用户名: 密码: 验证码:
L-羟脯氨酸衍生物类神经氨酸酶抑制剂的设计、合成与初步活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的意义神经氨酸酶(Neuraminidase, NA)是甲型和乙型流感病毒侵染、复制、成熟和释放等过程中的关键酶,其作用至关重要。与血凝素(Hemagglutinin,HA)和基质蛋白M2相比,神经氨酸酶具有成为药物靶点的独特优势,其活性位点与唾液酸的结合口袋比血凝素的更深。通过设计高亲和力的小分子化合物,模拟其催化反应的过渡态,即可以实现对神经氨酸酶的强力抑制,而这种小分子的化合物在后期药物开发中更具吸引力。另外,因其活性位点在甲、乙型流感病毒中均高度保守,设计研发神经氨酸酶抑制剂类药物可以同时治疗甲、乙型流感。这都使得神经氨酸酶成为抗流感病毒药物研究中的理想靶点。
     1999年,FDA先后批准两个神经氨酸酶抑制剂(zanamivir和oseltamivir)用于流感的预防和治疗。Zanamivir由于口服生物利用度低,需要吸入给药,给儿童和老人用药造成很大的不便;oseltamivir口服给药,但因产能有限,其用药成本一直居高不下。且两者均已对部分病毒株产生耐药甚至交叉耐药。因此,研究高效、低毒的新型神经氨酸酶抑制剂是当前抗流感病毒药物研发的重要方向,具有重大的临床意义和广阔的市场前景。
     本研究以神经氨酸酶为靶点,通过分析底物或抑制剂与酶活性位点的相互作用,借助计算机技术,运用基于结构药物设计方法,结合“类肽”策略对前期合成的化合物进行优化并设计新结构骨架的化合物,经体外初步活性筛选,以期发现具有较好神经氨酸酶抑制活性的先导化合物。
     研究方法基于前期合成的小分子类肽吡咯烷类化合物具有一定程度的神经氨酸酶抑制活性,在对其进行构效关系研究的基础上,进行分子结构优化:①吡咯环氮原子上的侧链用更多类型的氨基酸及其类似物取代,构建类肽结构:②将侧链上结构不稳定的N-叔丁氧羰基替换为N-酰基,尤其是大多数神经氨酸酶抑制剂中都存在的N-乙酰基;③保留活性测试表现较好的C-2位羧基和C-4位S-氨基,设计了一系列新型的N-酰基吡咯烷类化合物。
     分析已上市的oseltamivir与神经氨酸酶活性位点的相互作用模式,结合课题组前期实验基础,发现了具有良好研究前景的硫杂螺环骨架。通过对L-羟脯氨酸进行合理修饰:①C-4位衍生为疏水性的硫杂螺环;②在吡咯环仲胺氮原子上引入多种类型的氨基酸及其类似物,构建类肽结构,期望氨基能与酶活性位点的负电中心发生相互作用;③C-2位衍生为甲酯、羧基、羟肟酸、酰肼等基团,期望能与酶活性位点的正电中心发生静电相互作用,设计了一系列新型的硫杂螺环类化合物。
     两个系列目标化合物的合成均以L-羟脯氨酸作为起始原料,该原料经济易得,实验过程中所涉及的路线科学合理,得到的两个系列64个新型吡咯烷及硫杂螺环类化合物,其结构经过核磁共振氢谱、高分辨质谱和红外光谱确证,均未见国内外报道。
     本研究使用商品化的神经氨酸酶抑制剂筛选试剂盒,以有荧光特性的化合物为酶促反应底物,建立了适合筛选小分子神经氨酸酶抑制剂的荧光分析法,对所合成的目标化合物进行了初步的体外活性筛选。
     研究结果体外抑酶活性试验显示,所合成的化合物对神经氨酸酶均具有一定程度的抑制活性。第一系列的吡咯烷类化合物表现出较好的活性,第二系列的硫杂螺环类化合物活性相对较差。其中,第一系列的化合物G10g、G101、G10m、第二系列的化合物M12f、M14f、M16f可以继续进行结构修饰和优化。
     以所合成的化合物为对象,利用Tripos/SYBYL软件包对其进行了构效关系研究。通过分子对接,探讨了两个系列化合物与神经氨酸酶活性区域的作用模式;采用比较分子力场分析(CoMFA)方法构建了硫杂螺环类化合物的定量构效关系(QSAR)模型,结合模型给出的等势线图对其构效关系进行了探讨。所构建的CoMFA模型具有较好的交叉验证系数和一定的预测能力。
     研究结论本研究以神经氨酸酶为靶点,在前期工作的基础上,设计、合成了两个系列具有全新结构的小分子类肽目标化合物,原料经济易得,技术路线合理可行。经体外抑酶活性筛选,发现了具有进一步研究价值的先导化合物。探讨了抑制剂分子与酶的作用位点及可能的作用模式,并建立了具有一定预测能力的CoMFA模型,对化合物的进一步结构改造具有指导意义,对神经氨酸酶抑制剂类抗流感病毒药物的研究进行了有益的探索。
Objectives Neuraminidase (NA, EC 3.2.1.18) is one of two major surface glycoproteins on both type A and B influenza viruses and is essential for viral replication and infection in vitro. NA promotes virus entry into host cells during the initial stage and facilitates the release of the newly formed virions from the infected cells at the final stage of viral replication. The high conservation (up to 75%sequence variation) around the enzyme active site in influenza A and B viruses makes NA an attractive target on the rationale of structure-based drug design (SBDD) for the development of antiviral agents. Inhibition of NA by complexation with the active site could lead to potent molecules for having a broad-spectrum activity against various flu strains.
     Recently, several potent and specific NA inhibitors have been developed, among which zanamivir and oseltamivir phosphate have been approved for the treatment and even prophylaxis of human influenza virus infection. Zanamivir has low bioavailability and requires topical administration using disk inhaler technology, which can cause problems in patients with underlying respiratory disease. In contrast, oseltamivir phosphate is administered as capsules with good compliance and has very high bioavailability and long half-life. However, on the account of the emergence of drug-resistant variants and some undesirable side effects, and the high cost for clinical use, it is very necessary and urgent to develop novel NA inhibitors with different scaffolds than zanamivir and oseltamivir phosphate.
     Basd on the detailed understanding of the molecular interactions involved in the binding of substrate or various inhibitors to the NA active site, we optimized compounds previous synthesized and designed another series with novel scaffold, with the strategy of structure-based drug design, and "peptidomimetics". After the preliminary enzyme inhibition assay in vitro, it is expected to find promising lead with novel scaffold which possess potential NA inhibitory activity.
     Methods In our previous study, a series of Boc-amino acid-containing pyrrolidine derivatives with potent NA inhibitory activities in vitro was described. The structure-activity relationship (SAR) information for the variation of substituents on the pyrrolidine ring was also related with anti-influenza activity. These preliminary results can provide some guidelines for further lead modification and optimization of these pyrrolidine-based NA inhibitors.
     In order to improve the bioactivity and explore the SAR of exocyclic side chain, some novel pyrrolidine derivatives were designed by following these strategies:(ⅰ) more natural amino acids and their analogues were introduced to the nitrogen atom of the pyrrolidine ring, (ⅱ) N-Boc-protecting group was replaced by different N-acyl groups, especially acetyl group, which almost exists in all potent NA inhibitors, (ⅲ) the functional essential carboxyl group in position 2 and amino group in position 4 were still maintained.
     According to analyze the interaction of oseltamivir and the NA active site, combined to the former experimental basis, we found that 1,4-dithia-7-azaspiro[4.4] nonane maybe a promising scaffold for developing new type NA inhibitors. In order to improve its affinity, we optimized the structure of 1,4-dithia-7-azaspiro[4.4] nonane based on L-hydroxyproline with the following chemical modifications:(ⅰ) the hydroxy group was transformed to thioketone to construct the 1,4-dithia-7-azaspiro [4.4]nonane scaffold, (ⅱ) various natural amino acids or their analogues were introduced to the nitrogen atom of the pyrrolidine ring, (ⅲ) the carboxyl group was kept or converted to other derivatives such as methyl ester, hydroxymate or hydrazine.
     Using commercial available L-hydroxyproline as starting material, we synthesized two series of L-hydroxyproline derivatives. The structures of target compounds were identified by ~1H-NMR, HR-MS and IR spectra.
     Preliminary evaluation of the target compounds was determined by the commercial NA inhibitory screening kit. This fluorescence method is suitable for the high-throughput screening of NA inhibitors in vitro.
     Results The NA inhibition assay showed that the activity of pyrrolidine derivatives was improved by comparing with the previous compounds, but not better than the positive control, oseltamivir. The 1,4-dithia-7-azaspiro[4.4]nonane derivatives had relatively weaker activity than pyrrolidines, but there is still large space for this series to improve its potency.
     With the aid of Tripos/SYBYL package, we also studied the structure-activity relationship of the target compounds. The interaction model of the pyrrolidine derivatives with the NA active site were discussed by using molecular docking approach. The quantitive structure-activity relationship (QSAR) model of 1,4-dithia-7-azaspiro[4.4]nonane derivatives were construtcted by means of the comparative molecular field analysis (CoMFA) method. The CoMFA model had good cross-validated coefficient (q2) and predictive potency. The contour map (steric and electrostatic) derived from the CoMFA model could give some guidelines for further structral modifications.
     Conclusions In summary, we have described the synthesis and properties of two series of pyrrolidine and 1,4-dithia-7-azaspiro[4.4]nonane derivatives with novel chemical structures as influenza NA inhibitors. Some of the target compounds were shown to possess potent influenza NA inhibitory activity. These feasible schemes were more convenient and economical for the synthesis of potential NA inhibitors. We also established a consistent QSAR model which was critical to predictive structure-based drug design and discovering potent compounds that would potentially be useful for antiviral therapy.
引文
[1]Taubenberger, J. K.; Morens, D. M. The Pathology of Influenza Virus Infections. Annual Review of Pathology:Mechanisms of Disease,2008,5(1):499-522.
