用户名: 密码: 验证码:
计算机辅助药物和蛋白性质预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年来,组合化学和高通量筛选技术的不断发展产生了大量化学、生物和药物等方面的相关数据。但是,得到化合物小分子的结构以及生物大分子的序列和结构的速度远远大于得到其相对应的性质和功能数据的速度,这在一定程度上阻碍了研究者们对知识的探索。而计算机辅助方法则提供了一条可取的有效途径。
     本论文所关注的就是利用计算机辅助的方法对蛋白质大分子、药物小分子的性质进行预测研究,以及对配体-蛋白质相互作用模式和相关生理活性进行预测研究。一方面的目的是利用已知数据建立准确、快速的预测模型,以对未知样本的性质进行预测;另一方面的目的是通过对所建立的预测模型的解释,期望在一定程度上揭示影响性质的关键因素,能够为样本的优化提供有用的信息;最后,期望计算机辅助预测这种方法以及所建立的预测模型能够应用于实际中,有助于筛选出符合研究者要求的化合物分子,节约实验成本、提高筛选速度、缩短实验周期。
     论文的第一章概述了计算机辅助性质预测方法的基本原理,从数据的获取和处理、研究样本的特征表示、模型的建立、评价和验证这些方面进行了详细的阐述。另外,介绍了计算机辅助配体-蛋白结合模式预测—分子对接方法的原理。最后,对本论文所使用的算法进行了介绍。
     论文的第二章,我们将计算机辅助性质预测方法应用于蛋白质大分子的性质预测。具体研究内容是蛋白质折叠过程中最基本的两个方面:蛋白质折叠速率的定量预测和蛋白质折叠途径类型的模式识别研究。在第一个研究工作中,完全从蛋白质序列角度出发,采用氨基酸序列自相关方法对101条蛋白质序列进行了表征,基于遗传算法选择出来的关键特征,分别采用全局(multiple linear regression, MLR)和局部(local lazy regression, LLR)模型来预测蛋白质的折叠速率,结果显示局部模型的预测能力优于全局模型。而且,3-fold、5-fold和10-fold交互检验的结果也表明了局部模型具有很好的预测能力和稳定性。此外,我们还分析了影响蛋白质折叠速率的关键特征:未折叠的熵变、疏水作用、二级结构偏好以及残基柔性。在第二个研究工作中,同样地,完全从蛋白质序列角度出发,采用氨基酸序列自相关方法对101条蛋白质序列进行了表征,使用支持向量机-递归特征消除(Support Vector Machine-Recursive Feature Elimination, SVM-RFE)对所有计算得到的特征根据其支持向量的权重进行重要性排序,通过抽一法(leave-one-out, LOO)交互检验的结果,最小二乘支持向量机(least square-support vector machines,LS-SVMs)方法最终使用排在前7个的重要特征建立了分类模型,准确率为91.09%,Matthews相关系数为80.88%。3-fold、5-fold和10-fold交互检验的结果也显示了所建立的预测模型的预测能力和稳定性。另外,我们还分析了氨基酸性质对蛋白折叠途径类型的影响,比如未折叠的自由能、疏水性、二级结构分布以及电荷分布等。
     论文的第三章,我们将计算机辅助法应用于配体-蛋白的相互作用模式和相互作用强度的预测。在第一个研究工作中,采用从蛋白、配体和蛋白-配体复合物角度出发的组合分子建模方法分析了58个分子对白明胶酶MMP-2和MMP-9的结构-活性关系和结合模式。(1)蛋白角度:蛋白分子的序列比对和结构叠合能够更好地了解蛋白的活性位点信息;(2)抑制剂小分子角度:QSAR研究可以准确预测小分子的抑制活性,并提供影响活性的关键结构特征的信息;(3)蛋白-配体复合物角度:分子对接研究能够识别关键残基以及更好地理解蛋白-配体的关键相互作用。这种从多角度出发的研究策略能够提供很多重要的信息,并且为将来设计新的MMPs抑制剂分子提供了一种思路。在第二个研究工作中,以一系列新型MMP-13抑制剂分子为研究对象,关注了QSAR研究中的两个重要问题:活性构象的选取和描述符的表征。在MMP-13受体结构已知的情况下,通过精确的分子对接程序Glide将所有待研究的化合物分子对接到MMP-13的活性位点处,获得化合物分子的活性构象。在描述符表征部分,使用了配体分子的结构描述符、ADME性质相关的描述符以及表征配体和蛋白相互作用的描述符,通过遗传算法选择出影响化合物分子抑制活性的关键描述符,同时建立了MLR模型(全局模型),内部检验和外部检验都证明了其具有稳定性和预测能力。考虑到局部模型的优势,我们还建立了LLR模型,与全局模型相比,局部模型能显著提高模型的预测能力。
     论文的第四章,我们将计算机辅助性质预测方法应用于类药分子ADME/Tox相关性质的预测研究中。在第一个研究工作中,选取CYP2C19作为研究对象,基于7750个结构多样性的化合物分子,采用随机森林(random forest, RF)方法建立了识别CYP2C19底物分子的分类模型。基于6200个训练集样本,RF选出了19个重要的描述符,并且建立了分类模型,然后对1550个外部测试集样本进行了预测,结果显示外部测试集的预测准确率可达93.42%,Matthews相关系数达到80.36%。所建立的RF模型运行速度快,且识别精确度高,可以在药物研发的早期阶段用于识别CYP2C19的底物分子,从理论水平上为设计药物分子的研究者提供有用的信息,减少通过代谢导致的药物-药物相互作用的发生概率,提高药物的有效性、安全性。在第二个研究工作中,基于947个结构多样性的化合物分子,采用SVM-RFE方法对计算得到的描述符根据其支持向量的权重进行了重要性排序,用LS-SVMs方法建立了识别是否能引起药物性肝损伤的化合物分子的分类模型。基于710个训练集样本,通过LOO交互检验的结果,LS-SVMs最终使用排在前15个的重要描述符建立了分类模型,准确率达到76.48%,对237个外部测试集样本的预测准确率可达到70.04%。所建立的分类模型可以应用于判断化合物分子是否能引起人类肝细胞毒性,尤其是对能引起肝毒性的化合物分子的判断非常准确,说明理论计算方法是一种非常有效的预测工具,可以应用到其他许多ADME/Tox相关性质的预测上,并且可以在新药研发的早期阶段为研究者提供有用的信息,可能在一定程度上提高药物的筛选速度。
Recently, with the development of combinatorial chemistry and high-throughput screening techniques, a vast of data related to chemistry, biology and drug are produced. However, the speed to obtain the molecular structures and the sequences/structures of biomacromolecule is much faster than that of the corresponding properties or function data, which has kept researchers from exploring knowledge to some extent. The computer-aided method to predict properties is a very effective approach.
     This dissertation is concerned to use the computer-aided method to study the properties of proteins and drugs, and to study the interacting mode between ligand and protein and related bioactivities. The purpose is to build accurate and fast predictive model using the known data to predict the properties of unknown samples; on the other hand, the purpose is that through exploring the developed predictive model, we hope to reveal the critical factors influencing the studied properties, which can provide some useful information to optimize samples. Finally, we expect the idea of the computer-aided method and the built models have its practical use, and to help screening the required molecules, saving experimental cost, improving the speed of screening and reducing experimental time.
     In Chapter 1, a brief introduction of principle of the computer-aided method was given. From acquisition of data, pre-processing of samples, characterization of studied samples, the development of a stable, reliable and predictive model to validation and assessment of model, all of these aspects of the computer-aided method were described in detail. In addition, we also introduced the principle of molecular docking method that studies the interacting mode between ligand-protein. Finally, the algorithms used in this dissertation were presented.
     In Chapter 2, we applied the computer-aided method to predict the properties of proteins. Concrete research content includes the two basic aspects of protein folding process:quantitatively predicting folding rates and recognizing the type of protein folding pathway. In the first work, our main purpose is to develop a general, fast and accurate model to predict the protein folding rates completely based on the information of the protein sequences. The information of amino acid sequence autocorrelation (AASA) was employed to represent 101 protein samples. Based on the significant features selected by genetic algorithem (GA), the global (multiple linear regression, MLR) and local (local lazy regression, LLR) methods were employed to develop prediction models for protein folding rates. The LLR method performed better than MLR. The three-fold, five-fold and ten-fold cross validation results showed that the local model was more robust and stable than the global one. Furthermore, we analyzed the significant features including unfolding entropy changes, hydrophobicity, secondary structure tendency and flexibility that have great effect on folding rates. In the second work, the same 101 protein sequences were employed, and the information of amino acid sequence autocorrelation (AASA) completely based on sequence was used to represent protein samples. Support vector machine-recursive feature elimination (SVM-RFE) was used to rank all the calculated features according to weight of support vectors. According to the results of leave-one-out validation method, least squares-support vector machines (LS-SVMs) was used to build classification model using toped seven features. The accuracy was 91.09%, and MCC value was 80.88%. The three-fold, five-fold and ten-fold cross validation results showed that the built classification model was stable, reliable and predictive. Additionally, we analyzed the significant features to reveal the factors influencing the type of protein folding kinetics pathway, and found out that amino acid properties, unfolding Gibbs free energy change, hydrophobicity, secondary structures and charge, play vital roles in the behavior of protein folding.
     In Chapter 3, we applied the computer-aided method to predict the interacting mode and interacting strength between ligand and protein. In the first work, the combined molecular modeling approach from the perspective of protein, ligand and their complex were employed to obtain some insights into the structure-activity relationship, interaction mode between protein and ligand of 58 novel gelatinases potent inhibitors. (1) Perspective of protein:sequence alignment and structure superimposition can provide better understanding of the binding site of proteins. (2) Perspective of inhibitors:the QSAR study of 58 inhibitors can give accurate prediction of activity and gain some insights into the structural features responsible for the activity. (3)Perspective of protein-ligand complex:molecular docking study was performed to identify the key residues and critical interactions between the ligands and proteins. This research strategy from multi-angles can provide more important information, and present a new way for the further design of new potent inhibitors. In the second work, a series of new inhibitors of MMP-13 were taken as the research object, and we focus on two important issues in QSAR study:the selection of active conformation and the characterization of samples. When the three-dimensional structure of MMP-13 is known, the accurate molecular docking program—Glide was employed to dock all the studied compounds into the active site of MMP-13, and then active conformation for each compound was obtained. In the section of characterization, structural descriptors and descriptors related to ADME were calculated, and the descriptors based on the docked ligand-protein complex conformation were also calculated to describe the interaction between ligand and protein. Genetic algorithm was used to select the important descriptors influencing on inhibitory activity, at the same time, MLR model (i.e. the global model) was constructed, and both internal and external validation showed the built model was stable and predictive. Considering the strength of the local model, LLR model was also developed. Compared with the global one, the local model can significantly improve the predictive ability.
