用户名: 密码: 验证码:
永磁直线同步电动机鲁棒控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以国家自然科学基金项目“永磁直线交流电动机驱动的高精度微进给伺服系统的研究”(NO.59875061)为研究背景,以当代高档数控机床用永磁直线同步电动机(PMLSM)伺服系统为研究对象,针对直线电机直接驱动的特点以及数控机床对伺服系统鲁棒性和跟踪性能的要求,研究了系统参数变化及负载扰动等诸多不确定性因素对PMLSM伺服系统性能影响。主要包括如下几个部分内容:
     在分析永磁直线同步电动机伺服系统中存在的各种不确定性的基础上,针对PMLSM特有的强端部效应干扰的不确定性,提出了将定量反馈理论(QFT)应用于PMLSM伺服系统的鲁棒跟踪控制策略。采用频域理论设计的QFT鲁棒控制器作为速度控制器,将对象的不确定范围和系统的性能指标用定量的方式在Nichols图上形成边界,进而以基准对象的开环频率曲线满足边界条件为要求在Nichols图上对系统进行设计与整形,并设计了前置滤波器以补偿系统的动态性能。仿真结果表明,该控制方案可以有效地抑制电机参数变化和其它扰动等不确定性因素对伺服性能的影响,提高了动态跟踪性能,在很大程度上提高了系统的精度。
     传统的QFT设计需要在Nichols图上进行回路整形来求得控制器,此种方法给设计带来一些不便。为此,本文提出了采用H_∞控制方法代替做图来求解控制器,通过合理的选取被控对象不确定性权函数、高频噪声抑制权函数和灵敏度权函数,利用以线性矩阵不等式为基础的H_∞控制求得QFT速度控制器,这样,简化了QFT的设计步骤,前置滤波器则使系统的输出响应符合性能指标的要求。仿真结果表明,结合QFT和H_∞控制方法,设计永磁直线同步电机的鲁棒跟踪控制器,大大提高了系统的性能。
     为了进一步提高直线电机伺服系统的跟踪性能和鲁棒性能,文中还论述了另一种可供选择的方法,将H_∞鲁棒控制和滑模控制(SMC)相结合的SM/H_∞鲁棒控制方法应用于永磁直线同步电动机伺服系统,设计的滑模控制器保证了快速跟踪性能,而H_∞鲁棒控制器则能经受住闭环系统内的各种扰动,性能进一步提高。仿真结果表明,结合滑模和H_∞控制方法设计永磁直线同步电机的鲁棒跟踪控制器,具有良好的跟踪性能,并对系统参数变化具有较强的鲁棒性。
     采用两台直线电动机对拖的加载实验方案构建PMLSM实验系统平台,分别对基于PI的控制方法、QFT/ H_∞鲁棒控制方法以及滑模/ H_∞鲁棒控制方法,在速度闭环情况下进行突加负载及参数变化等条件下的对比实验研究,验证了本文所提出控制策略的理论研究及仿真结果的有效性。
The paper is supported by National Natural Science Foundation of China“Research of High-precision Micro feed PMLSM AC Servo System”(NO.59875061). The paper researched on the permanent magnet linear synchronous motor (PMLSM) servo system used in modern advanced NC machine tool. For the characteristic of direct drive and the requirements of robustness and tracking performance for the servo system in NC machine tools, this paper focused on the control issues for the PMLSM servo system with the uncertainties of parameter changes and load disturbances. Main contents of the paper are stated as the follows.
     Based on analyzing the uncertainties of the permanent magnet linear synchronous motor servo system, for the uncertainty of PMLSM specific caused by strong end effect disturbance, a robust tracking control strategy was put forward in which the Quantitative Feedback Theory (QFT) is applied in PMLSM robust servo system. Frequency-domain theory is used to design the QFT robust controller, which is adopted as the speed controller. In addition, the uncertain scope of the object and system performance index were used in a quantitative manner to form the boundary in the Nichols chart, so as to conduct system design and shaping on the Nichols chart under the condition that the open-loop frequency curve of the reference object meets the boundary conditions, The pre-filter was designed to compensate for the dynamic performance of the system. Simulation results show that the control scheme can effectively suppress the impact on the servo performance motor, which results from the uncertainties such as parameters change and other disturbances, enhance the dynamic tracking performance, as well as improve the accuracy of the system to a great degree.