    [2]Peiris, J. S. M.; de Jong, M. D.; Guan, Y. Avian Influenza Virus (H5N1):a Threat to Human Health. Clin. Microbiol. Rev.,2007,20(2):243-267.
    [3]Neumann, G.; Noda, T.; Kawaoka, Y. Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature,2009,459(7249):931-939.
    [4]Webster, R.; Bean, W.; Gorman, O.; Chambers, T.; Kawaoka, Y. Evolution and ecology of influenza A viruses. Microbiology and Molecular Biology Reviews,1992,56(1):152-179.
    [5]Gong, J.; Fang, H.; Li, M.; Liu, Y.; Yang, K.; Xu, W. Potential Targets and Their Relevant Inhibitors in Anti-influenza Fields. Current Medicinal Chemistry,2009,76(28):3716-3739.
    [6]Gong, J.; Xu, W.; Zhang, J. Structure and functions of influenza virus neuraminidase. Current Medicinal Chemistry,2007,74(1):113-122.
    [7]Varghese, J. N.; Laver, W. G.; Colman, P. M. Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 A resolution. Nature,1983,505(5912):35-40.
    [8]Varghese, J. N.; Colman, P. M. Three-dimensional structure of the neuraminidase of influenza virus A/Tokyo/3/67 at 2i¤ 2 resolution. Journal of Molecular Biology,1991,227(2):473-486.
    [9]Burmeister, W. P.; Ruigrok, R. W.; Cusack, S. The 2.2 A resolution crystal structure of influenza B neuraminidase and its complex with sialic acid. The EMBO Journal,1992,77(1): 49-56.
    [10]Varghese, J. N.; McKimm-Breschkin, J. L.; Caldwell, J. B.; Kortt, A. A.; Colman, P. M. The structure of the complex between influenza virus neuraminidase and sialic acid, the viral receptor. Proteins:Structure, Function, and Bioinformatics,1992,14(3):327-332.
    [11]Bossart-Whitaker, P.; Carson, M.; Babu, Y. S.; Smith, C. D.; Laver, W. G.; Air, G. M. Three-dimensional Structure of Influenza A N9 Neuraminidase and Its Complex with the Inhibitor 2-Deoxy 2,3-Dehydro-N-Acetyl Neuraminic Acid. Journal of Molecular Biology, 1993,252(4):1069-1083.
    [12]Janakiraman, M. N.; White, C. L.; Laver, W. G.; Air, G. M.; Luo, M. Structure of Influenza Virus Neuraminidase B/Lee/40 Complexed with Sialic Acid and a Dehydro Analog at 1.8-.ANG Resolution:Implications for the Catalytic Mechanism. Biochemistry,1994,55(27): 8172-8179.
    [13]Varghese, J. N.; Chandana Epa, V.; Colman, P. M. Three-dimensional structure of the complex of 4-guanidino-Neu5Ac2en and influenza virus neuraminidase. Protein Science,1995,4(6): 1081-1087.
    [14]Smith, B. J.; McKimm-Breshkin, J. L.; McDonald, M.; Fernley, R. T.; Varghese, J. N.; Colman, P. M. Structural Studies of the Resistance of Influenza Virus Neuramindase to Inhibitors. Journal of Medicinal Chemistry,2002,45(11):2207-2212.
    [15]Colman, P. M.; Varghese, J. N.; Laver, W. G. Structure of the catalytic and antigenic sites in influenza virus neuraminidase. Nature,1983,505(5912):41-44.
    [16]Calfee, D.; Hayden, F. New approaches to influenza chemotherapy:neuraminidase inhibitors. Drugs,1998,56(4):537-553.
    [17]Blix, G. Uber die Kohlenhydratgruppen des Submaxillarismucins. Hoppe-Seyler's 2. Physiol. Chem,1936,240(1-2):43-54.
    [18]Blix, G.; Lindberg, E.; Odin, L.; Werner, I. Studies on sialic acids. Acta Societatis Medicorum Upsaliensis,1956,67(1-2):1-25.
    [19]Jochims, J.; Taigel, G.; Seeliger, A.; Lutz, P.; Driesen, H. Stereospecific long-range couplings of hydroxyl protons of pyranoses. Tetrahedron Letters,1967,8(44):4363-4369.
    [20]Lutz, P.; Lochinger, W.; Taigel, G. On the conformation of the N-acetyl neuraminic acids. Chemische Berichte,1968,707(3):1089-1094.
    [21]Kemp, R. The effect of neuraminidase (3:2:1:18) on the aggregation of cells dissociated from embryonic chick muscle tissue. Journal of Cell Science,1970,6(3):751-766.
    [22]Ahmad, F.; McPhie, P. The intrinsic viscosity of glycoproteins. The International journal of biochemistry,1980,77(2):91-96.
    [23]Brown, D.; Michael, A. Effect of Neuraminidase on the Accumulation of Alpha-Aminoisobutyric Acid in HeLa Cells. Experimental Biology and Medicine,1969, 131(2):568-570.
    [24]Schauer, R.; Shukla, A. K.; Schroder, C.; Muller, E. The anti-recognition function of sialic acids:Studies with erythrocytes and macrophages. Pure Appl. Chem.,1984,5(5(7):907-921.
    [25]Jancik, J.; Schauer, R.; Streicher, H. Influence of membrane-bound N-acetylneuraminic acid on the survival of erythrocytes in man. Hoppe Seylers Z Physiol Chem,1975,556(8): 1329-1331.
    [26]Choppin, P.; Scheid, A. The role of viral glycoproteins in adsorption, penetration, and pathogenicity of viruses. Reviews of Infectious Diseases,1980,2(1):40-61.
    [27]Paulson, J. C.; Rogers, G. N.; Carroll, S. M.; Higa, H. H.; Pritchett, T.; Milks, G.; Sabesan, S. Selection of influenza virus variants based on sialyloiigosaccharide receptor specificity. Pure Appl. Chem.,1984,56(7):797-805.
    [28]Jacobs, C.; Goon, S.; Yarema, K.; Hinderiich, S.; Hang, H.; Chai, D.; Bertozzi, C. Substrate Specificity of the Sialic Acid Biosynthetic Pathway. Biochemistry,2001,40(43): 12864-12874.
    [29]Meindl, P.; Tuppy, H.2-deoxy-2,3-dehydrosialic acids. II. Competitive inhibition of Vibrio cholerae neuraminidase by 2-deoxy-2,3-dehydro-N-acylneuraminic acids. Hoppe Seylers Z Physiol Chem,1969,550(9):1088-1092.
    [30]Meindl, P.; Bodo, G.; Lindner, J.; Palese, P. Einfluss von 2-Desoxy-2, 3-dehydro-N-acetylneuramins ure auf Myxovirus-Neuraminidasen und die Replikation von Influenza-und Newcastle Disease Virus. ZNaturforsch B,1971,26(8):792-797.
    [31]Stoll, V.; Stewart, K.; Maring, C.; Muchmore, S.; Giranda, V.; Yu-gui, Y.; Wang, G.; Chen, Y.; Sun, M.; Zhao, C. Influenza neuraminidase inhibitors:structure-based design of a novel inhibitor series. Biochemistry,2003,42(3):718-727.
    [32]Bamford, M. J. Neuraminidase inhibitors as potential anti-influenza drugs. Journal of Enzyme Inhibition and Medicinal Chemistry,1995,70(1):1-16.
    [33]Weiwer, M.; Chen, C. C.; Kemp, M. M.; Linhardt, R. J. Synthesis and Biological Evaluation of Non-Hydrolyzable 1,2,3-Triazole-Linked Sialic Acid Derivatives as Neuraminidase Inhibitors. European Journal of Organic Chemistry,2009,2009(16):2611-2620.
    [34]Chan, T.-H.; Xin, Y.-C.; von Itzstein, M. Synthesis of Phosphonic Acid Analogues of Sialic Acids (Neu5Ac and KDN) as Potential Sialidase Inhibitors. Journal of Organic Chemistry, 1997,62(11):3500-3504.
    [35]Hagiwara, T.; Kijima-Suda, I.; Ido, T.; Ohrui, H.; Tomita, K. Inhibition of bacterial and viral sialidases by 3-fluoro-N-acetylneuraminic acid. Carbohydrate Research,1994,265(1): 167-172.
    [36]Tiralongo, J.; Pegg, M.; von Itzstein, M. Effect of substrate aglycon on enzyme mechanism in the reaction of sialidase from influenza virus. FEBS letters,1995,572(2-3):148-150.
    [37]Palese, P.; Schulman, J.; Bodo, G.; Meindl, P. Inhibition of influenza and parainfluenza virus replication in tissue culture by 2-deoxy-2,3-dehydro-N-trifluoroacetylneuraminic acid (FANA). Virology,1974,59(2):490-498.
    [38]Schulman, J.; Palese, P. Susceptibility of different strains of influenza A virus to the inhibitory effects of 2-deoxy-2,3-dehydro-n-trifluoracetylneuraminic acid (FANA). Virology,1975, 63(1):98-104.
    [39]Freund, B.; Gravenstein, S.; Elliott, M.; Miller, I. Zanamivir:a review of clinical safety. Drug Safety,1999,21(4):267-281.
    [40]Cheer, S.; Wagstaff, A. Zanamivir:an update of its use in influenza. Drugs,2002,62(1): 71-106.
    [41]Dunn, C.; Goa, K. Zanamivir:a review of its use in influenza. Drugs,1999,58(4):761-784.
    [42]Waghorn, S.; Goa, K. Zanamivir. Drugs,1998,55(5):721-725.
    [43]von Itzstein, M.; Wu, W. Y.; Kok, G. B.; Pegg, M. S.; Dyason, J. C.; Jin, B.; Phan, T. V.; Smythe, M. L.; White, H. F.; Oliver, S. W.; Colman, P. M.; Varghese, J. N.; Ryan, D. M.; Woods, J. M.; Bethell, R. C.; Hotham, V. J.; Cameron, J. M.; Penn, C. R. Rational Design of Potent Sialidasse-Based Inhibitors of Influenza-Virus Replication. Nature,1993,365(6428): 418-423.