     In Chapter 4, we applied the computer-aided method to predict the properties related to ADME/Tox of drugs. In the first work, CYP2C19 was taken as the research object. Based on the diversified structures of 7750 compounds, random forest (RF) was employed to develop a classification model to recognize the substrates of CYP2C19. Based on 6200 compounds in training set, RF selected 19 important descriptors and built classification model. Then, this model was performed to predict 1550 compounds in external test set, which showed the accuracy was 93.42%and MCC value was 80.36%. The developed model had higher classification speed and more accurate recognition rate, which can be applied to recognize substrates of CYP2C19 in early-stage of drug discovery. We expect that it can help to provide useful information from the level of theory for researchers, reduce the probability of drug-drug interaction caused by metabolism, and improve the effectiveness and safety of drugs. In the second work, based on the diversified structures of 947 compounds, SVM-RFE was used to rank all the calculated descriptors according to weight of support vectors. LS-SVMs algorithm was employed to build classification model to recognize the compound that induced hepatic injury. Based on 710 compounds in training set, according to the results of leave-one-out validation method, the toped fifteen descriptors was used to build LS-SVMs classification model, and the accuracy was 76.48%. For 237 compounds in external test set, the accuracy had achieved 70.04%. Our results showed that the built classification model can be applied to determine whether one compound can induce human hepatocytes toxicity, especially the reorganization of compound that can induced hepatic injury was very accurate, which showed that the computer-aided method was a very effective tool and can be applied to predict other properties related to ADME/Tox. Furthermore, the computer-aided method can be used in early-stage of drug discovery, help to provide useful information, and improve the screening speed to some extent.
引文
1. Esposito, E. X.; Hopfinger, A. J.; Madura, J. D., Methods for Applying the Quantitative Structure-Activity Relationship Paradigm. In 2004; Vol.275, pp 131-213.
    2. Basak, S. C.; Bertelsen, S.; Grunwald, G. D., Use of graph theoretic parameters in risk assessment of chemicals. Toxicol. Lett.1995,79, (1-3),239-250.
    3. Martin, Y. C.; Kofron, J. L.; Traphagen, L. M., Do Structurally Similar Molecules Have Similar Biological Activity? J. Med. Chem.2002,45, (19),4350-4358.
    4. Hansch, C.; Maloney, P. P.; Fujita, T.; Muir, R. M., Correlation of Biological Activity of Phenoxyacetic Acids with Hammett Substituent Constants and Partition Coefficients. Nature 1962,194,(4824),178-180.
    5. Hansch, C.; Fujita, T., p-σ-π Analysis. A Method for the Correlation of Biological Activity and Chemical Structure. J. Am. Chem. Soc.1964,86, (8),1616-1626.
    6. Fujita, T.; Iwasa, J.; Hansch, C., A New Substituent Constant, π, Derived from Partition Coefficients. J. Am. Chem. Soc.1964,86, (23),5175-5180.
    7. Free, S. M.; Wilson, J. W., A Mathematical Contribution to Structure-Activity Studies. J. Med Chem.1964,7, (4),395-399.
    8. Crippen, G M., Distance geometry approach to rationalizing binding data. J. Med. Chem. 1979,22, (8),988-997.
    9. Hopfinger, A. J., A QSAR investigation of dihydrofolate reductase inhibition by Baker triazines based upon molecular shape analysis. J. Am. Chem. Soc.1980,102, (24), 7196-7206.
    10. Cramer, R. D.; Patterson, D. E.; Bunce, J. D., Comparative molecular field analysis (CoMFA).1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc. 1988,110,(18),5959-5967.
    11.Klebe, G.; Abraham, U.; Mietzner, T., Molecular Similarity Indices in a Comparative Analysis (CoMSIA) of Drug Molecules to Correlate and Predict Their Biological Activity. J. Med. Chem.1994,37, (24),4130-4146.
    12. Jain, A. N.; Koile, K.; Chapman, D., Compass:Predicting Biological Activities from Molecular Surface Properties. Performance Comparisons on a Steroid Benchmark. J. Med. Chem.1994,37, (15),2315-2327.
    13. Jain, A. N.; Dietterich, T. G.; Lathrop, R. H.; Chapman, D.; Critchlow, R. E.; Bauer, B. E.; Webster, T. A.; Lozano-Perez, T., Compass:A shape-based machine learning tool for drug design. J. Comput. AidedMol. Des.1994,8, (6),635-652.
    14. Hopfinger, A. J.; Wang, S.; Tokarski, J. S.; Jin, B.; Albuquerque, M.; Madhav, P. J.; Duraiswami, C., Construction of 3D-QSAR Models Using the 4D-QSAR Analysis Formalism. J. Am. Chem. Soc.1997,119, (43),10509-10524.
    15. Vedani, A.; McMasters, D. R.; Dobler, M., Multi-conformational Ligand Representation in 4D-QSAR:Reducing the Bias Associated with Ligand Alignment. QSAR Comb. Sci. 2000, 19,(2),149-161.
    16. Vedani, A.; Dobler, M., Multidimensional QSAR:Moving from three-to five-dimensional concepts. QSAR Comb. Sci. 2002,21, (4),382-390.
    17. Vedani, A.; Dobler, M.; Lill, M. A., Combining Protein Modeling and 6D-QSAR. Simulating the Binding of Structurally Diverse Ligands to the Estrogen Receptor. J. Med. Chem.2005,48, (11),3700-3703.
    18.李仁利,三维以上定量构效关系.国际药学研究杂志2007,34,(4),241-245.
    19. http://www.oecd.org/dataoecd/33/37/37849783.pdf.
    20. Cronin, M. T. D.; Schultz, T. W, Pitfalls in QSAR. J. Mol. Struct-Theochem 2003,622, (1-2),39-51.
    21. Barnett, V.; Lewis, T., Outliers in Statistical Data,3rd Edition. John Wiley& Sons:New York,1994.
    22. SYBYL6.9, Tripos Associates Inc:2003.
    23. Maestro, version9.0, Schrodinger, LLC:New York, NY,2009.
    24. HyperChem 7.0, Hypercube. Inc:2002.
    25. ISIS Draw, http://www.mdli.com/downloads/downloadable/index.jsp.
    26. Chemoffice. In CambridgeSoft:2008.
    27. Gaussian, http://www.gaussian.com/.
    28. http://cactus.nci.nih.gov/services/translate/.
    29. http://www.genome.ip/aaindex.
    30. Moreau, G.; Broto, P., Autocorrelation of a topological structure:a new molecular descriptor. Nouv.J. Chim 1980,4,359-360.
    31. David, S. H., Prediction of protein helix content from an autocorrelation analysis of sequence hydrophobicities. Biopolymers 1988,27, (3),451-477.
    32. Chou, K. C., Prediction of Protein Subcellular Locations by Incorporating Quasi-Sequence-Order Effect. Biochem. Biophys. Res. Commun.2000,278, (2),477-483.
    33. Robert, R. S.; Barbara, A. T., Population structure inferred by local spatial autocorrelation: An example from an Amerindian tribal population. Am. J. Phys. Anthropol.2006,129, (1), 121-131.
    34. Li, Z. R.; Lin, H. H.; Han, L. Y.; Jiang, L.; Chen, X.; Chen, Y. Z., PROFEAT:a web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence. Nucleic Acids Res.2006,34, (suppl_2), W32-37.
    35. Dubchak, I.; Muchnik, I.; Holbrook, S. R.; Kim, S. H., Prediction of protein folding class using global description of amino acid sequence. Proc. Natl. Acad. Sci. USA 1995,92, (19), 8700-8704.
    36. Inna, D.; Ilya, M.; Christopher, M.; Igor, D.; Sung-Hou, K., Recognition of a protein fold in the context of the SCOP classification. Proteins 1999,35, (4),401-407.
    37. Chou, K. C.; Cai, Y. D., Prediction of protein subcellular locations by GO-FunD-PseAA predictor. Biochem. Biophys. Res. Commun.2004,320, (4),1236-1239.
    38. Schneider, G.; Wrede, P., The rational design of amino acid sequences by artificial neural networks and simulated molecular evolution:de novo design of an idealized leader peptidase cleavage site. Biophys J.1994,66, (2),335-344.
    39. Grantham, R., Amino Acid Difference Formula to Help Explain Protein Evolution. Science 1974,185, (4154),862-864.
    40. Kuo-Chen, C., Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins 2001,43, (3),246-255.
    41. Chou, K. C., Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics 2005,21, (1),10-19.
    42. Feng, Z. P., An overview on predicting the subcellular location of a protein. In Silico Biol
    2002,2, (3),291-303.
    43. DRAGON for Windows (Software for molecular Descriptor Calculation), Version5.4, Talete srl:2006.
    44. CODESSA http://www. codessa-pro. com/.
    45. QikProp, Version3.2, Schrodinger, LLC:New York, NY,2009.
    46. GRID, http://www. moldiscovery. com/soft grid. php.
    47. MOLCONN-Z, http://www. edusoft-lc. com/molconn/.
    48. ADMETPredictor, http://www.simulations-plus.com/.
    49. PreADMET, http.//preadmet. bmdrc. org/preadmet/index. php.
    50. Katritzky, A. R.; Lobanov, V. S.; Karelson, M., CODESSA:Reference Manual; Version 2. University of Florida 1994.
    51. Kier, L. B.; Hall, L. H., Molecular Connectivity in Chemistry and Drug Research. Academic Press:New York,1976.
    52. Kier, L. B.; Hall, L. H., Molecular Connectivity in Structure-Activity Analysis. John Wiley & Sons:New York,1986.
    53. Balaban, A. T., From Chemical Topology to Three-Dimensional Geometry. Plenum Press: New York,1996.
    54. Devillers, J.; Balaban, A. T., Topological Indices and Related Descriptors in QSAR and QSPR. Amsterdam, The Netherlands,1999.
