S, Kino H, Won C. High-speed manipulation by using parallel wire-driven robots. Robotica. 2000, 40(2):13~21
    49 李洪人. 液压控制系统. 国防工业出版社. 1990:3~4
    50 Y. J. Lu, W. B. Zhu and G. X. Ren. Feedback Control of a Cable-Driven Gough-Stewart Platform. IEEE Transactions on Robotics. 2006, 22(1):198~202
    51 Y. Ting, Y. S. Chen, H. C. Jar and Y. Kang. Modeling and Control for a Gough-Stewart Platform CNC Machine. Proceeding of the 2004 IEEE International Conference on Robotics & Automation, New Orieans. 2004:535~540
    52 Bin Yao, Mohammed Al M. and Masayoshi T. High-Performance Robust Motion Control of Machine Tools: An Adaptive Robust Control Approach and Comparative Experiments. IEEE/ASME Transaction on Mechatronics. 1997, 2(2):63~76
    53 M. R. Sirouspour and S. E. Salcudean. Nonlinear Control of a Hydraulic Parallel Manipulator. Proceeding of the 2001 IEEE International Conference on Robotics and Automation. 2001:3760~3765
    54 C. I. Huang, L. C. Fu. Adaptive Backstepping Tracking Control of the Stewart Platform. 43rd IEEE Conference on Decision and Control, Atlantis, Paradise Island, Bahamas, 2004:5228~5233
    55 焦晓红,耿秋实,方一鸣,李运峰. 并联机器人的鲁棒自适应控制. 机器人技术与应用. 2002(4): 22~24
    56 焦晓红,李运峰,方一鸣,耿秋实. 一种机器人鲁棒自适应控制法. 机器人技术与应用. 2002(3):40~43
    57 李士勇. 模糊控制·神经控制和智能控制论. 哈尔滨工业大学出版社. 1998:74~75
    58 H. Wang, C. Xue, J. A. Gruver. Neural Network Control of a Parallel Manipulator. Proceeding of the 1995 IEEE International Conference on System, Man, and Cybernetics. 1995:2934~2938
    59 王洪瑞,王洪斌. 液压 6-DOF 并联机器人操作手运动和力控制的研究. 河北大学出版社. 2001:151~173
    60 李世敬,王解法,冯祖仁.基于计算力矩结构的并联机器人层叠小脑模型补偿控制研究. 西安交通大学学报. 2002. 37(6):569~572
    61 V. Remillard and E. K. Boukas. Gough-Stewart Platform Control: A Fuzzy Control Approach. Fuzzy Information Processing Society, 2006. NAFIPS 2006. Annual meeting of the North American 3-6 June 2006:108~113
    62 George K. I. Mann. Model-free-Intelligent Control of a 6-DOF Stewart-Gough Based Parallel Manipulator. Proceeding of the 2002 IEEE International Conference on Control Applications, Glasgow, Scotland, U.K., 2002:495~500
    63 杨灏泉,赵克定,吴盛林. 液压六自由度并联机器人控制策略的研究. 机器人. 2004, 26(3):263~266
    64 王洪瑞,张克勤,黄真.并联机器人基于滑模理论的模糊控制.自动化与仪器仪表. 1999, 18(1):8~11
    65 P. Begon, F. Pierrot and P. Dauchez. Fuzzy Sliding Mode Control of a Fast Parallel Robot. IEEE International Conference on Robotics and Automation. 1995:1178~1183
    66 J. A. Ball and N. Cohen. The sensitivity minimization in an H∞ norm: parameterization of all optimal solutions. Int. J. Contr. 1987, 46:785~816
    67 Abdallah D. Survey of Robust Control for Rigid Robots. IEEE control systems Magazine. 1991, 11(2):24~30
    68 S. H. Lee, J. B. Song, W. C. Choi and D. Hong. Controller Design for a Stewart Platform Using Small Workspace Characteristics. Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2001:2184~2189
    69 Jauasuriya S., Hwang C. N. Tracking controllers for robot manipulator: ahigh gain perspective. ASME Journal of Dynamics Systems, Measurement and Control. 1998,(110):39~45
    70 高为炳. 变结构控制的理论及设计方法. 科学出版社. 1996:31~32
    71 Ki Sung You and Min Cheol Lee. Sliding Mode Controller with Sliding Perturbation Observer Based on Gain Optimization Using Genetic Algorithm. Proceeding of the 2004 American Control Conference, Boston, Massachusetts, 2004:1958~1963
    72 S. Iqbal and A. I. Bhatti. Direct Sliding-Mode Controller Design for a 6-DOF Stewart Manipulator. Multitopic Conference, 2006. INMIC’06.IEEE. Dec. 2006:421~426
    73 N. Kim, and C. W. Lee. High speed tracking control of Stewart platform manipulator via enhanced sliding mode control. Proceeding of the IEEE International Conference on Robotics & Automation, 1998:2716~2721
    74 C. I. Huang and L. C. Fu. Smooth Sliding Mode Tracking Control of the Stewart Platform. Proceeding of the 2005 IEEE Conference on Control Applications, Toronto, Canada, 2005:43~48
    75 C. I. Huang, C. F. Chang, M. Y. Yu and L. C. Fu. Sliding-mode Tracking of the Stewart Platform. 5th Asian Control Conference. 2004:561~568
    76 Denis Garagic and Krishnaswamy Srinivasan. Contouring Control of Stewart Platform Based Machine Tools. Proceeding of the 2004 American Control Conference, Boston, Massachusetts, 2004:3831~3838
    77 Dong Hwan Kim, J. Y. Kang and K. l. Lee. Robust Tracking Control Design for a 6 DOF Parallel Manipulator. Journal of Robotics System. 2000,17(10) :527-547
    78 王栋梁. 六自由度平台阀控缸驱动系统分析及控制策略研究. 哈尔滨工业大学博士学位论文. 2004: 22~39