    [44]Fenton, R.; Owens, I.; Morley, P. Chemoprophylaxis of influenza A infections in mice and ferrets with neuraminidase inhibitors, exemplified by zanamivir (GC167). Antiviral Research, 1998,37(3):72-72.
    [45]Cass, L.; Gunawardena, K.; Macmahon, M.; Bye, A. Pulmonary function and airway responsiveness in mild to moderate asthmatics given repeated inhaled doses of zanamivir. Respiratory medicine,2000,94(2):166-173.
    [46]Murphy, K.; Eivindson, A.; Pauksens, K.; Stein, W.; Tellier, G.; Watts, R.; Leophonte, P.; Sharp, S.; Loeschel, E. Efficacy and safety of inhaled zanamivir for the treatment of influenza in patients with asthma or chronic obstructive pulmonary disease:a double-blind, randomised, placebo-controlled, multicentre study. Clinical Drug Investigation,2000,20(5):337-349.
    [47]Chandler, M.; Bamford, M.; Conroy, R.; Lamont, B.; Patel, B.; Patel, V.; Steeples, I.; Storer, R.; Weir, N.; Wright, M. Synthesis of the potent influenza neuraminidase inhibitor 4-guanidino Neu5Ac2en. X-Ray molecular structure of 5-acetamido-4-amino-2,6-anhydro-3, 4,5-trideoxy-D-erythro-L-gluco-nononic acid. Journal of the Chemical Society, Perkin Transactions 1,1995,1995(9):1173-1180.
    [48]Bamford, M.; Pichel, J.; Husman, W.; Patel, B.; Storer, R.; Weir, N. Synthesis of 6-,7-and 8-carbon sugar analogues of potent anti-influenza 2,3-didehydro-2, 3-dideoxy-N-acetylneuraminic acid derivatives. Journal of the Chemical Society, Perkin Transactions 1,1995,1995(9):1181-1187.
    [49]Chandler, M.; Conroy, R.; Cooper, A.; Lamont, R.; Scicinski, J.; Smart, J.; Storer, R.; Weir, N.; Wilson, R.; Wyatt, P. Approaches to carbocyclic analogues of the potent neuraminidase inhibitor 4-guanidino-Neu5Ac2en. X-Ray molecular structure of N-[(1S,2S, 6R)-2-azido-6-benzyloxymethyl-4-formylcyclohex-3-enyl] acetamide. Journal of the Chemical Society, Perkin Transactions 1,1995,1995(9):1189-1197.
    [50]Howes, P.; Smith, P. Sialidase inhibitors related to GG167:Synthesis of analogues via an inverse demand hetero Diels Alder reaction. Tetrahedron Letters,1996,37(36):6595-6598.
    [51]Smith, P.; Sollis, S.; Howes, P.; Cherry, P.; Starkey, I.; Cobley, K.; Weston, H.; Scicinski, J.; Merritt, A.; Whittington, A. Dihydropyrancarboxamides Related to Zanamivir:A New Series of Inhibitors of Influenza Virus Sialidases. I. Discovery, Synthesis, Biological Activity, and Structure-Activity Relationships of 4-Guanidino-and 4-Amino-4H-pyran-6-carboxamides. Journal of Medicinal Chemistry,1998,41(6):787-797.
    [52]Taylor, N. R.; Cleasby, A.; Singh, O.; Skarzynski, T.; Wonacott, A. J.; Smith, P. W.; Sollis, S.
    L.; Howes, P. D.; Cherry, P. C; Bethell, R.; Colman, P.; Varghese, J. Dihydropyrancarboxamides Related to Zanamivir:A New Series of Inhibitors of Influenza Virus Sialidases 2. Crystallographic and Molecular Modeling Study of Complexes of 4-Amino-4H-pyran-6-carboxamides and Sialidase from Influenza Virus Types A and B. Journal of Medicinal Chemistry,1998,47(6):798-807.
    [53]Smith, P. W.; Robinson, J. E.; Evans, D. N.; Sollis, S. L.; Howes, P. D.; Trivedi, N.; Bethell, R. C. Sialidase inhibitors related to zanamivir:Synthesis and biological evaluation of 4H-pyran 6-ether and ketone. Bioorganic& Medicinal Chemistry Letters,1999,9(4):601-604.
    [54]Wyatt, P.; Coomber, B.; Evans, D.; Jack, T.; Fulton, H.; Wonacott, A.; Colman, P.; Varghese, J. Sialidase inhibitors related to zanamivir. Further SAR studies of 4-amino-4H-pyran-2-carboxylic acid-6-propylamides. Bioorganic& Medicinal Chemistry Letters,2001,77(5):669-673.
    [55]Taylor, N. R.; von Itzstein, M. Molecular Modeling Studies on Ligand Binding to Sialidase from Influenza Virus and the Mechanism of Catalysis. Journal of Medicinal Chemistry,1994, 57(5):616-624.
    [56]Andrews, D.; Cherry, P.; Humber, D.; Jones, P.; Keeling, S.; Martin, P.; Shaw, C; Swanson, S. Synthesis and influenza virus sialidase inhibitory activity of analogues of 4-guanidino-Neu5Ac2en (zanamivir) modified in the glycerol side-chain. European Journal of Medicinal Chemistry,1999,54(7-8):563-574.
    [57]Honda, T.; Masuda, T.; Yoshida, S.; Arai, M.; Kobayashi, Y.; Yamashita, M. Synthesis and anti-influenza virus activity of 4-guanidino-7-substituted Neu5Ac2en derivatives. Bioorganic & Medicinal Chemistry Letters,2002,12(15):1921-1924.
    [58]Honda, T.; Masuda, T.; Yoshida, S.; Arai, M.; Kaneko, S.; Yamashita, M. Synthesis and anti-influenza virus activity of 7-O-alkylated derivatives related to zanamivir. Bioorganic& Medicinal Chemistry Letters,2002,72(15):1925-1928.
    [59]Masuda, T.; Shibuya, S.; Arai, M.; Yoshida, S.; Tomozawa, T.; Ohno, A.; Yamashita, M.; Honda, T. Synthesis and anti-influenza evaluation of orally active bicyclic ether derivatives related to zanamivir. Bioorganic& Medicinal Chemistry Letters,2003,75(4):669-673.
    [60]Ikeda, K.; Kimura, F.; Sano, K.; Suzuki, Y; Achiwa, K. Chemoenzymatic synthesis of an N-acetylneuraminic acid analogue having a carbamoylmethyl group at C-4 as an inhibitor of sialidase from influenza virus. Carbohydrate Research,1998,572(4):183-189.
    [61]Ikeda*, K.; Sano, K.; Ito, M.; Saito, M.; Hidari, K.; Suzuki, T.; Suzuki, Y; Tanaka*, K. Synthesis of 2-deoxy-2,3-didehydro-N-acetylneuraminic acid analogues modified at the C-4 and C-9 positions and their behaviour towards sialidase from influenza virus and pig liver membrane. Carbohydrate Research,2001,550(1):31-41.
    [62]Ikeda, K.; Sato, K.; Kitani, S.; Suzuki, T.; Maki, N.; Suzuki, Y; Sato, M. 2-Deoxy-2,3-didehydro-N-acetylneuraminic acid analogues structurally modified at the C-4 position:Synthesis and biological evaluation as inhibitors of human parainfluenza virus type 1. Bioorganic& Medicinal Chemistry,2006,74(23):7893-7897.
    [63]Ikeda, K.; Sato, K.; Nishino, R.; Aoyama, S.; Suzuki, T.; Sato, M. 2-Deoxy-2,3-didehydro-N-acetylneuraminic acid analogs structurally modified by thiocarbamoylalkyl groups at the C-4 position:Synthesis and biological evaluation as inhibitors of human parainfluenza virus type 1. Bioorganic& Medicinal Chemistry,2008, 76(14):6783-6788.
    [64]Mann, M. C.; Islam, T.; Dyason, J. C.; Florio, P.; Trower, C. J.; Thomson, R. J.; von Itzstein, M. Unsaturated N-acetyl-D-glucosaminuronic acid glycosides as inhibitors of influenza virus sialidase. Glycoconjugate Journal,2006,25(1-2):127-133.
    [65]Mann, M. C.; Thomson, R. J.; Dyason, J. C; McAtamney, S.; von Itzstein, M. Modelling, synthesis and biological evaluation of novel glucuronide-based probes of Vibrio cholerae sialidase. Bioorganic& Medicinal Chemistry,2006,14(5):1518-1537.
    [66]Li, J.; Zheng, M. Y.; Tang, W.; He, P. L.; Zhu, W. L.; Li, T. X.; Zuo, J. P.; Liu, H.; Jiang, H. L. Syntheses of triazole-modified zanamivir analogues via click chemistry and anti-AIV activities. Bioorganic& Medicinal Chemistry Letters,2006,76(19):5009-5013.
    [67]Liu, Z. Y.; Wang, B.; Zhao, L. X.; Li, Y. H.; Shao, H. Y; Yi, H.; You, X. F.; Li, Z. R. Synthesis and anti-influenza activities of carboxyl alkoxyalkyl esters of 4-guanidino-Neu5Ac2en (zanatnivir). Bioorganic& Medicinal Chemistry Letters,2007,77(17):4851-4854.
    [68]Honda, T.; Kubo, S.; Masuda, T.; Arai, M.; Kobayashi, Y.; Yamashita, M. Synthesis and in vivo influenza virus-inhibitory effect of ester prodrug of 4-guanidino-7-O-methyl-Neu5Ac2en. Bioorganic& Medicinal Chemistry Letters,2009,79(11):2938-2940.
    [69]Yamashita, M.; Tomozawa, T.; Kakuta, M.; Tokumitsu, A.; Nasu, H.; Kubo, S. CS-8958, a Prodrug of the New Neuraminidase Inhibitor R-125489, Shows Long-Acting Anti-Influenza Virus Activity. Antimicrobial Agents and Chemotherapy,2009,55(1):186-192.