    55. Karelson, M., Molecular Descriptors in QSAR/QSPR. John Wiley& Sons:New York,2000.
    56. Todeschini, R.; Consonni, V., Handbook of Molecular Descriptors. Wiley-VCH:Weinheim, Germany,2000.
    57.许禄;胡昌玉, 《应用化学图论》.科学出版社:北京,2000.
    58. Karelson, M.; Lobanov, V. S.; Katritzky, A. R., Quantum-Chemical Descriptors in QSAR/QSPR Studies. Chem. Rev.1996,96, (3),1027-1044.
    59. Balaban, A. T., From Chemical Topology to 3D Geometry. J. Chem. Inf. Comput. Sci.1997, 37, (4),645-650.
    60. Todeschini, R.; Gramatica, P., New 3D Molecular Descriptors:The WHIM theory and QSAR Applications. In 3D QSAR in Drug Design,1998; pp 355-380.
    61. Engel, T.; Gasteiger, J., Chemical structure representation for information exchange. Online Information Review 2002,26, (3),139-145.
    62. GGruciani; M.Pastor; S.Clementi, Handling information from 3D grid maps for QSAR studies. In Molecular Modeling and Prediction ofBioactivity., K.Gundertofte; Jorgensen, F. E., Eds. Kluwer Academic/Plenum:New York,2000; pp 73-82.
    63. Cruciani, G.; Crivori, P.; Carrupt, P. A.; Testa, B., Molecular fields in q uantitative
    structure-permeation relationships:the VolSurf approach. J. Mol. Struct-Theochem 2000, 503,(1-2),17-30.
    64. Crivori, P.; Cruciani, G.; Carrupt, P.-A.; Testa, B., Predicting Blood-Brain Barrier Permeation from Three-Dimensional Molecular Structure. J. Med. Chem.2000,43, (11), 2204-2216.
    65. MOE, http://www. chemcomp. com/.
    66.刘焕香.基于支持向量机方法的QSAR/QSPR在化学、生物及环境科学中的应用研究.兰州大学,兰州,2005.
    67.任月英.QSPR/QSAR在药物、分析化学和环境科学中的应用.兰州大学,兰州,2007.
    68. Liaison, version 5.5, Schrodinger,LLC:New York, NY,2009.
    69. Furusj, E.; Svenson, A.; Rahmberg, M.; Andersson, M., The importance of outlier detection and training set selection for reliable environmental QSAR predictions. Chemosphere 2006, 63,(1),99-108.
    70. Daszykowski, M.; Walczak, B.; Massart, D. L., Representative subset selection. Anal. Chim. Acta 2002,468,(1),91-103.
    71. Tominaga, Y, Representative subset selection using genetic algorithms. Chemom. Intell. Lab.Syst.1998,43, (1-2),157-163.
    72. Galvao, R. K. H.; Araujo, M. C. U.; Jose Gledson, E.; Pontes, M. J. C.; Silva, E. C.; Saldanha, T. C. B., A method for calibration and validation subset partitioning. Talanta 2005, 67, (4),736-740.
    73. Golbraikh, A.; Tropsha, A., Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection. Molecular Diversity 2000,5, (4), 231-243.
    74. Ren, Y. Y.; Liu, H. X.; Yao, X. J.; Liu, M. C., Three-dimensional topographic index applied to the prediction of acyclic C5-C8 alkenes Kovats retention indices on polydimethylsiloxane and squalane columns. J. Chromatogr. A 2007,1155,(1),105-111.
    75. Ren, Y. Y.; Liu, H. X.; Yao, X. J.; Liu, M. C.; Hu, Z. D.; Fan, B. T., The accurate QSPR models for the prediction of nonionic surfactant cloud point. J. Colloid Interf. Sci.2006, 302, (2),669-672.
    76. Ren, Y. Y.; Liu, H. X.; Yao, X. J.; Liu, M. C., Prediction of ozone tropospheric degradation rate constants by projection pursuit regression. Anal. Chim. Acta 2007,589, (1),150-158.
    77. Ren, Y. Y.; Liu, H. X.; Li, S. Y.; Yao, X. J.; Liu, M. C., Prediction of binding affinities to [beta]1 isoform of human thyroid hormone receptor by genetic algorithm and projection pursuit regression. Bioorg. Med. Chem. Lett.2007,17, (9),2474-2482.
    78. Ren, Y. Y.; Liu, H. X.; Yao, X. J.; Liu, M. C., An accurate QSRR model for the prediction of
    the GC×GC-TOFMS retention time of polychlorinated biphenyl (PCB) congeners. Anal. Bioanal. Chem.2007,388, (1),165-172.
    79. Kennard, R. W.; Stone, L. A., Computer Aided Design of Experiments. Technometrics 1969, 11,(1),137-148.
    80. Snee, R. D., Validation of regression models:methods and examples. Technometrics 1977, 19,415-428.
    81.Zupan, J.; Novic, M.; Ruisanchez, I., Kohonen and counterpropagation artificial neural networks in analytical chemistry. Chemom. Intell. Lab. Syst.1997,38, (1),1-23.
    82. Johann, G.; Jure, Z., Neural Networks in Chemistry. Angew. Chem. Int. Edit.1993,32, (4), 503-527.
    83. Eriksson, L.; Johansson, E., Multivariate design and modeling in QSAR. Chemom. Intell. Lab.Sys.1996,34, (1),1-19.
    84. Mitchell, T. J., An algorithm for the Construction of "D-optimal" Experimental Designs. Technometrics 1974,16,203-210.
    85. Golbraikh, A.; Tropsha, A., Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection. J. Comput. Aided Mol. Des. 2002,16, (5),357-369.
    86. Golbraikh, A., Molecular Dataset Diversity Indices and Their Applications to Comparison of Chemical Databases and QSAR Analysis. J. Chem. Inf. Comput. Sci.2000,40, (2), 414-425.
    87. Daszykowski, M.; Walczak, B.; Massart, D. L., On the Optimal Partitioning of Data with K-Means, Growing K-Means, Neural Gas, and Growing Neural Gas. J. Chem. Inf. Comput. Sci.2002,42,(6),1378-1389.
    88. Adams, M. J., Chemometrics in Analytical Spectroscopy. Cambridge, UK,2004.
    89. Taylor, R., Simulation Analysis of Experimental Design Strategies for Screening Random Compounds as Potential New Drugs and Agrochemicals. J. Chem. Inf. Comput. Sci.1995, 35, (1),59-67.
    90. Potter, T.; Matter, H., Random or Rational Design? Evaluation of Diverse Compound Subsets from Chemical Structure Databases. J. Med Chem.1998,41, (4),478-488.
    91. Burden, F. R., Robust QSAR Models Using Bayesian Regularized Neural Networks. J. Med. Chem.1999,42, (16),3183-3187.
    92. Wu, W.; Walczak, B.; Massart, D. L.; Heuerding, S.; Erni, F.; Last, I. R.; Prebble, K. A., Artificial neural networks in classification of NIR spectral data:Design of the training set. Chemom. Intell. Lab. Syst.1996,33, (1),35-46.
    93. Rajer-Kanduc, K.; Zupan, J.; Majcen, N., Separation of data on the training and test set for
    modelling:a case study for modelling of five colour properties of a white pigment. Chemom. Intell. Lab. Syst.2003,65, (2),221-229.
    94. Ren, Y.; Liu, H.; Yao, X.; Liu, M., Prediction of ozone tropospheric degradation rate constants by projection pursuit regression. Anal. Chim. Acta 2007,589, (1),150-158.
    95. Xi, L. L.; Du, J.; Li, S. Y.; Li, J. Z.; Liu, H. X.; Yao, X. J., A combined molecular modeling study on gelatinases and their potent inhibitors. J. Comput. Chem.31, (1),24-42.
    96. Xi, L. L.; Li, S. Y; Liu, H. X.; Li, J. Z.; Lei, B. L.; Yao, X. J., Global and local perdiction of protein folding rates based on sequence autocorrelation information. J. Theor. Biol.2010, doi:10.1016/j.jtbi.2010.03.042.
    97. Chong, I. G.; Jun, C. H., Performance of some variable selection methods when multicollinearity is present. Chemom. Intell. Lab. Syts.2005,78, (1-2),103-112.
    98. Mager, P. P.; Sanchez, L., Variable Subset Selection in the Presence of Flagged Observations and Multicollinear Descriptors in QSAR Curr. Comput. Aided. Drug Des. 2005,1,(2),163-177.
    99. Holland, J., Adaptation in natural and artificial systems. Arbor, A., Eds:University of Michigan Press:1975.
    100. Furnival, G. M.; Wilson, J. R. W., Regression by leaps and bounds. Technometrics 1974,16, 499-504.
    101. Agrafiotis, D. K.; Bandyopadhyay, D.; Wegner, J. K.; van Vlijmen, H., Recent Advances in Chemoinformatics. J. Chem. Inf. Model 2007,47, (4),1279-1293.
    102. Saeys, Y.; Inza, I.; Larranaga, P., A review of feature selection techniques in bioinformatics. Bioinformatics 2007,23, (19),2507-2517.
    103. Yuan, H.; Wang, Y.; Cheng, Y, Local and Global Quantitative Structure-Activity Relationship Modeling and Prediction for the Baseline Toxicity. J.Chem.Inf.Model 2006,47, (1),159-169.
    104.李加忠.QSAR研究中提高模型预测能力的新方法探讨及其在药物化学中的应用.兰州大学,兰州,2009.