     The traditional design of QFT needs to conduct loop shaping on the Nichols chart so as to obtain a controller, which causes some inconvenience in the design. Therefore, this paper proposed H_∞control method instead of charting to obtain a controller. By means of the rational selections of the uncertainty weighting function, the high-frequency noise suppression weight function and the sensitivity weight function, H_∞control is used to obtain QFT speed controller based on linear matrix inequalities. The proposed method not only simplifies the QFT design steps, but also guarantees that a pre-filter makes the system output response satisfy the performance requirements. Simulation results show that the robust tracking controller for PMLSM based on combing QFT and H_∞control method improves the performance of the system greatly.
     In order to further increase tracking performance and robust performance of the linear motor servo system, the control method combing the H_∞robust control and sliding mode control(SMC) was applied to permanent magnet linear synchronous motor servo system. Sliding mode controller ensures fast tracking performance, while the H_∞robust controller suppresses a variety of disturbances within the closed-loop system and improves the performance. Simulation results show that the robust tracking controller combing the sliding mode and H_∞control method for permanent magnet linear synchronous motor shows good tracking performance, and presents strong robustness on the changes in system parameters.
     PMLSM experimental system platform was built on the dual-linear motor loading scheme. PID control method, QFT/ H_∞control method and sliding mode/ H_∞robust control method were compared in the experiments under the circumstances of the speed loop sudden loaded and parameters change. The comparative experimental results verifie the validity of control strategies proposed in theoretical analysis and simulation.
引文
[1]张伯霖,杨庆东,陈长年.高速切削技术及应用.北京:机械工业出版社,2002.
    [2]梁福军,石治平.21世纪的制造技术.中国工程学报,2002,38(1):1-8.
    [3]中国机床工具工业协会数控系统分会.第十一届中国国际机床展览会(CIMT2009)国产数控系统展品综述.制造技术与机床,2009,(8):34-39.
    [4]李泸曾,郭俊晖,赵仲义等.高速切削技术及应用.机械设计与制造,2002,(2):84-86.
    [5]陈烨.超高速数控机床控制系统的发展.制造技术与机床. 2000,(5): 12-14.
    [6]杨凯,杨庆东.高速龙门加工中心直线进给系统的动力特性.精密制造与自动化. 2006,(1): 17-21.
    [7]中国机床工具工业协会徐树滋.我国加工中心进口猛增不止.产销市场,2005(4):6162.
    [8]郑望成.龙门移动和工作台移动龙门加工中心比较.航空制造技术.2004,(7):98-99.
    [9]郭庆鼎,王成元,周美文等.直线交流伺服系统的精密控制.北京:机械工业出版社, 2000.
    [10]肖曙红李锻能,张伯霖.直线电机高速进给系统性能优化研究.组合机床与自动化加工技术,2002,(2):23-26.
    [11]吴南星,孙庆鸿.直线电机与高速精密数控机床进给系统的研究.制造业自动化, 2003,(10): 46-48.
    [12]杨正新,陈志华等.直接驱动的发展与未来.中国机械工程, 2000,(10):1180-1183.
    [13]刘泉,张建民,王先逵.直线电机在机床工业中的最新应用及技术分析.机床与液压,2004,(6):1-3.
    [14]朱非墨,唐苏亚.直线电机在高速加工机床上的应用与展望.微电机, 2003, 36(5): 47-49.
    [15]张国梁.数控机床中两种直线驱动机构的综合评述.数控天地. 2004,(4):73-76.
    [16]叶云岳.直线电机原理与应用.北京:机械工业出版社,2002.
    [17]叶云岳.国内外直线电机技术的发展与应用综述.电器工业中小电机专辑,2003,(1):12-16.