    [70]Kim, C. U.; Lew, W.; Williams, M. A.; Liu, H. T.; Zhang, L. J.; Swaminathan, S.; Bischofberger, N.; Chen, M. S.; Mendel, D. B.; Tai, C. Y.; Laver, W. G.; Stevens, R. C. Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active site:Design, synthesis, and structural analysis of carbocyclic sialic acid analogues with potent anti-influenza activity. Journal of the American Chemical Society,1997,119(4): 681-690.
    [71]Williams, M. A.; Lew, W.; Mendel, D. B.; Tai, C. Y.; Escarpe, P. A.; Laver, W. G.; Stevens, R. C.; Kim, C. U. Structure-activity relationships of carbocyclic influenza neuraminidase inhibitors. Bioorganic& Medicinal Chemistry Letters,1997,7(14):1837-1842.
    [72]Kim, C. U.; Lew, W.; Williams, M. A.; Wu, H, W.; Zhang, L. J.; Chen, X. W.; Escarpe, P. A.; Mendel, D. B.; Laver, W. G.; Stevens, R. C. Structure-activity relationship studies of novel carbocyclic influenza neuraminidase inhibitors. Journal of Medicinal Chemistry,1998,47(14): 2451-2460.
    [73]Hayden, R; Rollins, B. In Vitro Activity of the Neuraminidase Inhibitor GS4071 Against Influenza Viruses. Antiviral Research,1997,34(2):86-86.
    [74]Sidwell, R.; Huffman, J.; Barnard, D.; Bailey, K.; Wong, M.; Morrison, A.; Syndergaard, T.; Kim, C. Inhibition of influenza virus infections in mice by GS4104, an orally effective influenza virus neuraminidase inhibitor. Antiviral Research,1998,57(2):107-120.
    [75]Fenton, R.; Owens, I.; Morley, P.; Bethell, R. Activities of zanamivir (GG167) and GS4104 in a series of influenza A virus animal models. Antiviral Research,1998,57(3):88-88.
    [76]McClellan, K.; Perry, C. Oseltamivir:a review of its use in influenza. Drugs,2001,67(2): 263-283.
    [77]Abrecht, S.; Harrington, P.; Iding, H.; Karpf, M.; Trussardi, R.; Wirz, B.; Zutter, U. The Synthetic Development of the Anti-Influenza Neuraminidase Inhibitor Oseltamivir Phosphate (Tamiflu):A Challenge for Synthesis Process Research. CHIMIA International Journal for Chemistry,2004,58(9):621-629.
    [78]Farina, V.; Brown, J. D. Tamiflu:The Supply Problem. Angewandte Chemie International Edition,2006,45(44):7330-7334.
    [79]Abrecht, S.; Federspiel, M.; Estermann, H.; Fischer, R.; Karpf, M.; Mair, H.; Oberhauser, T.; Rimmler, G.; Trussardi, R.; Zutter, U. The Synthetic-Technical Development of Oseltamivir Phosphate Tamiflu:A Race against Time. CHIMIA International Journal for Chemistry,2007, 67(3):93-99.
    [80]Shibasaki, M.; Kanai, M. Synthetic Strategies for Oseltamivir Phosphate. European Journal of Organic Chemistry,2008,2005(11):1839-1850.
    [8J]Gong, J.; Xu, W. Different Synthetic Strategies of Oseltamivir Phosphate:A Potent Influenza Neuraminidase Inhibitor. Current Medicinal Chemistry,2008,75(30):3145-3159.
    [82]Magano, J. Synthetic Approaches to the Neuraminidase Inhibitors Zanamivir (Relenza) and Oseltamivir Phosphate (Tamiflu) for the Treatment of Influenza. Chemical Reviews,2009, 709(9):4398-4438.
    [83]Zhang, L.; Williams, M. A.; Mendel, D. B.; Escarpe, P. A.; Kim, C. U. Synthesis and activity of C2-substituted analogs of influenza neuraminidase inhibitor GS 4071. Bioorganic& Medicinal Chemistry Letters,1997,7(14):1847-1850.
    [84]Lew, W.; Williams, M. A.; Mendel, D. B.; Escarpe, P. A.; Kim, C. U. C3-Thia and C3-carba isosteres of a carbocyclic influenza neuraminidase inhibitor, (3R,4R,5S)-4-acetamido-5-amino-3-propoxyl-l-cyclohexene-l-carboxylic acid. Bioorganic& Medicinal Chemistry Letters,1997,7(14):1843-1846.
    [85]Lew, W.; Wu, H.; Mendel, D. B.; Escarpe, P. A.; Chen, X.; Laver, W. G.; Graves, B. J.; Kim, C. U. A new series of C3-aza carbocyclic influenza neuraminidase inhibitors:synthesis and inhibitory activity. Bioorganic& Medicinal Chemistry Letters,1998,5(23):3321-3324.
    [86]Lew, W.; Wu, H.; Chen, X.; Graves, B. J.; Escarpe, P. A.; MacArthur, H. L.; Mendel, D. B.; Kim, C. U. Carbocyclic influenza neuraminidase inhibitors possessing a C3-cyclic amine side chain:synthesis and inhibitory activity. Bioorganic& Medicinal Chemistry Letters,2000, 70(11):1257-1260.
    [87]Hochgurtel, M.; Biesinger, R.; Kroth, H.; Piecha, D.; Hofmann, M. W.; Krause, S.; Schaaf, O.; Nicolau, C; Eliseev, A. V. Ketones as Building Blocks for Dynamic Combinatorial Libraries: Highly Active Neuraminidase Inhibitors Generated via Selection Pressure of the Biological Target. Journal of Medicinal Chemistry,2003,46(3):356-358.
    [88]Jones, P. S.; Smith, P. W.; Hardy, G. W.; Howes, P. D.; Upton, R. J.; Bethell, R. C. Synthesis of tetrasubstituted bicyclo[3.2.1]octenes as potential inhibitors of influenza virus sialidase. Bioorganic& Medicinal Chemistry Letters,1999,9(4):605-610.
    [89]Smith, P. W.; Trivedi, N.; Howes, P. D.; Sollis, S. L.; Rahim, G.; Bethell, R. C.; Lynn, S. Synthesis of a tetrasubstituted bicyclo [2.2.2] octane as a potential inhibitor of influenza virus sialidase. Bioorganic& Medicinal Chemistry Letters,1999,9(4):611-614.
    [90]Hanessian, S.; Wang, J.; Montgomery, D.; Stoll, V.; Stewart, K. D.; Kati, W.; Maring, C.; Kempf, D.; Hutchins, C.; Laver, W. G. Design, synthesis, and neuraminidase inhibitory activity of GS-4071 analogues that utilize a novel hydrophobic paradigm. Bioorganic& Medicinal Chemistry Letters,2002,72(23):3425-3429.
    [91]Shie, J.-J.; Fang, J.-M.; Wang, S.-Y.; Tsai, K.-C.; Cheng, Y.-S. E.; Yang, A.-S.; Hsiao, S.-C.; Su, C.-Y; Wong, C.-H. Synthesis of Tamiflu and its Phosphonate Congeners Possessing Potent Anti-Influenza Activity. Journal of the American Chemical Society,2007,729(39): 11892-11893.
    [92]http://140.109.55.56/ch/index.php?t=20&article_id=460.
    [93]Shie, J.-J.; Fang, J.-M.; Wong, C.-H. A Concise and Flexible Synthesis of the Potent Anti-Influenza Agents Tamiflu and Tamiphosphor. Angewandte Chemie International Edition, 2008,47(31):5788-5791.
    [94]Jedrzejas, M.; Singh, S.; Brouillette, W.; Laver, W.; Air, G.; Luo, M. Structures of aromatic inhibitors of influenza virus neuraminidase. Biochemistry,1995,34(10):3144-3151.
    [95]Williams, M.; Bischofberger, N.; Swaminathan, S.; Kim, C. Synthesis and influenza neuraminidase inhibitory activity of aromatic analogues of sialic acid. Bioorganic& Medicinal Chemistry Letters,1995,5(19):2251-2254.
    [96]Singh, S.; Jedrzejas, M. J.; Air, G. M.; Luo, M.; Laver, W. G.; Brouillette, W. J. Structure-Based Inhibitors of Influenza Virus Siaiidase. A Benzoic Acid Lead with Novel Interaction. Journal of Medicinal Chemistry,1995,55(17):3217-3225.
    [97]Chand, P.; Babu, Y. S.; Bantia, S.; Chu, N.; Cole, L. B.; Kotian, P. L.; Laver, W. G.; Montgomery, J.A.; Pathak, V. P.; Petty, S. L.; Shrout, D. P.; Walsh, D. A.; Walsh, G. M. Design and Synthesis of Benzoic Acid Derivatives as Influenza Neuraminidase Inhibitors Using Structure-Based Drug Designl. Journal of Medicinal Chemistry,1997,40(25): 4030-4052.
    [98]Brouillette, W.; Atigadda, V.; Luo, M; Air, G;Babu, Y; Bantia, S. Design of benzoic acid inhibitors of influenza neuraminidase containing a cyclic substitution for the N-acetyl grouping. Bioorganic & Medicinal Chemistry Letters,1999,9(14):1901-1906.
    [99]Atigadda, V. R.; Brouillette, W. J.; Duarte, F.;Ali, S. M.; Babu, Y. S.;Bantia, S.; Chand, P.; Chu, N.; Montgomery, J. A.; Walsh, D. A.; Sudbeck, E. A.; Finley, J.; Luo, M.; Air, G. M.; Laver, G. W. Potent Inhibition of Influenza Sialidase by a Benzoic Acid Containing a 2-Pyrrolidinone Substituent. Journal of Medicinal Chemistry,1999,42(13):2332-2343.
    [100]Brouillette, W. J.; Bajpai, S. N.; Ali, S. M.; Velu, S. E.; Atigadda, V. R.; Lommer, B. S.; Finley, J. B.; Luo, M.; Air, G. M. Pyrrolidinobenzoic acid inhibitors of influenza virus neuraminidase: modifications of essential pyrrolidinone ring substituents. Bioorganic& Medicinal Chemistry, 2003,77(13):2739-2749.