    105. Li, J. Z.; Li, S. Y.; Lei, B. L.; Liu, H. X.; Yao, X. J.; Liu, M. C.; Gramatica, P., A new strategy to improve the predictive ability of the local lazy regression and its application to the QSAR study of melanin-concentrating hormone receptor 1 antagonists. J. Comput. Chem.31,(5),973-985.
    106. Gramatica, P.; Pilutti, P.; Papa, E., Validated QSAR Prediction of OH Tropospheric Degradation of VOCs:Splitting into Training/Test Sets and Consensus Modeling. J. Chem. Inf. Comput. Sci.2004,44, (5),1794-1802.
    107. Gramatica, P.; Giani, E.; Papa, E., Statistical external validation and consensus modeling:A
    QSPR case study for Koc prediction. J. Mol. Graph. Model 2007,25, (6),755-766.
    108. Sutherland, J. J.; Weaver, D. F., Development of Quantitative Structure-Activity Relationships and Classification Models for Anticonvulsant Activity of Hydantoin Analogues. J. Chem. Inf. Comput. Sci.l 2003,43, (3),1028-1036.
    109.Hewitt, M.; Cronin, M. T. D.; Madden, J. C.; Rowe, P. H.; Johnson, C.; Obi, A.; Enoch, S. J., Consensus QSAR Models:Do the Benefits Outweigh the Complexity? J. Chem. Inf. Model 2007,47,(4),1460-1468.
    110. Votano, J. R.; Parham, M.; Hall, L. H.; Kier, L. B.; Oloff, S.; Tropsha, A.; Xie, Q.; Tong, W., Three new consensus QSAR models for the prediction of Ames genotoxicity. Mutagenesis 2004,19,365-377.
    111. Asikainen, A. H.; Ruuskanen, J.; Tuppurainen, K. A., Consensus kNN QSAR:A Versatile Method for Predicting the Estrogenic Activity of Organic Compounds In Silico. A Comparative Study with Five Estrogen Receptors and a Large, Diverse Set of Ligands. Environ. Sci. Technol.2004,38, (24),6724-6729.
    112. Asikainen, A. H.; Ruuskanen, J.; Tuppurainen, K. A., Performance of (consensus) kNN QSAR for predicting estrogenic activity in a large diverse set of organic compounds. SAR QSAR Environ. Res.2004,15, (1),19-32.
    113. Li, Y. K.; Shao, X. G.; Cai, W. S., A consensus least squares support vector regression (LS-SVR) for analysis of near-infrared spectra of plant samples. Talanta 2007,72, (1), 217-222.
    114. Su, Z. Q.; Hong, H. X.; Perkins, R.; Shao, X. G.; Cai, W. S.; Tong, W. D., Consensus analysis of multiple classifiers using non-repetitive variables:Diagnostic application to microarray gene expression data. Comput. Biol. Chem.2007,31, (1),48-56.
    115. Li, J. Z.; Lei, B. L.; Liu, H. X.; Li, S. Y.; Yao, X. J.; Liu, M. C.; Gramatica, P., QSAR study of malonyl-CoA decarboxylase inhibitors using GA-MLR and a new strategy of consensus modeling. J. Comput.Chem.2008,29, (16),2636-2647.
    116. Li, J. Z.; Du, J.; Xi, L. L.; Liu, H. X.; Yao, X. J.; Liu, M. C., Validated quantitative structure-activity relationship analysis of a series of 2-aminothiazole based p56Lck inhibitors. Anal. Chim. Acta 2009,631, (1),29-39.
    117. Lei, B. L.; Xi, L. L.; Li, J. Z.; Liu, H. X.; Yao, X. J., Global, local and novel consensus quantitative structure-activity relationship studies of 4-(Phenylaminomethylene) isoquinoline-1,3 (2H,4H)-diones as potent inhibitors of the cyclin-dependent kinase 4. Anal. Chim. Acta 2009,644, (1-2),17-24.
    118. Gramatica, P., Principles of QSAR models validation:internal and external. QSAR Comb. Sci.2007,26, (5),694-701.
    119. Matthews, B. W., Comparison of the predicted and observed secondary structure of T4 phage lysozyme. BBA-Protein Struct. M1975,405, (2),442-451.
    120. Johnson, S. R., The Trouble with QSAR (or How I Learned To Stop Worrying and Embrace Fallacy). J. Chem. Inf. Model 2007,48, (1),25-26.
    121. Cramer III, R. D.; Bunce, J. D.; Patterson, D. E.; Frank, I. E., Crossvalidation, Bootstrapping, and Partial Least Squares Compared with Multiple Regression in Conventional QSAR Studies. QSAR Comb. Sci.1988,7, (1),18-25.
    122. Gentleman, R., Resampling Methods:A Practical Guide to Data Analysis (2nd ed.). Birkhauser:1999.
    123. Gramatica, P., Evaluation of different statistical approaches to the validation of Quantitative Structure-Activity Relationships. http://ecb:irc.it/DOCUMENTS/OSAR/Report on OSAR validation methods.pdf.
    124. Shao, J., Linear Model Selection by Cross-Validation. J. Am. Stat. Assoc.1993,88, (422), 486-494.
    125. Golbraikh, A.; Tropsha, A., Beware of q2! J. Mol. Graph. Model 2002,20, (4),269-276.
    126.Leach, A. R., Molecular modelling:principles and applications. Pearson Education Limited: Harlow, England,2001.
    127. Wold, S.; Sjostrom, M.; Ericksson, L., Partial least squares projections to latent structures (PLS) in chemistry. In Encyclopedia of computational chemistry., von Rague Schleyer, P., Ed. John Wiley& Sons:Chichester,1998; Vol.3.
    128. Yasri, A.; Hartsough, D., Toward an Optimal Procedure for Variable Selection and QSAR Model Building. J. Chem. Inf. Comput. Sci.2001,41, (5),1218-1227.
    129. Wold, S.; Eriksson, L., Statistical validation of QSAR results. In Chemometrics Methods in Molecular Design., van de Waterbeemd, H., Ed. VCH:Weinheim,1995; pp 309-318.
    130. Vedani, A.; Dobler, M.,5D-QSAR:The Key for Simulating Induced Fit? J. Med. Chem. 2002,45, (11),2139-2149.
    131. Polanski, J.; Gieleciak, R.; Bak, A., Probability issues in molecular design:predictive and modeling ability in 3D-QSAR schemes. Comb Chem High Throughput Screen.2004,7, (8), 793-807.
    132. Guha, R.; Serra, J. R.; Jurs, P. C., Generation of QSAR sets with a self-organizing map. J. Mol. Graph. Model 2004,23, (1),1-14.
    133. Weaver, S.; Gleeson, M. P., The importance of the domain of applicability in QSAR modeling. J. Mol. Graph. Model 2008,26, (8),1315-1326.
    134. Lavine, B.; Workman, J., Chemometrics. Anal. Chem.2006,78, (12),4137-4145.
    135. Jaworska, J.; Nikolova-Jeliazkova, N.; Aldenberg, T.,
    http://ecb.jrc.ec.europa.eu/home.php?CONTENU=/DOCUMENTS/QSAR/INFORMATIO N SOURCES/.2005.
    136. Nikolova, N.; Jaworska, J., Approaches to Measure Chemical Similarity-a Review. QSAR Comb. Sci.2003,22, (9-10),1006-1026.
    137. Yuan, H.; Wang, Y. Y.; Cheng, Y. Y, Local and Global Quantitative Structure-Activity Relationship Modeling and Prediction for the Baseline Toxicity. J. Chem. Inf. Model 2006, 47, (1),159-169.
    138. Stanforth, R.; Kolossov, E.; Mirkin, B., A Measure of Domain of Applicability for QSAR Modelling Based on Intelligent K-Means Clustering. QSAR Comb. Sci.2007,26, (7), 837-844.
    139. Atkinson, A. C., Plots, Transformations and Regression:An Introduction to Graphical Methods of Diagnostic Regression Analysis. Clarendon Press:Oxford,1985.
    140. David, S. G.; Arthur, J. O., Automated docking of substrates to proteins by simulated annealing. Proteins 1990,8, (3),195-202.
    141. Oshiro, C. M.; Kuntz, I. D.; Dixon, J. S., Flexible ligand docking using a genetic algorithm. J. Comput. AidedMol. Des.1995,9, (2),113-130.
    142. Taylor, R. D.; Jewsbury, P. J.; Essex, J. W., A review of protein-small molecule docking methods. J. Comput. Aided Mol. Des.2002,16, (3),151-166.
    143. Ewing, T. J. A.; Makino, S.; Skillman, A. G.; Kuntz, I. D., DOCK 4.0:Search strategies for automated molecular docking of flexible molecule databases. J. Comput. Aided Mol. Des. 2001,15, (5),411-428.
    144. Dixon, J. S., Evaluation of the CASP2 docking section. Proteins 1997,29, (S1),198-204.
    145. Jiang, F.; Kim, S.-H., "Soft docking":Matching of molecular surface cubes. J. Mol. Biol. 1991,219,(1),79-102.
    146. Kuntz, I. D., Structure-Based Strategies for Drug Design and Discovery. Science 1992,257, (5073),1078-1082.
    147. Abagyan, R.; Totrov, M., High-throughput docking for lead generation. Curr. Opin. Chem. Biol.2001,5, (4),375-382.
    148. O'Hearn, S. D.; Kusalik, A. J.; Angel, J. F., MolCom:a method to compare protein molecules based on 3-D structural and chemical similarity. Protein Eng.2003,16, (3), 169-178.
    149. SYBYL,version6.9,Tripos Associates,St.Louis, MO. URL:www.tripos.com.
    150. ClauBen, H.; Buning, C.; Rarey, M.; Lengauer, T., FlexE:efficient molecular docking considering protein structure variations. J. Mol. Biol.2001,308, (2),377-395.
    151. Chen, Y. Z.; Ung, C. Y, Prediction of potential toxicity and side effect protein targets of a
    small molecule by a ligand-protein inverse docking approach. J. Mol. Graph. Model 2001, 20,(3),199-218.