    79 M. A. Nahon , L. D. Reid. Simulator Motion-Drive Algorithms: A Designer’s Perspective. Journal of Guidance, Control and Dynamics. 1990, 13(2):356~362
    80 Peter R. Grant,L. D. Reid. Motion Washout Fliter Tuning: Rules and Requirements. Journal of Aircraft. 1997, 34(2):145~151
    81 张晋. 飞行模拟器的洗出算法研究. 哈尔滨工业大学硕士学位论文. 2005: 18~38
    82 Dan Ariel, Rapheal Sivan. False Cue Reduction in Moving Flight Simulators. IEEE Transaction on System, Man and Cybernetics. 1984, 14(4): 665~671
    83 Robert J.Telban. New Human-centered Linear and Nonlinear Motion Cueing Algorithms for Control of Simulator Motion Systems. PhD thesis, Binghamton University. 2003:1~95
    84 Raphael Sivan, Jehuda I. S. An Optimal Control Approach to the Design of Moving Flight Simulators. IEEE Transaction on System, Man and Cybernetics. 1982, 12(6):818~827
    85 郭政宏. 空间迷向机动感法则之设计与模拟验证. 台湾逢甲大学硕士学位论文. 1992:38~50
    86 S. C. Wang, L. C. Fu. Predictive Washout Filter Design for VR-based Motion Simulator. 2004 IEEE International Conference on Systems, Man and Cybernetics. 2004:6291~6295
    87 Robert J. Telban,Frank M. Cardullo. A Nonlinear, Human-Centered Approach to Motion Cueing with a Neurocomputing Solver. AIAA-2002-46922
    88 陈安平. 三自由度运动平台系统建模与分析. 哈尔滨工业大学硕士学位论文. 2005: 6~7
    89 Drosdol J and Panik F. The Daimler-Benz Driving Simulator, A Tool For Vehicle Development. SAE Technical Paper Series, 1985, No:850334
    90 Hein Matzewitzki, Andreas Mühlenbruch. 奔驰汽车公司行驶模拟试验台-汽车发展的工具. 力士乐信息季刊, 1995(1):2~6
    91 J. C. Shin and C. W. Lee. Rider’s Net Moment Estimation Using Control Force of Motion System for Bicycle Simulator. Journal of Robotic System. 2004, 21(11):597~607
    92 K. Harib, K. Srinivasan. Kinematic and Dynamic Analysis of Stewart Platform –Based Machine Tool Structures. Journal of Robotica. 2003, 21(5):541~554
    93 K. H. Harib, A. M. M. Sharif Ullah and A. Hammami. A Hexapod-based Machine Tool with Hybrid Structure: Kinematic Analysis and Trajectory Planning. International Journal of Machine Tools and Manufacture. 2007, 47(9):1426~1432
    94 D. Hong, S. Kim and W. C. Choi, etc. Analysis of Machining Stability for a Parallel Machine Tool. Mechanics Based Design of Structures and Machines. 2003, 31(4):509~528
    95 Anh X. H. Dang, Ebert Uphoff Imme. Active Acceleration Compensation for Transport Vehicles Carrying Delicate Objects. IEEE Transactions on Robotics. Piscataway, NJ 08855-1331, United States, Institute of Electrical and Electronics Engineers Inc., 2004, 20(5): 830~839
    96 A. Preumont, M. Horodinca, I. Romanescu. A six-axis single-stage active vibration isolator based on Stewart Platform. Journal of Sound and Vibration. 2007, 300(3):644~661
    97 Jin Zhenlin, Gao Feng, Zhang Xiaohui . Design and Analysis of a Novel Isotropic Six-Component Force/Torque Sensor. Sensors and Actuators A: Physical. 2003, 109(1):17~20
    98 R. Ranganath, P. Nair, T. S. Mruthyunjaya, and A. Ghosal. A Force-Torque Sensor Based on a Stewart Platform in a Near-Singular Configuration. Mechanism and Machine Theory. 2004, 39(9):971~998
    99 S. Koekebakker. Model Based Control of a Flight Simulator Motion System. PhD thesis, Delft University of Technology, 2001:3~34
    100 袁立鹏. 并联运动模拟平台及其液压伺服系统的研究. 哈尔滨工业大学博士学位论文. 2005: 55~59
    101 Lennart Ljung. System Identification Theory for the User. 清华大学出版社. 2002:434~440
    102 吴庆宪,丁勇,胡寿松. 多维逆 M 序列及其在多变量系统辨识中的应用. 数据采集与处理. 2000, 15(2):200~203
    103 吴广玉,范钦义,姜复兴,汪德辉. 系统辨识与自适应控制. 哈尔滨工业大学出版社. 1984:92~93, 288~289
    104 Lennart Ljung. Theory and Practice of Recursive Identification. The MIT Press. 1983:122~125
    105 O. Yaniv. Quantitative Feedback Design of Linear and Nonlinear Control System. Kluwer Academic Publisher. 1999:1~6
    106 I. Horowitz. Survey of Quantitative Feedback Theory(QFT). International Journal of Control. 1991, 53(2):255~291
    107 J. J. D’azzo, C. H. Houpis. Linear Control System Analysis and Design(Fourth Edition). McGraw-Hill. 2002:592~803
    108 Y. Chait, O. Yaniv. Multi-input/single output Computer-aided Control Design using the Quantitative Feedback Theory. International Journal of Robust and Nonlinear Control. 1993, 3:47~54
    109 Navid Niksefat. Design and Experimental Evaluation of Robust Controllers for Electro-hydraulic Actuator. A Dissertation for the Doctoral Degree of the University of Manitoba. Canada. 2002:22

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700