    [101]Atigadda, V. R.; Brouillette, W. J.; Duarte, F.; Babu, Y. S.; Bantia, S.; Chand, P.; Chu, N.; Montgomery, J. A.; Walsh, D. A.; Sudbeck, E.; Finley, J.; Air, G. M.; Luo, M.; Laver, G. W. Hydrophobic benzoic acids as inhibitors of influenza neuraminidase. Bioorganic& Medicinal Chemistry,1999,7(11):2487-2497.
    [102]Mack, H.; Brossmer, R. Synthesis of 6-thiosialic acids and 6-thio-N-acetyl-D-neuraminic acid. Tetrahedron Letters,1987,28(2):191-194.
    [103]Kok, G.; Campbell, M.; Mackey, B.; von Itzstein, M. Synthesis and biological evaluation of sulfur isosters of the potent influenza virus siaiidase inhibitors 4-amino-4-deoxy-and 4-deoxy-4-guanidino-Neu5Ac2en. Journal of the Chemical Society, Perkin Transactions 1, 1996,1996(23):2811-2815.
    [104]Parr, I. B.; Horenstein, B. A. New Electronic Analogs of the Sialyl Cation:N-Functionalized 4-Acetamido-2,4-dihydroxypiperidines. Inhibition of Bacterial Sialidases. The Journal of Organic Chemistry,1997,62(21):7489-7494.
    [105]Zhang, L. J.; Williams, M. A.; Mendel, D. B.; Escarpe, P. A.; Chen, X. W.; Wang, K. Y.; Graves, B. J.; Lawton, G.; Kim, C. U. Synthesis and evaluation of 1,4,5,6-tetrarydropyridazine
    derivatives as influenza neuraminidase inhibitors. Bioorganic & Medicinal Chemistry Letters, 1999,9(13):1751-1756.
    [106]Shitara, E.; Nishimura, Y.; Nerome, K.; Hiramoto, Y.; Takeuchi, T. Synthesis of 6-Acetamido-5-amino-and-5-guanidino-3,4-dehydro-N-(2-ethylbutyryl)-3-piperidine-carboxylic Acids Related to Zanamivir and Oseltamivir, Inhibitors of Influenza Virus Neuraminidases. Organic Letters,2000,2(24):3837-3840.
    [107]Hanessian, S.; Rogel, O. Synthesis of Glycophostones:Cyclic Phosphonate Analogues of Biologically Relevant Sugars. The Journal of Organic Chemistry,2000,65(9):2661-2614.
    [108]Kati, W. M.; Montgomery, D.; Maring, C.; Stoll, V. S.; Giranda, V.; Chen, X. Q.; Laver, W. G.; Kohlbrenner, W.; Norbeck, D. W. Novel alpha-and beta-amino acid inhibitors of influenza virus neuraminidase. Antimicrobial Agents and Chemotherapy,2001,45(9):2563-2570.
    [109]Chand, P.; Kotian, P. L.; Morris, P. E.; Bantia, S.; Walsh, D. A.; Babu, Y. S. Synthesis and inhibitory activity of benzoic acid and pyridine derivatives on influenza neuraminidase. Bioorganic& Medicinal Chemistry,2005,73(7):2665-2678.
    [110]Yamamoto, T.; Kumazawa, H.; Inami, K.; Teshima, T.; Shiba, T. Syntheses of sialic acid isomers with inhibitory activity against neuraminidase. Tetrahedron Letters,1992,55(39): 5791-5794.
    [111]Wang, G T.; Wang, S.; Chen, Y; Gentles, R.; Sowin, T. Synthesis of 2-Substituted (±)-(2R,3R,5R)-Tetrahydrofuran-3,5-dicarboxylic Acid Derivatives. The Journal of Organic Chemistry,2001,66(6):2052-2056.
    [112]Wang, G. T.; Wang, S.; Gentles, R.; Sowin, T.; Maring, C. J.; Kempf, D. J.; Kati, W. M.; Stoll, V.; Stewart, K. D.; Laver, G. Design, synthesis, and structural analysis of inhibitors of influenza neuraminidase containing a 2,3-disubstituted tetrahydrofuran-5-carboxylic acid core. Bioorganic& Medicinal Chemistry Letters,2005,75(1):125-128.
    [113]Babu, Y. S.;Chand, P.;Bantia, S.;Kotian, P.; Dehghani, A.; El-Kattan, Y; Lin, T.-H.; Hutchison, T. L.; Elliott, A. J.; Parker, C. D.; Ananth, S. L.; Horn, L. L.; Laver, G. W.; Montgomery, J. A. BCX-1812 (RWJ-270201):Discovery of a Novel, Highly Potent, Orally Active, and Selective Influenza Neuraminidase Inhibitor through Structure-Based Drug Design. Journal of Medicinal Chemistry,2000,43(19):3482-3486.
    [114]Chand, P.; Kotian, P. L.; Dehghani, A.; El-Kattan, Y; Lin, T.-H.; Hutchison, T. L.; Babu, Y. S.; Bantia, S.; Elliott, A. J.; Montgomery, J. A. Systematic Structure-Based Design and Stereoselective Synthesis of Novel Multisubstituted Cyclopentane Derivatives with Potent Antiinfluenza Activity. Journal of Medicinal Chemistry,2001,44(25):4379-4392.
    [115]Chand, P.; Babu, Y. S.; Bantia, S.; Rowland, S.; Dehghani, A.; Kotian, P. L.; Hutchison, T. L. AH, S.; Brouillette, W.; El-Kattan, Y; Lin, T.-H. Syntheses and Neuraminidase Inhibitory Activity of Multisubstituted Cyclopentane Amide Derivatives. Journal of Medicinal Chemistry,2004,47(8):1919-1929.
    [116]Chand, P.; Bantia, S.; Kotian, P. L.; El-Kattan, Y; Lin, T.-H.; Babu, Y. S. Comparison of the anti-influenza virus activity of cyclopentane derivatives with oseltamivir and zanamivir in vivo. Bioorganic& Medicinal Chemistry,2005,73(12):4071-4077.
    [117]Bantia, S.; Parker, C. D.; Ananth, S. L.; Horn, L. L.; Andries, K.; Chand, P.; Kotian, P. L.; Dehghani, A.; El-Kattan, Y; Lin, T.; Hutchison, T. L.; Montgomery, J. A.; Kellog, D. L.; Babu, Y. S. Comparison of the Anti-Influenza Virus Activity of RWJ-270201 with Those of Oseltamivir and Zanamivir. Antimicrob. Agents Chemother,2001,45(4):1162-1167.
    [118]Boivin, G.; Goyette, N. Susceptibility of recent Canadian influenza A and B virus isolates to different neuraminidase inhibitors. Antiviral Research,2002,54(3):143-147.
    [119]Gubareva, L. V.; Webster, R. G.; Hayden, F. G. Comparison of the Activities of Zanamivir, Oseltamivir, and RWJ-270201 against Clinical Isolates of Influenza Virus and Neuraminidase Inhibitor-Resistant Variants. Antimicrob. Agents Chemother.,2001,45(12):3403-3408.
    [120]Sidwell, R. W.; Smee, D. R.; Huffman, J. H.; Barnard, D. L.; Bailey, K. W.; Morrey, J. D.; Babu, Y. S. In Vivo Influenza Virus-Inhibitory Effects of the Cyclopentane Neuraminidase Inhibitor RWJ-270201. Antimicrob. Agents Chemother,2001,45(3):749-757.
    [121]Sidwell, R. W.; Smee, D. R.; Huffman, J. H.; Barnard, D. L.; Morrey, J. D.; Bailey, K. W.; Feng, W. C.; Babu, Y. S.; Bush, K. Influence of virus strain, challenge dose, and time of therapy initiation on the in vivo influenza inhibitory effects of RWJ-270201. Antiviral Research,2001,57(3):179-187.
    [122]www.shareholder.com/biocryst/news/20020625-83347.cfm?ReleaseID=83347.
    [123]Bantia, S.; Arnold, C. S.; Parker, C. D.; Upshaw, R.; Chand, P. Anti-influenza virus activity of peramivir in mice with single intramuscular injection. Antiviral Research,2006,69(1):39-45.
    [124]Wang, G T.; Chen, Y.; Wang, S.; Gentles, R.; Sowin, T.; Kati, W.; Muchmore, S.; Giranda, V.; Stewart, K.; Sham, H.; Kempf, D.; Laver, W. G. Design, Synthesis, and Structural Analysis of Influenza Neuraminidase Inhibitors Containing Pyrrolidine Cores. Journal of Medicinal Chemistry,2001,44(S):1192-1201.
    [125]Maring, C. J.; Stoll, V. S.; Zhao, C.; Sun, M.; Krueger, A. C; Stewart, K. D.; Madigan, D. L.; Kati, W. M.; Xu, Y.; Carrick, R. J.; Montgomery, D. A.; Kempf-Grote, A.; Marsh, K. C.; Molla, A.; Steffy, K. R.; Sham, H. L.; Laver, W. G.; Gu, Y.-g.; Kempf, D. J.; Kohlbrenner, W. E. Structure-Based Characterization and Optimization of Novel Hydrophobic Binding Interactions in a Series of Pyrrolidine Influenza Neuraminidase Inhibitors. Journal of Medicinal Chemistry,2005,48(12):3980-3990.
    [126]DeGoey, D. A.; Chen, H.-J.; Flosi, W. J.; Grampovnik, D. J.; Yeung, C. M.; Klein, L. L. Kempf, D. J. Enantioselective Synthesis of Antiinfluenza Compound A-315675. The Journal of Organic Chemistry,2002,67(16):5445-5453.
    [127]Hanessian, S.; Bayrakdarian, M.; Luo, X. Total Synthesis of A-315675:A Potent Inhibitor of Influenza Neuraminidase. Journal of the American Chemical Society,2002,124(17): 4716-4721.
    [128]Barnes, D. M.; McLaughlin, M. A.; Oie, T.; Rasmussen, M. W.; Stewart, K. D.; Wittenberger, S. J. Synthesis of an Influenza Neuraminidase Inhibitor Intermediate via a Highly Diastereoselective Coupling Reaction. Organic Letters,2002,4(9):1427-1430.