    152. Li, H. L.; Gao, Z. T.; Kang, L.; Zhang, H. L.; Yang, K.; Yu, K. Q.; Luo, X. M.; Zhu, W. L. Chen, K. X.; Shen, J. H.; Wang, X. C.; Jiang, H. L., TarFisDock:a web server for identifying drug targets with docking approach. Nucleic Acids Res.2006,34, (suppl_2), W219-224.
    153. Harriman, D. J.; Deslongchamps, G., Reverse-docking as a computational tool for the study of asymmetric organocatalysis. J. Comput. Aided Mol. Des. 2004,18, (5),303-308.
    154. Cai, J. H.; Han, C.; Hu, T. C.; Zhang, J.; Wu, D. L.; Wang, F. D.; Liu, Y. Q.; Ding, J. P.; Chen, K. X.; Yue, J. M.; Shen, X.; Jiang, H. L., Peptide deformylase is a potential target for anti-Helicobacter pylori drugs:Reverse docking, enzymatic assay, and X-ray crystallography validation. Protein Sci.2006,15,2071-2081.
    155. Chen, Y. Z.; Ung, C. Y, Prediction of potential toxicity and side effect protein targets of a small molecule by a ligand-protein inverse docking approach. J. Mol. Graph. Model 2001, 20,(3),199-218.
    156.徐筱杰;侯廷军;乔学斌;章威,计算机辅助药物分子设计.化学工业出版社:北京,2004.
    157. Hu, X. Modeling and Docking Studies of Matrix Meatoolproteinases. North Dakota State University, Fargo, North Dakota,2003.
    158. Rarey, M.; Kramer, B.; Lengauer, T.; Klebe, G., A Fast Flexible Docking Method using an Incremental Construction Algorithm. J. Mol. Biol.1996,261, (3),470-489.
    159. Rarey, M.; Wefing, S.; Lengauer, T., Placement of medium-sized molecular fragments into active sites of proteins. J. Comput. Aided Mol. Des.1996,10, (1),41-54.
    160. Bernd, K.; Matthias, R.; Thomas, L., CASP2 experiences with docking flexible ligands using FlexX. Proteins 1997,29, (S1),221-225.
    161. Rarey, M.; Kramer, B.; Lengauer, T., Multiple automatic base selection:Protein-ligand docking based on incremental construction without manual intervention. J. Comput. Aided Mol. Des.1997,11, (4),369-384.
    162. Matthias, R.; Bernd, K.; Thomas, L., The particle concept:placing discrete water molecules during protein-ligand docking predictions. Proteins 1999,34, (1),17-28.
    163. Hoffmann, D.; Kramer, B.; Washio, T.; Steinmetzer, T.; Rarey, M.; Lengauer, T., Two-Stage Method for Protein-Ligand Docking. J. Med. Chem.1999,42, (21),4422-4433.
    164. Bernd, K.; Matthias, R.; Thomas, L., Evaluation of the FlexX incremental construction algorithm for protein-ligand docking. Proteins 1999,37, (2),228-241.
    165. Kramer B; Metz G; Rarey M; T., L., Ligand docking and screening with FlexX. Med. Chem.
    Res.1999,9,463.
    166. Bohm, H.-J., The computer program LUDI:A new method for the de novo design of enzyme inhibitors. J. Comput. AidedMol. Des.1992,6, (1),61-78.
    167. Bohm, H.-J., LUDI:rule-based automatic design of new substituents for enzyme inhibitor leads. J. Comput. Aided Mol. Des.1992,6, (6),593-606.
    168. Linnainmaa, S.; Harwood, D.; Davis, L. S., Pose determination of a three-dimensional object using triangle pairs. Pattern Anal Machine Intelligence, IEEE Transactions 1988,10, (5),634-647.
    169. Joseph, B. M.; Howe, W. J., Computer design of bioactive molecules:A method for receptor-based de novo ligand design. Proteins 1991,11, (4),314-328.
    170. Kabsch, W., A solution for the best rotation to relate two sets of vectors. Acta Crystallogr. A 1976,32, (5),922-923.
    171. Yankeelov, J. A.; Koshland, D. E., Evidence for Conformation Changes Induced by Substrates of Phosphoglucomutase. J. Biol. Chem.1965,240,(4),1593-1602.
    172. Hou, T. J.; Wang, J. M.; Liao, N.; Xu, X. J., Applications of Genetic Algorithms on the Structure-Activity Relationship Analysis of Some Cinnamamides. J. Chem. Inf. Comput. Sci. 1999,39,(5),775-781.
    173. Hung-Ming, C.; Bo-Fu, L.; Hui-Ling, H.; Shiow-Fen, H.; Shinn-Ying, H., SODOCK: Swarm optimization for highly flexible protein-ligand docking. J. Comput. Chem.2007,28, (2),612-623.
    174. Bahram, H.; Afshan, M., Application of quantum topological molecular similarity descriptors in QSPR study of the O-methylation of substituted phenols. J. Comput. Chem. 2008,29, (2),266-274.
    175. Li, J. Z.; Lei, B. L.; Liu, H. X.; Li, S. Y.; Yao, X. J.; Liu, M. C.; Gramatica, P., QSAR study of malonyl-CoA decarboxylase inhibitors using GA-MLR and a new strategy of consensus modeling. J. Comput. Sci.2008,29, (16),2636-2647.
    176. Liu, H. X.; Papa, E.; Gramatica, P., QSAR Prediction of Estrogen Activity for a Large Set of Diverse Chemicals under the Guidance of OECD Principles. Chem. Res. Toxicol.2006,19, (11),1540-1548.
    177. Rogers, D.; Hopfinger, A. J., Application of Genetic Function Approximation to Quantitative Structure-Activity Relationships and Quantitative Structure-Property Relationships. J. Chem. Inf. Comput. Sci.1994,34, (4),854-866.
    178. Tropsha, A.; Gramatica, P.; Gombar, V. K., The Importance of Being Earnest:Validation is the Absolute Essential for Successful Application and Interpretation of QSPR Models. QSAR Comb. Sci.2003,22, (1),69-77.
    179. Willett, P., Chemoinformatics-similarity and diversity in chemical libraries. Curr. Opin. Biotechnol.2000,11, (1),85-88.
    180. Aha, D. W., Lazy learning:special issue editorial. Artif. Intell. Rev.1997,11, (1),7-10.
    181. Atkeson, C. G.; Moore, A. W.; Schaal, S., Locally Weighted Learning. Artif. Intell. Rev. 1997,11,(1),11-73.
    182. Mauro, B.; Gianluca, B.; Hugues, B., Lazy learning meets the recursive least squares algorithm. In Proceedings of the 1998 conference on Advances in neural information processing systems II, MIT Press:1999.
    183. Cleveland, W. S.; Devlin, S. J.; Grosse, E., Regression by local fitting:Methods, properties, and computational algorithms. J. Econometrics 1988,37, (1),87-114.
    184. Guha, R.; Dutta, D.; Jurs, P. C.; Chen, T., Local Lazy Regression:Making Use of the Neighborhood to Improve QSAR Predictions. J. Chem. Inf. Model 2006,46, (4), 1836-1847.
    185. Pan, T. H.; Li, S. Y.; Cai, W. J., Lazy Learning-Based Online Identification and Adaptive PID Control:A Case Study for CSTR Process. Ind. Eng. Chem. Res.2006,46, (2),472-480.
    186. Zhang, S. X.; Golbraikh, A.; Oloff, S.; Kohn, H.; Tropsha, A., A Novel Automated Lazy Learning QSAR (ALL-QSAR) Approach:Method Development, Applications, and Virtual Screening of Chemical Databases Using Validated ALL-QSAR Models. J. Chem. Inf. Model 2006,46,(5),1984-1995.
    187. Suykens, J. A. K.; Vandewalle, J., Least Squares Support Vector Machine Classifiers. Neural Process Lett.1999,9, (3),293-300.
    188. Vapnik, V. N., The Nature of Statistical Learning Theory. Springer Verlag:1995.
    189. Vapnik, V. N., Statistical Learning Theory. Wiley:1998.
    190. Cristianini, N.; Shawe-Taylor, J., Introduction to support vector machine and other kernel based learning methods.. Cambridge University Press:Cambridge,2000.
    191.薛春霞.SVM在QSPR中的应用及基于配体的计算机辅助药物设计。.兰州大学,兰州,2005.
    192.赵春燕.QSAR研究在生命分析化学和环境化学中的应用.兰州大学,兰州,2006.
    193. Yao, X. J.; Liu, H. X.; Zhang, R. S.; Liu, M. C.; Hu, Z. D.; Panaye, A.; Doucet, J. P.; Fan, B. T., QSAR and Classification Study of 1,4-Dihydropyridine Calcium Channel Antagonists Based on Least Squares Support Vector Machines. Mol. Pharmaceutics 2005,2, (5), 348-356.
    194. Liu, H. X.; Papa, E.; Walker, J. D.; Gramatica, P., In silico screening of estrogen-like chemicals based on different nonlinear classification models. J. Mol. Graph. Model 2007, 26, (1),135-144.
    195. Liu, H. X.; Yao, X. J.; Zhang, R. S.; Liu, M. C.; Hu, Z. S.; Fan, B. T., Accurate Quantitative Structure-Property Relationship Model To Predict the Solubility of C60 in Various Solvents Based on a Novel Approach Using a Least-Squares Support Vector Machine. J. Phys. Chem. B 2005,109, (43),20565-20571.
    196. Breiman, L., Random Forests. Mach. Learn.2001,45, (1),5-32.
    197. Liaw, A.; Wiener, M., Classification and Regression by randomForest. RNews 2002,2, (3), 18-22.
    198. Wu, B. L.; Abbott, T.; Fishman, D.; McMurray, W.; Mor, G.; Stone, K.; Ward, D.; Williams, K.; Zhao, H. Y., Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data. Bioinformatics 2003,19, (13),1636-1643.
    199. Chan, J. C. W.; Paelinckx, D., Evaluation of Random Forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery. Remote Sens. Environ.2008,112, (6),2999-3011.