    [18]夏加宽,刘晓霞,王成元等.机床进给用直接驱动直线伺服电动机.制造技术与机床, 2003, (4):8-11.
    [19]夏加宽,王成元,李皞东等.高精度数控机床用直线电机端部效应分析及神经网络补偿技术研究.中国电机工程学报, 2003, 23(8):100-104.
    [20]钟扬,叶云岳,赵光宙.直线感应电机的新型PID控制研究综述.微特电机, 2002, (2): 27-30.
    [21]左健民,潘超,沈才俊等.基于二次型性能指标的PMLSM单神经元自适应PID控制.中国制造业信息化,2007,36(19) :
    [22] C.L. Lin and H.Y. Jan. Multiobjective PID control for a linear brushless DC motor: an evolutionary aaproach. IEE Proc. Electr. Power Appl. 2002, 149(6):397-406.
    [23]李庆民,张俊洪,赵镜红.永磁直线同步电机位置伺服系统的模糊PID控制.船电技术,2008,28(04):
    [24]刘金凌,王先逵,吴丹等.直线电机伺服系统的模糊推理自校正PID控制.清华大学学报, 1998, 38(2):44-46.
    [25]綦艳丽,郭庆鼎.一种非线性PID在伺服电机同步传动中的运用.沈阳工业大学学报, 2004(1): 60-63.
    [26] Hirvonen M, Yousefi H.Feedforward neural network compensation and state estimation in suppressing mechanical vibrations in a PMLSM. Proceedings of the ASME Dynamic Systems and Control Division 2005: 1841-1848.
    [27] Wang Li-Ling, Wang Hong-Rui, Xiao Jin-Zhuang. Compound control for pmlsm servo-drive system in end milling. Proceedings of the 2009 International Conference on Machine Learning and Cybernetics,2009, 4:1934-1938.
    [28] Syh-Shiuh Yeh and Pau-Lo Hsu, et al. An optimal and adaptive design of the feedforward motion controller. IEEE Transactions on Mechatronic, 1999,4(4):428-439.
    [29] G. Otten, J.A. Vries, J. Amerongen et al. Linear motor motion control using a learning feedforward controller. IEEE/ASME Transactions on Mechatronic, 1997, 2(3): 179-187.
    [30] D. M. Alter and T. C. Tsao. Optimal feedforward tracking control of linear motors for machine tool drives. Proceeding of the American Control Conference Seatlle, Washington, 1995. 210-214.
    [31]赵希梅,郭庆鼎.基于学习前馈补偿的直线伺服系统H∞鲁棒跟踪控制,电工技术学报, 2005,04 :78-82,110.
    [32]赵希梅,郭庆鼎.永磁直线同步电动机的变增益零相位H∞鲁棒跟踪控制.中国电机工程学报, 2005, 25(20):132-136.
    [33]王英,熊振华,丁汉.直线电机运动控制中的干扰观测器的研究.中国机械工程, 2004, 15(17): 1549-1552.
    [34]张宏伟,康润生,王新环等.基于神经网络的永磁直线同步电动机推力波动补偿的仿真研究.电机与控制学报, 2004, (4):299-302.
    [35] T. H. Liu, K. L. Wang and C. G. Chen. A novel two-degree- of-freedom controller design for a permanent magnet linear synchronous motor control system. INT. J. Electronics, 2003, 90(3): 167-183.
    [36]Yan Mutian, Shiu YauJung. Theory and application of a combined feedback-feedforward control and disturbance observer in linear motor drive wire-EDM machines. International Journal of Machine Tools and Manufacture, 2008,48(3):388-401.
    [37] K.K.Tan, S.Y.Lim and S.N.Huang. Two-degree-of-freedom controller incorporating RBF adaptation for precision motion control applications. IEEE/ASME Intemational Conference on Advanced Intelligent Mechatronics, 1999 Atlanta, USA, 848-853
    [38] Liu Tianhua, Wang Kuolung, Chen Chingguo. A novel two-degree-of-freedom controller design for a permanent magnet linear synchronous motor control system. International Journal of Electronics, 2003, 90(1): 27-42.