    [129]Barnes, D. M.; Bhagavatula, L.; DeMattei, J.; Gupta, A.; Hill, D. R.; Manna, S.; McLaughlin, M. A.; Nichols, P.; Premchandran, R.; Rasmussen, M. W.; Tian, Z.; Wittenberger, S. J. A highly diastereoselective vinylogous Mannich condensation and 1,4-conjugate addition of (Z)-propenyl cuprate in the synthesis of an influenza neuraminidase inhibitor. Tetrahedron: Asymmetry,2003,14(22):3541-3551.
    [130]Momose, T.; Hama, N.; Higashino, C.; Sato, H.; Chida, N. Total synthesis of A-315675 based on the cascade Overman rearrangement. Tetrahedron Letters,2008,49(8):1376-1379.
    [131]Krueger, A. C.; Xu, Y.; Kati, W. M.; Kempf, D. J.; Maring, C. J.; McDaniel, K. F.; Molla, A.; Montgomery, D.; Kohlbrenner, W. E. Synthesis of potent pyrrolidine influenza neuraminidase' inhibitors. Bioorganic& Medicinal Chemistry Letters,2008,18(5):1692-1695.
    [132]Kati, W. M.; Montgomery, D.; Carrick, R.; Gubareva, L.; Maring, C.; McDaniel, K.; Steffy, K.; Molla, A.; Hayden, F.; Kempf, D.; Kohlbrenner, W. In Vitro Characterization of A-315675, a Highly Potent Inhibitor of A and B Strain Influenza Virus Neuraminidases and Influenza Virus Replication. Antimicrob. Agents Chemother,2002,46(4):1014-1021.
    [133]Reece, P.; Watson, K.; Wu, W.; Jin, B.; Krippner, G. Preparation of poly (neuraminic acids) as influenza virus neuraminidase inhibitors. PCTInt. Appl.,1998:WO 98/21243.
    [134]Wu, W.-Y.; Jim, B. PCT Int. Appl.,2000:WO00/55149.
    [135]Honda, T.; Yoshida, S.; Arai, M.; Masuda, T.; Yamashita, M Synthesis and anti-influenza evaluation of polyvalent sialidase inhibitors bearing 4-guanidino-Neu5Ac2en derivatives. Bioorganic& Medicinal Chemistry Letters,2002,72(15):1929-1932.
    [136]Masuda, T.; Yoshida, S.; Arai, M.; Kaneko, S.; Yamashita, M.; Honda, T. Synthesis and Anti-influenza Evaluation of Polyvalent Sialidase Inhibitors Bearing 4-Guanidino-Neu5Ac2en Derivatives. Chemical& pharmaceutical bulletin,2003,57(12):1386-1398.
    [137]Watson, K. G.; Cameron, R.; Fenton, R. J.; Gower, D.; Hamilton, S.; Jin, B.; Krippner, G Y; Luttick, A.; McConnell, D.; MacDonald, S. J. F.; Mason, A. M.; Nguyen, V; Tucker, S. P.; Wu, W.-Y. Highly potent and long-acting trimeric and tetrameric inhibitors of influenza virus neuraminidase. Bioorganic& Medicinal Chemistry Letters,2004,74(6):1589-1592.
    [138]Macdonald, S. J. F.; Watson, K. G; Cameron, R.; Chalmers, D. K.; Demaine, D. A.; Fenton, R. J.; Gower, D.; Hamblin, J. N.; Hamilton, S.; Hart, G. J.; Inglis, G. G. A.; Jin, B.; Jones, H. T.; McConnell, D. B.; Mason, A. M.; Nguyen, V.; Owens, I. J.; Parry, N.; Reece, P. A.; Shanahan, S. E.; Smith, D.; Wu, W.-Y.; Tucker, S. P. Potent and Long-Acting Dimeric Inhibitors of Influenza Virus Neuraminidase Are Effective at a Once-Weekly Dosing Regimen. Antimicrob. Agents Chemother,2004,48(12):4542-4549.
    [139]Macdonald, S. J. F.; Cameron, R.; Demaine, D. A.; Fenton, R. J.; Foster, G.; Gower, D.; Hamblin, J. N.; Hamilton, S.; Hart, G. J.; Hill, A. P.; Inglis, G. G. A.; Jin, B.; Jones, H. T.; McConnell, D. B.; McKimm-Breschkin, J.; Mills, G.; Nguyen, V.; Owens, I. J.; Parry, N.; Shanahan, S. E.; Smith, D.; Watson, K. G.; Wu, W.-Y.; Tucker, S. P. Dimeric Zanamivir Conjugates with Various Linking Groups Are Potent, Long-Lasting Inhibitors of Influenza Neuraminidase Including H5N1 Avian Influenza. Journal of Medicinal Chemistry,2005,48(8): 2964-2971.
    [140]Sakamoto, J.-I.; Koyama, T.; Miyamoto, D.; Yingsakmongkon, S.; Hidari, K. I. P. J.; Jampangern, W.; Suzuki, T.; Suzuki, Y.; Esumi, Y.; Hatano, K.; Terunuma, D.; Matsuoka, K. Thiosialoside clusters using carbosilane dendrimer core scaffolds as a new class of influenza neuraminidase inhibitors. Bioorganic& Medicinal Chemistry Letters,2007,77(3):717-721.
    [141]Matsuoka, K.; Takita, C.; Koyama, T.; Miyamoto, D.; Yingsakmongkon, S.; Hidari, K. I. P. J.; Jampangern, W.; Suzuki, T.; Suzuki, Y.; Hatano, K.; Terunuma, D. Novel linear polymers bearing thiosialosides as pendant-type epitopes for influenza neuraminidase inhibitors. Bioorganic& Medicinal Chemistry Letters,2007,77(14):3826-3830.
    [142]Sakamoto, J.-L.; Koyama, T.; Miyamoto, D.; Yingsakmongkon, S.; Hidari, K. I. P. J.; Jampangern, W.; Suzuki, T.; Suzuki, Y.; Esumi, Y.; Nakamura, T.; Hatano, K.; Terunuma, D.; Matsuoka, K. Systematic syntheses of influenza neuraminidase inhibitors:A series of carbosilane dendrimers uniformly functionalized with thioglycoside-type sialic acid moieties. Bioorganic& Medicinal Chemistry,2009,77(15):5451-5464.
    [143]Gong, J.; Liu, Y.; Xu, W. Pharmacophore model of influenza neuraminidase inhibitors-a systematic review. Pharmazie,2009,64(10):627-632.
    [144]Taylor, N. R.; Itzstein, M. A structural and energetics analysis of the binding of a series of N-acetylneuraminic-acid-based inhibitors to influenza virus sialidase. Journal of Computer-Aided Molecular Design,1996,10(3):233-246.
    [145]Wall, I. D.; Leach, A. R.; Salt, D. W.; Ford, M. G.; Essex, J. W. Binding Constants of Neuraminidase Inhibitors:An Investigation of the Linear Interaction Energy Method. Journal of Medicinal Chemistry,1999,42(25):5142-5152.
    [146]Wang, T.; Wade, R. C. Comparative Binding Energy (COMBINE) Analysis of Influenza Neuraminidase-Inhibitor Complexes. Journal of Medicinal Chemistry,2001,44(6):961-971.
    [147]Yi, X.; Guo, Z.; Chu, F. M. Study on molecular mechanism and 3D-QSAR of influenza neuraminidase inhibitors. Bioorganic& Medicinal Chemistry,2003,11(1):1465-1474.
    [148]Steindl, T.; Langer, T. Influenza Virus Neuraminidase Inhibitors:Generation and Comparison of Structure-Based and Common Feature Pharmacophore Hypotheses and Their Application in Virtual Screening. Journal of Chemical Information and Computer Sciences,2004,44(5): 1849-1856.
    [149]Verma, R. P.; Hansch, C. A QSAR study on influenza neuraminidase inhibitors. Bioorganic& Medicinal Chemistry,2006,14(4):982-996.
    [150]Armstrong, K. A.; Tidor, B.; Cheng, A. C. Optimal Charges in Lead Progression:A Structure-Based Neuraminidase Case Study. Journal of Medicinal Chemistry,2006,49(8): 2470-2477.
    [151]Zhang, J.; Yu, K.; Zhu, W.; Jiang, H. Neuraminidase pharmacophore model derived from diverse classes of inhibitors. Bioorganic& Medicinal Chemistry Letters,2006,16(11): 3009-3014.
    [152]Zheng, M.; Yu, K.; Liu, H.; Luo, X.; Chen, K.; Zhu, W.; Jiang, H. QSAR analyses on avian influenza virus neuraminidase inhibitors using CoMFA, CoMSIA, and HQSAR. Journal of Computer-Aided Molecular Design,2006,20(9):549-566.
    [153]Li, Z. S.; Sun, J. Y.; Liang, G. Z.; Lu, F. L.; Zhu, W. P.; Zhang, M. J.; Zhang, Y; Yang, S. B.; Shu, M.; Chen, G. H.; Lu, T. T. On Three-Dimensional Holographic Vector of Atomic Interaction Field Analysis for Influenza Neuraminidase Inhibitors. Chemical Biology& Drug Design,2009,73(2):236-243.
    [1]Janakiraman,M.N.;White.C.L.;Laver,W.G.;Air,G.M.;Lou,M.Structure of Influenza Virus Neuraminidase B/Lee/40 Complexde with Sinlie Acid and a Dehydro Analog at at 1.8 A Resolution:Implications for the Catatytic mechanism,Biochemistry,1994,33(27): 8172-8179.
    [2]Taylor,N.R.;von Itzstein,M.moleculaar Modeling Studies on Ligand binging to Sialidase from Influenza virus and the mechanism of Catalysis.journal of Medicinal Chemistry,1994, 37(5):616-624.
    [3]varghese,J.N.;Colman,P.M.Three-dimensional stnictyure of the neuraminidase of influenza virus A/Tokoyo/3/67 at 2,2 A resolution.Journal of Molecular Biology,1991,221(2):473-486.