    200. Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J. C.; Sheridan, R. P.; Feuston, B. P., Random Forest:A Classification and Regression Tool for Compound Classification and QSAR Modeling. J. Chem. Inf. Comput. Sci.2003,43, (6),1947-1958.
    201. Gunther, E. C.; Stone, D. J.; Gerwien, R. W.; Bento, P.; Heyes, M. P., Prediction of clinical drug efficacy by classification of drug-induced genomic expression profiles in vitro. Proc. Natl. Acad Sci. USA 2003,100, (16),9608-9613.
    202. Archer, K. J.; Kimes, R. V, Empirical characterization of random forest variable importance measures. Comput. Stat. Data Anal.2008,52, (4),2249-2260.
    203. Burges, C. J. C., A Tutorial on Support Vector Machines for Pattern Recognition. Data Min. Knowl. Disc.1998,2, (2),121-167.
    204. Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V, Gene Selection for Cancer Classification using Support Vector Machines. Mach. Learn.2002,46, (1),389-422.
    205. Cramer, R. D.; Patterson, D. E.; Bunce, J. D., Comparative molecular field analysis (CoMFA).1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc. 1988,110,(18),5959-5967.
    206. Klebe, G.; Abraham, U., Comparative Molecular Similarity Index Analysis (CoMSIA) to study hydrogen-bonding properties and to score combinatorial libraries. J. Comput. Aided Mol.Des.1999,13,(1),1-10.
    207. Bohm, M.; Sturzebecher, J.; Klebe, G., Three-Dimensional Quantitative Structure-Activity Relationship Analyses Using Comparative Molecular Field Analysis and Comparative Molecular Similarity Indices Analysis To Elucidate Selectivity Differences of Inhibitors Binding to Trypsin, Thrombin, and Factor Xa. J. Med. Chem.1999,42, (3),458-477.
    208. Needleman, S. B.; Wunsch, C. D., A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol.1970,48, (3),443-453.
    209. Smith, T. F.; Waterman, M. S., Identification of common molecular subsequences. J. Mol. Biol.1981,147, (1),195-197.
    210. Pearson, W. R.; Lipman, D. J., Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA 1988,85, (8),2444-2448.
    211. Altschul, S. F.; Gish, W.; Miller, W.; Myers, E. W.; Lipman, D. J., Basic local alignment search tool. J. Mol. Biol.1990,215, (3),403-410.
    1. Anfinsen, C. B., Principles that Govern the Folding of Protein Chains. Science 1973,181, (4096),223-230.
    2. Levinthal, C., Are there pathways for protein folding? J. Chim. Phys.1968,65, (44-45).
    3. Englander, S. W.; Mayne, L., Protein Folding Studied Using Hydrogen-Exchange Labeling and Two-Dimensional NMR. Annu. Rev. Biophys. Biomol. Struct.1992,21, (1),243-265.
    4. Baldwin, R. L., Pulsed H/D-exchange studies of folding intermediates. Curr. Opin. Struct. Biol.1993,3,(1),84-91.
    5. David, W. M.; Ken, A. D., A statistical mechanical model for hydrogen exchange in globular proteins. Protein Sci.1995,4, (9),1860-1873.
    6. Fabian, H.; Naumann, D., Methods to study protein folding by stopped-flow FT-IR. Methods 2004,34, (1),28-40.
    7. Maity, H.; Maity, M.; Krishna, M. M. G.; Mayne, L.; Englander, S. W., Protein folding:The stepwise assembly of foldon units. Proc. Natl. Acad. Sci. USA 2005,102, (13),4741-4746.
    8. Fersht, A., Structure and Mechanism in Protein Science:A Guide to Enzyme Catalysis and Protein Folding. WF.H. Freeman and Company, New York 1999,631.
    9. Maxwell, K. L.; Wildes, D.; Zarrine-Afsar, A.; De Los Rios, M. A.; Brown, A. G.; Friel, C. T.; Hedberg, L.; Horng, J.-C.; Bona, D.; Miller, E. J.; Vallee-Belisle, A.; Main, E. R. G.; Bemporad, F.; Qiu, L.; Teilum, K.; Vu, N.-D.; Edwards, A. M.; Ruczinski, I.; Poulsen, F. M.; Kragelund, B. B.; Michnick, S. W.; Chiti, F.; Bai, Y.; Hagen, S. J.; Serrano, L.; Oliveberg, M.; Raleigh, D. P.; Wittung-Stafshede, P.; Radford, S. E.; Jackson, S. E.; Sosnick, T. R.; Marqusee, S.; Davidson, A. R.; Plaxco, K. W., Protein folding:Defining a "standard" set of experimental conditions and a preliminary kinetic data set of two-state proteins. Protein Sci. 2005,14, (3),602-616.
    10. Xiao, H.; Hoerner, J. K.; Eyles, S. J.; Dobo, A.; Voigtman, E.; Mel'cuk, A. I.; Kaltashov, I. A., Mapping protein energy landscapes with amide hydrogen exchange and mass spectrometry:I. A generalized model for a two-state protein and comparison with experiment. Protein Sci. 2005,14, (2),543-557.
    11.Zeeb, M.; Balbach, J., Protein folding studied by real-time NMR spectroscopy. Methods 2004, 34,(1),65-74.
    12. Plaxco, K. W.; Simons, K. T.; Baker, D., Contact order, transition state placement and the refolding rates of single domain proteins. J. Mol. Biol.1998,277, (4),985-994.
    13. Zhou, H. Y.; Zhou, Y. Q., Folding Rate Prediction Using Total Contact Distance. Biophys. J. 2002,82, (1),458-463.
    14. Igor, B. K.; Shalom, R., Class-specific correlations between protein folding rate, structure-derived, and sequence-derived descriptors. Proteins 2004,54, (2),333-341.
    15. Gromiha, M. M.; Selvaraj, S., Comparison between long-range interactions and contact order in determining the folding rate of two-state proteins:application of long-range order to folding rate prediction. J. Mol. Biol 2001,310, (1),27-32.
    16. Istomin;, A. Y.; Jacobs;, D. J.; Livesay, D. R., On the role of structural class of a protein with two-state folding kinetics in determining correlations between its size, topology, and folding rate. Protein Sci.2007,16, (11),2564-2569.
    17. Nolting, B.; Schalike, W.; Hampel, P.; Grundig, F.; Gantert, S.; Sips, N.; Bandlow, W.; Qi, P. X., Structural determinants of the rate of protein folding. J. Theor. Biol.2003,223, (3), 299-307.
    18. Ivankov, D. N.; Garbuzynskiy, S. O.; Alm, E.; Plaxco, K. W.; Baker, D.; Finkelstein, A. V, Contact order revisited:Influence of protein size on the folding rate. Protein Sci.2003,12, (9),2057-2062.
    19. Debe, D. A.; Goddard, W. A., First principles prediction of protein folding rates. J. Mol. Biol. 1999,294, (3),619-625.
    20. Dinner, A. R.; Karplus, M., The roles of stability and contact order in determining protein folding rates. Nat. Struct. Biol.2001,8, (1),21-22.
    21. Munoz, V.; Eaton, W. A., A simple model for calculating the kinetics of protein folding from three-dimensional structures. Proc. Natl. Acad. Sci. USA 1999,96, (20),11311-11316.
    22. Dokholyan, N. V.; Li, L.; Feng, D.; Shakhnovich, E. I., Topological determinants of protein folding. Proc. Natl. Acad. Sci. USA 2002,99, (13),8637-8641.
    23. Miller, E. J.; Fischer, K. F.; Marqusee, S., Experimental evaluation of topological parameters determining protein-folding rates. Proc. Natl. Acad. Sci. USA 2002,99, (16),10359-10363.
    24.Gromiha, M. M., Multiple Contact Network Is a Key Determinant to Protein Folding Rates. J. Chem. Inf. Model.2009,49, (4),1130-1135.
    25. Gong, H.; Isom, D. G.; Srinivasan, R.; Rose, G. D., Local Secondary Structure Content Predicts Folding Rates for Simple, Two-state Proteins. J. Mol. Biol.2003,327, (5), 1149-1154.
    26. Ivankov, D. N.; Finkelstein, A. V, Prediction of protein folding rates from the amino acid sequence-predicted secondary structure. Proc. Natl. Acad. Sci. USA 2004,101, (24), 8942-8944.
    27. Galzitskaya, O. V.; Garbuzynskiy, S. O.; Ivankov, D. N.; Finkelstein, A. V, Chain length is the main determinant of the folding rate for proteins with three-state folding kinetics. Proteins 2003,51, (2),162-166.
    28.Naganathan, A. N.; Munoz, V., Scaling of Folding Times with Protein Size. J. Am. Chem. Soc. 2005,127, (2),480-481.
    29. Shao, H.; Peng, Y.; Zeng, Z. H., A Simple Parameter Relating Sequences with Folding Rates of Small alpha Helical Proteins. Protein Pept. Lett.2003,10, (3),277-280.
    30. Punta, M.; Rost, B., Protein Folding Rates Estimated from Contact Predictions. J.Mol.Biol. 2005,348,(3),507-512.
    31. Gromiha, M. M., A Statistical Model for Predicting Protein Folding Rates from Amino Acid Sequence with Structural Class Information. J. Chem. Inf. Model.2005,45, (2),494-501.
    32. Gromiha, M. M.; Thangakani, A. M.; Selvaraj, S., FOLD-RATE:prediction of protein folding rates from amino acid sequence. Nucleic Acids Res.2006,34, W70-W74.
    33. Huang, L. T.; Gromiha, M. M., Analysis and prediction of protein folding rates using quadratic response surface models. J. Comput. Chem.2008,29, (10),1675-1683.
    34. Ouyang, Z.; Liang, J., Predicting protein folding rates from geometric contact and amino acid sequence. Protein Sci.2008,17, (7),1256-1263.
    35. Shen, H. B.; Song, J. N.; Chou, K. C., Prediction of protein folding rates from primary sequence by fusing multiple sequential features. J. Biomed. Sci. Eng.2009,2,136-143.
    36. Moreau, G.; Broto, P., Autocorrelation of a topological structure:a new molecular descriptor. Nouv. J. Chim 1980,4,359-360.