    [39]王增会,陈增强,孙青林等.定量反馈理论发展综述.控制理论与应用,2006,23(3):403-410.
    [40] Ataei M.A,Esmaeilzadeh Rasoul,Alizadeh G.H.Quantitative feedback theory for nonlinear systems.WSEAS Transactions on Circuits and Systems,. 2005, 4(11): 1710-1718.
    [41] Olalla Carlos, Leyva Ramon, Garcés Pedro. QFT robust control of current-mode converters: Application to power conditioning regulators. International Journal of Electronics. 2009,96(5): 503-520.
    [42] Otsuki Akira, Okada Kenichi. The study of the knowledge optimization tool. 2009 World Summit on Genetic and Evolutionary Computation, 2009, 443-450.
    [43] Amiri-M Amir-A, Gharib M.R.,Moavenian M. and Torabi Z.K. Modelling and control of a SCARA robot using quantitative feedback theory. Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering, 2009, 223(7): 919-928.
    [44]郭庆鼎,郭威,周悦.交流永磁直线同步电机伺服系统的预见前馈补偿.电机与控制学报, 1999 (3):172-175.
    [45] T. Egami and T. Tsuchiya. Disturbance suppression control with preview action of linear dc brushless motor. IEEE Trans on Industrial Electronics, 1995, 42(5): 494-500.
    [46] Kuo-Kai Shyu, Hsin-Jang Shieh, Sheng-Shang Fu. Model reference adaptive speed control for induction motor drive using neral networks. IEEE Transactions on Industrial Electronics, 1998(45): 257-260.
    [47] S. N. Huang, K.K. Tan and T.H. Lee. Adaptive precision control of permanent magnet linear motors. Asian Journal of Control, 2002, 4(2):193-198.
    [48] T. H. Liu, Y. C. Lee and Y. H. Chang. Adaptive controller design for a linear motor control system. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(2):601-616.
    [49]陈渊睿,吴捷, N. C. Cheung.永磁直线同步电机的模型参考自适应控制.华南理工大学学报(自然科学版), 2003, 31(6):31-35.
    [50] L. Xu and B. Yao. Adaptive robust precision motion control of linear motors with negligible electrical dynamics: theory and experiments. IEEE/ASME Transactions on Mechatronics, 2001, 6(4): 444-452.
    [51] Tian Yanfeng, Guo Qingding. Adaptive control appliance in the gantry-moving type milling machining center. Electrical Machines and Systems 2003, Beijing, P.R.China. 484-486.
    [52]赵希梅,郭庆鼎.提高轮廓加工精度的零相位自适应鲁棒交叉耦合控制.电工技术学报,2007,22 (12): 170-174.
    [53]张昌凡,何静.滑模变结构的智能控制理论与应用研究.北京:科学出版社, 2005.
    [54] Junyou Yang, Ruijuan Chen, Naiguang Fa. A New Recurrent Fuzzy Neural Network Sliding Mode Position Controller Based on Vector Control of PMLSM Using SVM. CES/IEEE 5th International Power Electronics and Motion Control Conference (IPEMC 2006), 2006:1-5.
    [55] Ebrahimirad, H., Vaez-Zadeh, S., and Jalili-Kharaajoo, M. Robust sliding mode control applied to speed control of PM synchronous motors. IEEE SCS2003, Iasi,. Romania, July, 2003: 317-320.
    [56] Lin Faajeng, Shen Pohung. Robust Fuzzy Neural Network Sliding-Mode Control for Two-Axis Motion Control System. IEEE Transactions on Industrial Electronics, 2006,.53(4) :1209-1225.
    [57]孙宜标.基于滑动模态的永磁直线同步电动机鲁棒速度控制.沈阳工业大学博士学位论文.2007.
    [58] Lu Y S, Chen J S. Design of a global sliding-mode controller for a motor driver with bounded control. International Journal of Control,1995,62(5):1001-1019.