    [4]Burmeister, W. P.; Ruigrok, R. W.; Cusack, S. The 2.2 A resolution crystal structure of influenza B neuraminidase and its complex with sialic acid. The EMBO Journal,1992,77(1): 49-56.
    [5]Varghese, J. N.; McKimm-Breschkin, J. L.; Caldwell, J. B.; Kortt, A. A.; Colman, P. M. The structure of the complex between influenza virus neuraminidase and sialic acid, the viral receptor. Proteins:Structure, Function, andBioinformatics,1992,14(3):327-332.
    [6]Bossart-Whitaker, P.; Carson, M.; Babu, Y. S.; Smith, C. D.; Laver, W. G.; Air, G. M. Three-dimensional Structure of Influenza A N9 Neuraminidase and Its Complex with the Inhibitor 2-Deoxy 2,3-Dehydro-N-Acetyl Neuraminic Acid. Journal of Molecular Biology, 1993,252(4):1069-1083.
    [7]Varghese, J. N.; Chandana Epa, V.; Colman, P. M. Three-dimensional structure of the complex of 4-guanidino-Neu5Ac2en and influenza virus neuraminidase. Protein Science,1995,4(6): 1081-1087.
    [8]Smith, B. J.; McKimm-Breshkin, J. L.; McDonald, M.; Fernley, R. T.; Varghese, J. N.; Colman, P. M. Structural Studies of the Resistance of Influenza Virus Neuramindase to Inhibitors. Journal of Medicinal Chemistry,2002,45(11):2207-2212.
    [9]von Itzstein, M.; Wu, W. Y.; Kok, G. B.; Pegg, M. S.; Dyason, J. C.; Jin, B.; Phan, T. V.; Smythe, M. L.; White, H. F.; Oliver, S. W.; Colman, P. M.; Varghese, J. N.; Ryan, D. M.; Woods, J. M.; Bethell, R. C.; Hotham, V. J.; Cameron, J. M.; Penn, C. R. Rational Design of Potent Sialidasse-Based Inhibitors of Influenza-Virus Replication. Nature,1993,363(6428): 418-423.
    [10]Kim, C. U.; Lew, W.; Williams, M. A.; Liu, H. T.; Zhang, L. J.; Swaminathan, S.; Bischofberger, N.; Chen, M. S.; Mendel, D. B.; Tai, C. Y.; Laver, W. G.; Stevens, R. C. Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active site:Design, synthesis, and structural analysis of carbocyclic sialic acid analogues with potent anti-influenza activity. Journal of the American Chemical Society,1997,119(4): 681-690.
    [11]Babu, Y. S.; Chand, P.; Bantia, S.; Kotian, P.; Dehghani, A.; El-Kattan, Y.; Lin, T.-H.; Hutchison, T. L.; Elliott, A. J.; Parker, C. D.; Ananth, S. L.; Horn, L. L.; Laver, G. W.; Montgomery, J. A. BCX-1812 (RWJ-270201):Discovery of a Novel, Highly Potent, Orally Active, and Selective Influenza Neuraminidase Inhibitor through Structure-Based Drug Design. Journal of Medicinal Chemistry,2000,43(19):3482-3486.
    [12]Wang, G. T.; Chen, Y; Wang, S.; Gentles, R.; Sowin, T.; Kati, W.; Muchmore, S.; Giranda, V; Stewart, K.; Sham, H.; Kempf, D.; Laver, W. G. Design, Synthesis, and Structural Analysis of Influenza Neuraminidase Inhibitors Containing Pyrrolidine Cores. Journal of Medicinal Chemistry,2001,44(8):1192-1201.
    [13]Maring, C. J.; Stoll, V. S.; Zhao, C.; Sun, M.; Krueger, A. C.; Stewart, K. D.; Madigan, D. L. Kati, W. M.; Xu, Y.; Carrick, R. J.; Montgomery, D. A.; Kempf-Grote, A.; Marsh, K. C.; Molla, A.; Steffy, K. R.; Sham, H. L.; Laver, W. G.; Gu, Y.-g.; Kempf, D. J.; Kohlbrenner, W. E. Structure-Based Characterization and Optimization of Novel Hydrophobic Binding Interactions in a Series of Pyrrolidine Influenza Neuraminidase Inhibitors. Journal of Medicinal Chemistry,2005,48(12):3980-3990.
    [14]Wang, G. T. Recent advances in the discovery and development of anti-influenza drugs. Expert Opinion on Therapeutic Patents,2002,72(6):845-861.
    [15]Morgan, B. A.; Gainor, J. A. In Annual Reports in Medicinal Chemistry; Richard, C. A., Ed.; Academic Press:1989; Vol.24, p 243-252.
    [16]Gentilucci, L.; Tolomelli, A.; Squassabia, F. Peptides and Peptidomimetics in Medicine, Surgery and Biotechnology. Current Medicinal Chemistry,2006,75(20):2449-2466.
    [17]Giannis, A.; Rubsam, F. In Advances in drug research; Bernard, T., Urs, A. M., Eds.; Academic Press:1997; Vol.29, p 1-78.
    [18]Moore, G. J.; Smitht, J. R.; Baylis, B. W.; Matsoukas, J. M. In Advances in Pharmacology; J. Thomas August, M. W. A. F. M, Joseph, T. C., Eds.; Academic Press:1995; Vol.33, p 91-141.
    [19]Marshall, G. R. Computer-Aided Drug Design. Annual Review of Pharmacology and Toxicology,1987,27(1):193-213.
    [20]Richards, W. G. Computer-aided drug design. Pure and applied chemistry,1994,66(8): 1589-1596.
    [21]Taft, C. A.; Silva, V. B. d.; Silva, C. H. T. d. P. d. Current topics in computer-aided drug design. Journal of Pharmaceutical Sciences,2008,97(3):1089-1098.
    [22]Song, C. M.; Lim, S. J.; Tong, J. C. Recent advances in computer-aided drug design. Brief Bioinform,2009,10(5):579-591.
    [23]Veselovsky, A. V.; Ivanov, A. S. Strategy of Computer-Aided Drug Design. Current Drug Targets-Infectious Disorsers,2003,5(1):33-40.
    [24]Eyre, D. Collagen:molecular diversity in the body's protein scaffold. Science,1980, 207(4437):1315-1322.
    [25]Wu, X.-R. Amino Acids Nutrition. Amino Acids and Biotic Resources,1988,70(2):21-28.
    [26]Jia, X.-B.; Pan, H.-C.; Zhao, R.-Q. Experimental Study on L-Hydroxyproline for Sliming. Journal of China Pharmaceutical University,2003,54(3):276-278.
    [27]Zhang, Z.-Q.; Zhao, D.-X.; Yang, X.-X. Research and Development of Hydroxyproline. Amino Acids and Biotic Resources,2006,25(1):55-58.
    [28]Mauger, A. B.; Witkop, B. Analogs and Homologs of Proline and Hydroxyproline. Chemical Reviews,1966,66(1):47-86.
    [29]Remuzon, P. Trans-4-hydroxy-L-proline, a useful and versatile chiral starting block. Tetrahedron,1996,52(44):13803-13835.
    [30]Li, Y.-L.; Xu, W.-F. Design, synthesis, and activity of caffeoyl pyrrolidine derivatives as potential gelatinase inhibitors. Bioorganic& Medicinal Chemistry,2004,72(19):5171-5180.
    [31]Li, X.; Li, Y.; Xu, W. Design, synthesis, and evaluation of novel galloyl pyrrolidine derivatives as potential anti-tumor agents. Bioorganic& Medicinal Chemistry,2006, 14(5): 1287-1293.
    [32]Zhang, L.; Zhang, J.; Fang, H.; Wang, Q.; Xu, W. Design, synthesis and preliminary evaluation of new cinnamoyl pyrrolidine derivatives as potent gelatinase inhibitors. Bioorganic& Medicinal Chemistry,2006,14(24):8286-8294.
    [33]Cheng, X.-C.; Wang, Q.; Fang, H.; Tang, W.; Xu, W.-F. Design, synthesis and preliminary evaluation of novel pyrrolidine derivatives as matrix metalloproteinase inhibitors. European Journal of Medicinal Chemistry,2008,45(10):2130-2139.
    [34]Cheng, X.-C.; Wang, Q.; Fang, H.; Tang, W.; Xu, W.-F. Synthesis of new sulfonyl pyrrolidine derivatives as matrix metalloproteinase inhibitors. Bioorganic& Medicinal Chemistry,2008, 76(17):7932-7938.
    [35]Cheng, X.-C; Wang, Q.; Fang, H.; Tang, W.; Xu, W.-F. Design, synthesis and evaluation of
    novel sulfonyl pyrrolidine derivatives as matrix metalloproteinase inhibitors. Bioorganic& Medicinal Chemistry,2008,76(10):5398-5404.
    [36]Gomez-Vidal, J. A.; Martasek, P.; Roman, L. J.; Silverman, R. B. Potent and Selective Conformationally Restricted Neuronal Nitric Oxide Synthase Inhibitors. Journal of Medicinal Chemistry,2003,47(3):703-710.
    [37]Liu, F.-Z.; Fang, H.; Zhu, H.-W.; Wang, Q.; Yang, Y.; Xu, W.-F. Design, synthesis, and preliminary evaluation of 4-(6-(3-nitroguanidino)hexanamido)pyrrolidine derivatives as potential iNOS inhibitors. Bioorganic& Medicinal Chemistry,2008,76(1):578-585.
    [38]Zhang, J.; Wang, Q.; Fang, H.; Xu, W.; Liu, A.; Du, G. Design, synthesis, inhibitory activity, and SAR studies of pyrrolidine derivatives as neuraminidase inhibitors. Bioorganic& Medicinal Chemistry,2007,75(7):2749-2758.
    [1]Mckillop, A.; Taylor, R. J. K.; Watson, R. J.; Lewis, N. An improved procedure for the preparation of the garner aldehyde and its use for the synthesis of N-proteced l-Halo-2-(R)-amino-3-butenes. Synthesis,1994:31-33.