    37. Caballero, J.; Fernandez, L.; Garriga, M.; Abreu, J. I.; Collina, S.; Fernandez, M., Proteometric study of ghrelin receptor function variations upon mutations using amino acid sequence autocorrelation vectors and genetic algorithm-based least square support vector machines. J. Mol. Graph. Model 2007,26, (1),166-178.
    38. Guan, P.; Doytchinova, I. A.; Walshe, V. A.; Borrow, P.; Flower, D. R., Analysis of Peptide-Protein Binding Using Amino Acid Descriptors:Prediction and Experimental Verification for Human Histocompatibility Complex HLA-A*0201. J. Med. Chem.2005,48, (23),7418-7425.
    39. Wagener, M.; Sadowski, J.; Gasteiger, J., Autocorrelation of Molecular Surface Properties for Modeling Corticosteroid Binding Globulin and Cytosolic Ah Receptor Activity by Neural Networks. J. Am. Chem. Soc.2002,117, (29),7769-7775.
    40. Tomii, K.; Kanehisa, M., Analysis of amino acid indices and mutation matrices for sequence comparison and structure prediction of proteins. Protein Eng.1996,9, (1),27-36.
    41. http://www.genome.jp/aaindex/.
    42. Li, Z. R.; Lin, H. H.; Han, L. Y.; Jiang, L.; Chen, X.; Chen, Y. Z., PROFEAT:a web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence. Nucleic Acids Res.2006,34, W32-W37.
    43. Reczko, M.; Karras, D.; Bohr, H., An update of the DEF database of protein fold class predictions. Nucleic Acids Res.1997,25, (1),235-235.
    44. Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E., The Protein Data Bank. Nucleic Acids Res.2000,28, (1),235-242.
    45. Lin, Z.; Pan, X. M., Accurate Prediction of Protein Secondary Structural Content. J. Protein Chem.2001,20, (3),217-220.
    46. David, S. H., Prediction of protein helix content from an autocorrelation analysis of sequence hydrophobicities. Biopolymers 1988,27, (3),451-477.
    47. Chou, K. C., Prediction of Protein Subcellular Locations by Incorporating Quasi-Sequence-Order Effect. Biochem. Biophys. Res. Commun.2000,278, (2),477-483.
    48. Sokal, R. R.; Thomson, B. A., Population structure inferred by local spatial autocorrelation: An example from an Amerindian tribal population. Am. J. Phys. Anthropol.2006,129, (1), 121-131.
    49. Bock, J. R.; Gough, D. A., Predicting protein-protein interactions from primary structure. Bioinformatics 2001,17, (5),455-460.
    50.Han, L. Y.; Zheng, C. J.; Xie, B.; Jia, J.; Ma, X. H.; Zhu, F.; Lin, H. H.; Chen, X.; Chen, Y. Z., Support vector machines approach for predicting druggable proteins:recent progress in its exploration and investigation of its usefulness. DrugDiscov. Today 2007,12, (7-8),304-313.
    51. Chou, K. C., Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins 2001,43, (3),246-255.
    52. Chou, K. C., Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics 2005,21, (1),10-19.
    53. Chou, K. C.; Cai, Y. D., Prediction of Membrane Protein Types by Incorporating Amphipathic Effects. J. Chem. Inf. Model.2005,45, (2),407-413.
    54. Shen, H. B.; Chou, K. C., Ensemble classifier for protein fold pattern recognition. Bioinformatics 2006,22, (14),1717-1722.
    55. Shen, H. B.; Chou, K. C., PseAAC:A flexible web server for generating various kinds of protein pseudo amino acid composition. Anal. Biochem.2008,373, (2),386-388.
    56. Hou, T. J.; Wang, J. M.; Liao, N.; Xu, X. J., Applications of Genetic Algorithms on the Structure-Activity Relationship Analysis of Some Cinnamamides. J. Chem. Inf. Comput. Sci. 1999,39, (5),775-781.
    57. van der Voet, H., Comparing the predictive accuracy of models using a simple randomization test. Chemom. Intell. Lab. Syst 1994,25, (2),313-323.
    58. Broto, P.; Moreau, G.; Vandicke, C, Molecular structures:perception,autocorrelation descriptor and SAR studies. Eur. J. Med. Chem.1984,19,71-78.
    59. Gromiha, M. M.; Selvaraj, S., Inter-residue interactions in protein folding and stability. Prog. Biophys. Mol. Biol.2004,86, (2),235-277.
    60. Bhaskaran, P.; Ponnuswamy, P. K., Positional flexibilities of amino acid residues in globular proteins. Int. J. Pept. Protein Res.1988,32, (4),241-255.
    61.Trevor, P. C., Side-chain conformational entropy in protein unfolded states. Proteins 2000,40, 443-450.
    62. Fitter, J., A Measure of Conformational Entropy Change during Thermal Protein Unfolding Using Neutron Spectroscopy. Biophys. J.2003,84, (6),3924-3930.
    63. Gromiha, M. M.; Selvaraj, S., Bioinformatics Approaches for Understanding and Predicting Protein Folding Rates. Curr. Bioinf.2008,3,1-9.
    64. Gromiha, M. M., Importance of Native-State Topology for Determining the Folding Rate of Two-State Proteins. J. Chem. Inf. Comput. Sci.2003,43, (5),1481-1485.
    65. Makarov, D. E.; Keller, C. A.; Plaxco, K. W.; Metiu, H., How the folding rate constant of simple, single-domain proteins depends on the number of native contacts. Proc. Natl. Acad. Sci. USA 2002,99, (6),3535-3539.
    66. Prabhu, N. P.; Bhuyan, A. K., Prediction of Folding Rates of Small Proteins:Empirical Relations Based on Length, Secondary Structure Content, Residue Type, and Stability. Biochemistry 2006,45, (11),3805-3812.
    67. Punta, M.; Rost, B., PROFcon:novel prediction of long-range contacts. Bioinformatics 2005, 21, (13),2960-2968.
    68. Ma, B. G.; Guo, J. X.; Zhang, H. Y., Direct correlation between proteins'folding rates and their amino acid compositions:An ab initio folding rate prediction. Proteins 2006,65, (2), 362-372.
    69. Huang, J. T.; Tian, J., Amino acid sequence predicts folding rate for middle-size two-state proteins. Proteins 2006,63, (3),551-554.
    70. Jiang, Y. F.; Iglinski, P.; Kurgan, L., Prediction of protein folding rates from primary sequences using hybrid sequence representation. J. Comput. Chem.2009,30, (5),772-783.
    71. Berg, J. M.; Tymoczko, J. L.; Stryer, L.; Clarke, N. D., Biochemistry. San Francisco:W.H. Freeman:2002.
    72. Levinthal, C., in Mossbauer Spectroscopy in Biological Systems, Proceedings of a Meeting held at Allerton House, Monticello, IL,eds. Debrunner, P., Tsibris, J.C.M.& M(?)nck, E. (University of Illinois Press, Urbana).1969,22-24.
    73. Qiu, L.; Pabit, S. A.; Roitberg, A. E.; Hagen, S. J., Smaller and Faster:The 20-Residue Trp-Cage Protein Folds in 4 μs. J. Am. Chem. Soc.2002,124, (44),12952-12953.
    74. Goldberg, M. E.; Semisotnov, G. V.; Friguet, B.; Kuwajima, K.; Ptitsyn, O. B.; Sugai, S., An early immunoreactive folding intermediate of the tryptophan synthase [beta]2 subunit is a 'molten globule'. FEBS Letters 1990,263, (1),51-56.
    75. Ivarsson, Y.; Travaglini-Allocatelli, C.; Brunori, M.; Gianni, S., Mechanisms of protein folding. Eur. Biophys. J.2008,37, (6),721-728.
    76. Jackson, S. E., How do small single-domain proteins fold? FoldDes.1998,3, (4), R81-R91.
    77.Grantcharova, V.; Alm, E. J.; Baker, D.; Horwich, A. L., Mechanisms of protein folding. Curr. Opin. Struct. Biol.2001,11, (1),70-82.
    78. Daggett, V.; Fersht, A., The present view of the mechanism of protein folding. Nat. Rev. Mol. Cell Biol.2003,4, (6),497-502.
    79.Daggett, V.; Fersht, A. R., Is there a unifying mechanism for protein folding? Trends Biochem. Sci.2003,28,(1),18-25.
    80. Fersht, A. R.; Daggett, V, Protein Folding and Unfolding at Atomic Resolution. Cell 2002, 108, (4),573-582.
    81. Dalby, P. A.; Clarke, J.; Johnson, C. M.; Fersht, A. R., Folding intermediates of wild-type and mutants of barnase. II. correlation of changes in equilibrium amide exchange kinetics with the population of the folding intermediate. J. Mol. Biol 1998,276, (3),647-656.
    82. Dalby, P. A.; Oliveberg, M.; Fersht, A. R., Folding intermediates of wild-type and mutants of barnase. I. use of [phi]-value analysis and m-values to probe the cooperative nature of the folding pre-equilibrium. J. Mol. Biol 1998,276, (3),625-646.
    83. Khorasanizadeh, S.; Peters, I. D.; Roder, H., Evidence for a three-state model of protein folding from kinetic analysis of ubiquitin variants with altered core residues. Nat. Struct. Mol. Biol.1996,3, (2),193-205.
    84. Viguera, A. R.; Serrano, L., Hydrogen-exchange stability analysis of Bergerac-Src homology 3 variants allows the characterization of a folding intermediate in equilibrium. Proc. Natl. Acad. Sci. USA 2003,100, (10),5730-5735.
    85. Ma, B. G.; Chen, L. L.; Zhang, H. Y., What Determines Protein Folding Type? An Investigation of Intrinsic Structural Properties and its Implications for Understanding Folding Mechanisms. J. Mol. Biol.2007,370, (3),439-448.
    86. Huang, J. T.; Cheng, J. P., Differentiation between two-state and multi-state folding proteins based on sequence. Proteins 2008,72, (1),44-49.