    [59] Chen Yuanrui, Wu Jie. A Gene Optimized H∞Controller for Permanent Magnet Linear Synchronous Motors. International Symposium on Instrumentation Science and Technology vol.3; 20040818-22; Xi'an(CN) Instrumentation Science and Technology, 2004(3) : 808-812.
    [60]徐月同,傅建中,陈子辰.永磁直线同步电机进给系统H∞控制策略的研究.浙江大学学报(工学版), 2005, 39(6):789-794.
    [61] Loría Antonio, Laboratoire de Signaux et al. Robust linear control of (chaotic) permanent-magnet synchronous motors with uncertainties. IEEE Transactions on Circuits and Systems, 2009,56( 9): 2109-2122.
    [62] Yousfi Safia, Djennoune Said, Bettayeb Maamar. Comparison of linear and nonlinear H∞control for a permanent magnet synchronous motor.2008 5th International Multi-Conference on Systems, Signals and Devices, SSD'08, 2008.
    [63] F.J. Lin, T.S. Lee and C.H. Lin. Robust H∞controller design with recurrent neural network for linear synchronous motor drive. IEEE Transactions on Industrial Electronics, 2003, 50(3): 456-470
    [64]郭庆鼎,孙艳娜.直线永磁同步伺服电动机的H∞鲁棒自适应控制.电工技术学报, 2000, 15(4):1-4.
    [65]郭庆鼎,孙艳娜.基于内模原理的直线永磁同步伺服电机H∞控制.控制理论与应用, 2000, 17(4):509-512,518.
    [66]蓝益鹏,郭庆鼎,孙宜标.永磁直线伺服系统的速度H∞控制器优化设计.电工技术学报, 2004, 19(5):76-80,86.
    [67]傅建国,郭庆鼎,唐光谱.永磁直线同步伺服电机位置控制器H∞鲁棒性能设计.电工技术学报, 2001, 16(3):16-19,6.
    [68] F.J. Lin and P.H. Shen. Adaptive fuzzy-neural-network control for a DSP-based permanent magnet linear synchronous motor servo drive. Proceedings of the 2004 IEEE Conference on Robotics, Automation and Mechatronics, Singapore, 2004: 601-606.
    [69] Jihao Zou, Shanan Zhu. Fuzzy logic direct force control of surface permanent magnet linear synchronous motors without speed sensors. 5th World Congress on Intelligent Control and Automation (WCICA'04). Hangzhou China Volume 5 2004:4491-4495.
    [70] Lv Gang, Fan Yu. A hybrid nonlinear autoregressive neural network for permanent-magnet linear synchronous motor identification.ICEMS 2005: Proceedings of the Eighth International Conference on Electrical Machines and Systems, v 1: 310-314.
    [71] Yousefi Hassan, Hirvonen Markus,Handroos Heikki and Soleymani Azita. Application of neural network in suppressing mechanical vibration of a permanent magnet linear motor.Source: Control Engineering Practice, 2008,16( 7): 787-797.
    [72] F.J. Lin, P.H. Shen and Y.S. Kung. Adaptive wavelet neural network control for linear synchronous motor servo drive. IEEE Transactions on Magnetics, 2005, 41(12): 4401-4412.
    [73] F.J. Lin and P.H. Shen. A linear synchronous motor drive using robust fuzzy neural network control. Proceedings of the 5th World Congress on Intelligent Control and Automation, Hangzhou. P.R. China, 2004. 4386-4390.
    [74]吕刚,焦留成.多模自适应模糊控制器及其在精密伺服系统中的应用.控制理论与应用, 2005, 22(1):47-51.
    [75]肖曙红,夏红梅,张伯霖.基于模糊推理自校正控制的直接驱动进给系统稳定性分析.组合机床与自动化加工技术, 2003, (8):47-48,51.
    [76]郭庆鼎,迟林春,王成元,等.基于神经网络给定补偿的永磁同步直线伺服系统H∞控制.控制与决策,2000,15(1):75-78.