    [2]Jordis, U.; Sauter, R.; Siddiqi, S. M. Synthesis of (1S,4S)-2-thia-5-azabicyclo [2.2.1] heptane. Indian. J. Chem,1989,28:294-296.
    [3]Abraham, D. J.; Mokotoff, M.; Sheh, L.; Simmons, J. E. Design, synthesis, and testing of antisickling agents.2. Proline derivatives designed for the donor site. Journal of Medicinal Chemistry,1983,26(4):549-554.
    [4]Gong, J.; Gong, Y.; Xu, W. Synthesis and crystal structure of cis-4-azido-L-proline methyl ester hydrochloride. Journal of Chemical Research,2009,2009(11):668-670.
    [5]Sheldrick, G. M. SHELXTL Version 5.1. Bruker AXSInc., Madison, Wisconsin, USA,1997.
    [6]Mesaik, M; Rahat, S.; Khan, K.; Choudhary, M.; Murad, S.; Ismail, Z.; Ahmad, A. Synthesis and immunomodulatory properties of selected oxazolone derivatives. Bioorganic& Medicinal Chemistry,2004,12(9):2049-2057.
    [7]Hauser, C. R.; Renfrew, W. B. Benzohydroxamic acid. Organic Syntheses,1943, Collective 2: 67-69.
    [8]Wang, B.; Li, Z. The preparation and application of amino acid ester. Amino Acids& Biotic Resources,1995,77(4):40-45.
    [9]Wang, X.; Hou, M.; Chen, L.; Meng, Y.; Li, Y. Research Progress in the Reduction of Azides to Amines. HuaXue TongBao,2004,67(6):418-424.
    [10]Pathak, D.; Laskar, D. D.; Prajapati, D.; Sandhu, J. S. A Novel and Chemoselective Protocol for the Reduction of Azides Using FeCl 3'CZn System. Chemistry Letters,2000,29(7): 816-817.
    [11]Maiti, S. N.; Spevak, P.; Reddy, A. V. N. Alkaline Earth Metal Mediated Reduction of Azides to Amines. Synthetic Communications,1988,75(11):1201-1206.
    [12]Humphrey, J. M.; Chamberlin, A. R. Chemical Synthesis of Natural Product Peptides: Coupling Methods for the Incorporation of Noncoded Amino Acids into Peptides. Chemical Reviews,1997,97(6):2243-2266.
    [13]Han, S.-Y; Kim, Y.-A. Recent development of peptide coupling reagents in organic synthesis. Tetrahedron,2004,60(11):2447-2467.
    [14]Montalbetti, C. A. G N.; Falque, V. Amide bond formation and peptide coupling. Tetrahedron, 2005,61(46):10827-10852.
    [1]Potier, M; Mameli, L.; Belisle, M.; Dallaire, L.; Melancon, S. B. Fluorometric assay of neuraminidase with a sodium (4-methylumbelliferyl-[alpha]--N-acetylneuraminate) substrate. Analytical Biochemistry,1979,94(2):287-296.
    [2]Lindegardh, N.; Hien, T. T.; Farrar, J.; Singhasivanon, P.; White, N. J.; Day, N. P. J. A simple and rapid liquid chromatographic assay for evaluation of potentially counterfeit Tamiflu(?). Journal of Pharmaceutical and Biomedical Analysis,2006,42(4):430-433.
    [1]SYBYL 7.0, Tripos Inc.1699 South Hanley Rd., St. Louis, Missouri,63144.
    [2]Rarey, M.; Kramer, B.; Lengauer, T.; Klebe, G. A Fast Flexible Docking Method using an Incremental Construction Algorithm. Journal of Molecular Biology,1996,261(3):470-489.
    [3]FlexXTM is distributed by Tripos Inc.,1699 South Hanley Rd., St. Louis, Missouri, USA (http://www.tripos.com).
    [4]Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E. The Protein Data Bank. Nucl. Acids Res.,2000,28(1):235-242.
    [5]BiopolymerTM is distributed by Tripos Inc.,1699 South Hanley Rd., St. Louis, Missouri, USA (http://www.tripos.com).
    [6]Schulz-Gasch, T.; Stahl, M. Binding site characteristics in structure-based virtual screening: evaluation of current docking tools. Journal of Molecular Modeling,2003,9(1):47-57.
    [7]Kellenberger, E.; Rodrigo, J.; Muller, P.; Rognan, D. Comparative evaluation of eight docking tools for docking and virtual screening accuracy. Proteins:Structure, Function, and Bioinformatics,2004,57(2):225-242.
    [8]Kontoyianni, M.; McClellan, L. M.; Sokol, G. S. Evaluation of Docking Performance: Comparative Data on Docking Algorithms. Journal of Medicinal Chemistry,2004,47(3): 558-565.
    [9]Cramer, R. D.; Patterson, D. E.; Bunce, J. D. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. Journal of the American Chemical Society,1988,110(18):5959-5967.
    [10]Zhu, J.; Sheng, C.; Zhang, W. Progress on CoMFA Research. Hua Xue Jin Zhan,2000,12(2): 203-207.
    [1]Russell, R. J.; Haire, L. F.; Stevens, D. J.; Collins, P. J.; Lin, Y. P.; Blackburn, G. M.; Hay, A. J.; Gamblin, S. J.; Skehel, J. J. The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature,2006,443 (7107):45-49.
    [2]Du, Q. S.; Wang, S. Q.; Chou, K. C. Analogue inhibitors by modifying oseltamivir based on the crystal neuraminidase structure for treating drug-resistant H5N1 virus. Biochemical and Biophysical Research Communications,2007,362 (2):525-531.
    [3]Mitrasinovic, P. M. On the structure-based design of novel inhibitors of H5N1 influenza A virus neuraminidase (NA). Biophysical Chemistry,2009,140 (1-3):35-38.
    [4]Cheng, L. S.; Amaro, R. E.; Xu, D.; Li, W. W.; Arzberger, P. W.; McCammon, J. A. Ensemble-Based Virtual Screening Reveals Potential Novel Antiviral Compounds for Avian Influenza Neuraminidase. Journal of Medicinal Chemistry,2008,51 (13):3878-3894.
    [5]Sun, C.; Zhang, X.; Huang, H.; Zhou, P. Synthesis and evaluation of a new series of substituted acyl(thio)urea and thiadiazolo [2,3-a] pyrimidine derivatives as potent inhibitors of influenza virus neuraminidase. Bioorganic& Medicinal Chemistry,2006,14 (24):8574-8581.
    [6]An, J.; Lee, D. C. W.; Law, A. H. Y.; Yang, C. L. H.; Poon, L. L. M.; Lau, A. S. Y.; Jones, S. J. M. A Novel Small-Molecule Inhibitor of the Avian Influenza H5N1 Virus Determined through Computational Screening against the Neuraminidase. Journal of Medicinal Chemistry,2009,52 (9):2667-2672.
    [7]Hung, H.-C.; Tseng, C.-P.; Yang, J.-M.; Ju, Y.-W.; Tseng, S.-N.; Chen, Y.-F.; Chao, Y.-S.; Hsieh, H.-P.; Shih, S.-R.; Hsu, J. T. A. Aurintricarboxylic acid inhibits influenza virus neuraminidase. Antiviral Research,2009,81 (2):123-131.
    [8]Ryu, Y. B.; Curtis-Long, M. J.; Kim, J. H.; Jeong, S. H.; Yang, M. S.; Lee, K. W.; Lee, W. S.; Park, K. H. Pterocarpans and flavanones from Sophora flavescens displaying potent neuraminidase inhibition. Bioorganic& Medicinal Chemistry Letters,2008,18 (23):6046-6049.
    [9]Jeong, H. J.; Ryu, Y. B.; Park, S.-J.; Kim, J. H.; Kwon, H.-J.; Kim, J. H.; Park, K. H.; Rho, M.-C.; Lee, W. S. Neuraminidase inhibitory activities of flavonols isolated from Rhodiola rosea roots and their in vitro anti-influenza viral activities. Bioorganic& Medicinal Chemistry,2009, 77(19):6816-6823.
    [10]Saha, R. K.; Takahashi, T; Suzuki, T. Glucosyl Hesperidin Prevents Influenza A Virus Replication in Vitro by Inhibition of Viral Sialidase. Biological& Pharmaceutical Bulletin, 2009,52(7):1188-1192.
    [11]Ryu, Y. B.; Curtis-Long, M. J.; Lee, J. W.; Kim, J. H.; Kim, J. Y; Kang, K. Y.; Lee, W. S.; Park, K. H. Characteristic of neuraminidase inhibitory xanthones from Cudrania tricuspidata. Bioorganic& Medicinal Chemistry,2009,17(1):2744-2750.
    [12]Ryu, Y. B.; Curtis-Long, M. J.; Lee, J. W.; Ryu, H. W.; Kim, J. Y.; Lee, W. S.; Park, K. H. Structural characteristics of flavanones and flavones from Cudrania tricuspidata for neuraminidase inhibition. Bioorganic& Medicinal Chemistry Letters,2009,19 (17):4912-4915.
    [13]Ryu, Y. B.; Kim, J. H.; Park, S.-J.; Chang, J. S.; Rho, M.-C.; Bae, K.-H.; Park, K. H.; Lee, W. S. Inhibition of neuraminidase activity by polyphenol compounds isolated from the roots of Glycyrrhiza uralensis. Bioorganic& Medicinal Chemistry Letters,2010,20 (3):971-974.
    [14]Sun, X.-L.; Kanie, Y.; Guo, C.-T.; Kanie, O.; Suzuki, Y.; Wong, C.-H. Syntheses of C-3-Modified Sialylglycosides as Selective Inhibitors of Influenza Hemagglutinin and Neuraminidase. European Journal of Organic Chemistry,2000,2000 (14):2643-2653.
    [15]Sidwell, R. W.; Smee, D. F. In vitro and in vivo assay systems for study of influenza virus inhibitors. Antiviral Research,2000,48 (1):1-16.
    [16]Yang, L.; Li, C.; Lin, Z.; Sun, C.; Chen, L. Expression and Application of Neuraminidase of Influenza Virus. China Biotechnology,2009,29 (5):6-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700