    [77]杨开明,叶佩青,游华云等.直线电机精密工作台扰动观测器设计.机械科学与技术, 2005, 24(12):1430-1432.
    [78]赵虎,李睿.精密永磁直线电机的自适应滑模控制.吉林大学学报(信息科学版), 2004, 22(4):318-322.
    [79]朱国昕,郭庆鼎.永磁直线伺服系统H∞鲁棒控制的综合与分析.电机与控制学报,2006, 10(1):1-3.
    [80]翁秀华,郭庆鼎,刘德君.基于模糊自适应PID的双直线电机同步驱动系统控制.组合机床与自动化加工技术, 2004, (9):28-29.
    [81]王英,熊振华,丁汉.直线电机运动控制中的干扰观测器的研究.中国机械工程, 2004, 15(17): 1549-1552.
    [82]富强,尔联洁,赵国荣.基于定量反馈理论的飞行仿真转台鲁棒控制,北京航空航天大学学报,2004,30(5):410-413.
    [83] Sedigh A. Khaki, Namaki-Shoushtari O,Araabi B.N.Optimal design of robust adaptive controllers: A QFT-EEAS based approach using random optimization techniques. Proceedings of the 5th International Conference on Control and Automation, ICCA'05, 2005, 617-621.
    [84] Karpenko Mark, Sepehri Nariman. QFT design of a PI controller with dynamic pressure feedback for positioning a pneumatic actuator. Proceedings of the American Control Conference, 2004, 6: 5084-5089.
    [85] Kerr Murray L, Jayasuriya Suhada, Asokanthan Samuel F.QFT based robust control of a single-link flexible manipulator. JVC/Journal of Vibration and Control, 2007, 13(1): 3-27.
    [86] Narimani Mehdi, Sheikholeslam Farid. Design of QFT robust controller for fuzzy systems. Canadian Conference on Electrical and Computer Engineering, 2004,4:1857-1860.
    [87] Taghirad H.D, Rahimi H.Composite QFT controller design for flexible joint robots. Proceedings of the IEEE International Conference on Control Applications, 2005:583-588.
    [88] Zapateiro Mauricio, Luo Ningsu ,Karimi Hamid Reza. QFT control for vibration reduction in structures equipped with MR dampers. Proceedings of the American Control Conference, 2008: 5142-5144.
    [89] Cervera Joaquín, Baos Alfonso. Automatic loop shaping in QFT using CRONE structures. JVC/Journal of Vibration and Control, 2008, 14(9-10):1513-1529.
    [90] Nataraj P.S.V, Kubal Nandkishor. Adaptive QFT control using hybrid global optimization and constraint propagation techniques. Proceedings of the IEEE Conference on Decision and Control, 2008:1001-1005.
    [91] Rasmussen S J, Houpis C H. Development, imp lamentation and flight test of aM IMO digital flight control system for an un-manned research vehicle designed using quantitative feedback theory. In t J of Robust and N onlinear Con trol, 1997, 7 (6): 629-642.
    [92] Keating M S, Pachter M, Houpis C H. Fault tolerant flight control system: QFT design. In t J of Robust and N onlinea r Control, 1997, 7 (6): 551-559.
    [93] Phill IPS S N, Pachter M. A QFT Subsonic envelope flight control system design. Proc of the IEEE 1995 on N a tiona l Aerospace and E lectronics Conference. Dayton, OH: IEEE Press, 1995: 537-544.
    [94] Phill IPS S N, Pachterm, Houpis C H, Rasmussen S J. A QFT subsonic envelope flight control system design. Int J of Robust and N onlinear Control, 1997, 7 (6): 581-591.
    [95] Pachter M, Houpis C H, Torosen PW. Design of an air-to-air automatic refueling flight control system using quantitative feedback theory. In t J of Robust and N on linear Control, 1997, 7 (6): 561-580.
    [96]申铁龙.机器人鲁棒控制基础.北京:清华大学出版社,2000.
    [97]解学书,钟宜生. H∞控制理论.北京:清华大学出版社,1994.
    [98] Bevrani Hassan, Hiyama Takashi. Robust design of power system stabilizer: An LMI approach. Proceedings of the IASTED International Conference on Energy and Power Systems, 2006:70-75. [99 ] Kashima Kenji, Yamamoto Yutaka. On standard H∞control problems for systems with infinitely many unstable poles. Systems and Control Letters. 2008, 57(4): 309-314.
    [100] El-Shahat I.A.H∞-optimal control with differential games for optimal decentralised control. Advances in Modelling and Analysis C. 2006, 61( 1-2): 33-41.
    [101] Scorletti G, Fromion V. Further results on the design of robust H∞feedforward controllers and filters. Proceedings of the IEEE Conference on Decision and Control. 2006: 3560-3565.
    [102] Reyss Olivier, Duc Gilles, Pognant-Gros Philippe, Sandou Guillaume. Robust torque tracking control for E-IVT hybrid powertrain. IFAC Proceedings Volumes (IFAC-PapersOnline). 2008, 17(1).
    [103] F.J. Lin, C.H. Lin and P.H. Shen. Variable-structure control for a linear synchronous motor using a recurrent fuzzy neural network. IEE Proc. Control Theory Appl. 2004, 151(4): 395-406.
    [104] M. J. Kharaajoo and R. Fazaie. Discrete-time sliding mode control of permanent magnet linear synchronous motor in high-performance motion with large parameter uncertainty. SICE Annual Conference in Fukui, Japan, 2003. 3127-3130.
    [105] S.H. Ryu and J. Hyon Park. Auto-tuning of sliding mode control parameters using fuzzy logic. Proceedings of the American Control Conference Arlington, VA, 2001. 618-623.
    [106] W.J. Cao and J.X. Xu. Nonlinear integral-type sliding surface for both matched and unmatched uncertain systems. IEEE Transactions on Automatic Control. 2004, 49(8): 1355-1360.
    [107] A.Kawamura, H.Itoh and K.Sakamoto. Chattering reduction of disturbance observer based sliding mode control. IEEE Transactions on Industry Applications, 30(2): 490- 495.
    [108] Y.K. Tan and S.K. Panda. Iterative learning based sliding-mode position controller for linear permanent magnet brushless DC servo motors. The 30th Annual Conference of the IEEE Industrial Electronics Society, Busan, Korea, 2004. 2864-2869.
    [109] F. Betin, D. Pinchon, and G.A. Capolino. A Time-varying sliding surface for robust position control of a DC motor drive. IEEE Transactions on Industrial Electronics, 2002, 49(2): 462- 473.
    [110] Yu-Feng Li and Jan Wikander. Model reference discrete-time sliding mode control of linear motor precision servo systems. Mechatronics, 2004, 14(7):835-851.
    [111] Mohamed H.A.F. Yang Soo Siang, Moghavvemi Mahmoud. Integral sliding mode control for improved robustness and accuracy of induction motors. IFAC Proceedings Volumes (IFAC-PapersOnline), 2008,17,(1).
    [112] K.Y. Zhuang H.Y. Su, J. Chu et al. Globally stable robust tracking of uncertain systems via fuzzy integral sliding mode control. Proceedings of the 3rd World Congress on Intelligent Control and Automation. Hefei, P.R. China, 2000. 1827-1831.
    [113] P.H. Shen and F.J. Lin. Intelligent backstepping sliding-mode control using RBFN for two-axis motion control system. IEE Proc.Electr. Power Appl. 2005, 152(5):1321-1342.
    [114] F. Castanos and L. Fridman. Robust design criteria for integral sliding surfaces. Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference, Seville, Spain, 2005. 1976-1981.
    [115] Y.K. Tan and S.K. Panda. Sliding-mode position controller for linear permanent magnet brushless DC servo motors. The 5th International Conference on Power Electronics and Drive Systems, Singapore, 2003. 1653-1658.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700