    87. Matthews, B. W., Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta 1975,405, (2),442-451.
    88. Huang, L. T.; Gromiha, M. M., Analysis and prediction of protein folding rates using quadratic response surface models. J. Comput. Chem.2008,29, (10),1675-1683.
    89. Zheng, O.; Jie, L., Predicting protein folding rates from geometric contact and amino acid sequence. Protein Sci.2008,17, (7),1256-1263.
    90. Zheng, O.; Jie, L., Predicting protein folding rates from geometric contact and amino acid sequence. Protein Sci.2008,17, (7),1256-1263.
    91.Chou, K. C.; Cai, Y. D., Prediction of protein subcellular locations by GO-FunD-PseAA predictor. Biochem. Biophys. Res. Commun.2004,320, (4),1236-1239.
    92. Dubchak, I.; Muchnik, I.; Holbrook, S. R.; Kim, S. H., Prediction of protein folding class using global description of amino acid sequence. Proc. Natl. Acad. Sci. USA 1995,92, (19), 8700-8704.
    93. Inna, D.; Ilya, M.; Christopher, M.; Igor, D.; Sung-Hou, K., Recognition of a protein fold in the context of the SCOP classification. Proteins 1999,35, (4),401-407.
    1. Burzlaff, N., Model Complexes for Zinc-Containing Enzymes. Concepts Model Biginorg. Chem.2006,17,397-429.
    2. Sternlicht, M. D.; Werb, Z., HOW MATRIX METALLOPROTEINASES REGULATE CELL BEHAVIOR. Annu. Rev. Cell Dev. Biol.2001,17, (1),463.
    3. Whittaker, M.; Floyd, C. D.; Brown, P.; Gearing, A. J. H., Design and Therapeutic Application of Matrix Metalloproteinase Inhibitors. Chem. Rev.1999,99, (9),2735-2776.
    4. Overall, C. M.; Lopez-Otin, C., Strategies for MMP inhibition in cancer:innovations for the post-trial era. Nat. Rev. Cancer 2002,2,657-672.
    5. Gottschall, P. E.; Deb, S., Regulation of matrix metalloproteinase expressions in astrocytes, microglia and neurons. Neuroimmunomodulation.1996,3,69-75.
    6. Coussens, L. M.; Werb, Z., Matrix metal loproteinases and the development of cancer. Chem. Biol.1996,3, (11),895-904.
    7. Shapiro, S. D., Matrix metalloproteinase degradation of extracellular matrix:biological consequences. Curr. Opin. Cell Biol.1998,10, (5),602-608.
    8. Fingleton, B., Matrix metalloproteinases as valid clinical targets. Curr. Pharm. Des.2004,13, 333-346.
    9. Maeda, A.; Sobel, R. A., Matrix metalloproteinases in the normal human central nervous system, microglial nodules, and multiple sclerosis lesions. J.Neuropathol. Exp. Neurol.1996, 55, (3),300-309.
    10. Yu, A. E.; Hewitt, R. E.; Connor, E. W.; Stetler-Stevenson, W. G, Matrix metalloproteinases. Novel targets for directed cancer therapy. Drugs Aging.1997,11, (3),229-244.
    11. Beckett, R. P.; Davidson, A. H.; Drummond, A. H.; Huxley, P.; Whittaker, M., Recent advances in matrix metalloproteinase inhibitor research. Drug Discovery Today 1996,1, (1), 16-26.
    12. Visse, R.; Nagase, H., Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases: Structure, Function, and Biochemistry. Circ. Res.2003,92, (8),827-839.
    13. Galis, Z. S.; Khatri, J. J., Matrix Metalloproteinases in Vascular Remodeling and Atherogenesis:The Good, the Bad, and the Ugly. Circ. Res.2002,90, (3),251-262.
    14. Liu, Y. E.; Wang, M.; Greene, J.; Su, J.; Ullrich, S.; Li, H.; Sheng, S.; Alexander, P.; Sang, Q. A.; Shi, Y. E., Preparation and Characterization of Recombinant Tissue Inhibitor of Metalloproteinase 4(TIMP-4). J. Biol. Chem.1997,272, (33),20479-20483.
    15. O'Brien, P. M.; Ortwine, D. F.; Pavlovsky, A. G.; Picard, J. A.; Sliskovic, D. R.; Roth, B. D.; Dyer, R. D.; Johnson, L. L.; Man, C. F.; Hallak, H., J. Med. Chem 2000,43,156-166.
    16. Raffetto, J. D.; Khalil, R. A., Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease. Biochem. Pharmacol.2008,75, (2),346-359.
    17. Leung, D.; Abbenante, G.; Fairlie, D. P., Protease Inhibitors:Current Status and Future Prospects. J. Med. Chem.2000,43, (3),305-341.
    18.Billinghurst, R. C.; Dahlberg, L.; Ionescu, M.; Reiner, A.; Bourne, R.; Rorabeck, C.; Mitchell, P.; Hambor, J.; Diekmann, O.; Tschesche, H.; Chen, J.; Van Wart, H.; Poole, A. R., Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage. J. Clin. Invest.1997,99, (7),1534-1545.
    19. Springman, E. B.; Angleton, E. L.; Birkedal-Hansen, H.; Van Wart, H. E., Multiple modes of activation of latent human fibroblast collagenase:evidence for the role of a Cys73 active-site zinc complex in latency and a "cysteine switch" mechanism for activation. Proc. Natl. Acad Sci. USA 1990,87, (1),364-368.
    20. Massova, I.; Kotra, L. P.; Fridman, R.; Mobashery, S., Matrix metalloproteinases:structures, evolution, and diversification. FASEB J.1998,12, (12),1075-1095.
    21. Bode, W.; Fernandez-Catalan, C.; Tschesche, H.; Grams, F.; Nagase, H.; Maskos, K., Structural properties of matrix metalloproteinases. Cell. Mol. Life Sci.1999,55, (4),639-652.
    22. Pirard, B., Insight into the structural determinants for selective inhibition of matrix metalloproteinases. Drug Discov. Today 2007,12,640-646.
    23. Nicolotti, O.; Miscioscia, T. F.; Leonetti, F.; Muncipinto, G.; Carotti, A., Screening of Matrix Metalloproteinases Available from the Protein Data Bank:Insights into Biological Functions, Domain Organization, and Zinc Binding Groups. J. Chem. Inf. Model.2007,47, (6), 2439-2448.
    24. Skiles, J. W.; Gonnella, N. C.; Jeng, A. Y, The Design, Structure, and Clinical Update of Small Molecular Weight Matrix Metalloproteinase Inhibitors Curr. Med. Chem.2004,11, 2911-2977.
    25. Fisher, J. F.; Mobashery, S., Recent advances in MMP inhibitor design. Cancer Metastasis Rev.2006,25,(1),115-136.
    26. Verma, R. P.; Hansch, C., Matrix metalloproteinases:chemical-biological functions and QSAR. Bioorg. Med. Chem.2007,15,2223-2268.
    27. Cuniasse P; Devel L; Makaritis A; Beau F; Georgiadis D; Matziari M; Yiotakis A; V., D., Future challenges facing the development of specific active-site-directed synthetic inhibitors of MMPs. Biochimie 2005,87,393-402.
    28. Jani, M.; Tordai, H.; Trexler, M.; Banyai, L.; Patthy, L., Hydroxamate-based peptide inhibitors of matrix metalloprotease 2. Biochimie 2005,87,385-392.
    29. Maskos, K., Crystal structures of MMPs in complex with physiological and pharmacological inhibitors. Biochimie 2005,87,249-263.
    30. Tyndall, J. D.; Nall, T.; Fairlie, D. P., Proteases universally recognize beta strands in their active sites. Chem. Rev.2005,105,973-999.
    31. Wasserman, Z. R., Making a new turn in matrix metalloproteinase inhibition. Chem. Biol. 2005,12,143-144.
    32. Vihinen, P.; Ala-aho, R.; Kahari, V. M., Matrix metalloproteinases as therapeutic targets in cancer. Curr. Cancer Drug Targets.2005,5,203-220.
    33. Matter H.; M:, S., Recent advances in the design of matrix metalloprotease inhibitors. Curr. Opin. Drug. Discov. Devel.2004,7,513-535.
    34. Kontogiorgis, C. A., Matrix metalloproteinase inhibitors:A review on pharmacophore mapping and (Q)SARs results. Curr. Med. Chem.2005,12,339-355.
    35. Mannello F; Tonti G.; S., P., Matrix metalloproteinase inhibitors as anticancer therapeutics. Curr. Cancer Drug Targets 2005,5,285-298.
    36. Rao, B. G., Recent developments in the design of specific Matrix Metalloproteinase inhibitors aided by structural and computational studies. Curr. Pharm. Des.2005,11, 295-322.
    37. Gupta, S. P., Quantitative Structure-Activity Relationship Studies on Zinc-Containing Metalloproteinase Inhibitors. Chem. Rev.2007,107, (7),3042-3087.
    38. Fernandez, M.; Caballero, J.; Tundidor-Camba, A., Linear and nonlinear QSAR study of N-hydroxy-2-[(phenylsulfonyl)amino]acetamide derivatives as matrix metalloproteinase inhibitors. Bioorg. Med. Chem.2006,14, (12),4137-4150.
    39. Fernandez, M.; Caballero, J., QSAR modeling of matrix metalloproteinase inhibition by N-hydroxy-[alpha]-phenylsulfonylacetamide derivatives. Bioorg. Med. Chem.2007,15, (18), 6298-6310.
    40. Tsai, K. C.; Lin, T. H., A Ligand-Based Molecular Modeling Study on Some Matrix Metalloproteinase-1 Inhibitors Using Several 3D QSAR Techniques. J. Chem. Inf. Comput. Sci.2004,44, (5),1857-1871.
    41. Fingleton, B., Matrix metalloproteinase inhibitors for cancer therapy:the current situation and future prospects. Expert. Opin. Ther. Targets 2003,7,385-397.
    42. Vihinen P; Ala-aho R; Kahari, V. M., Matrix metalloproteinases as therapeutic targets in cancer. Curr. Cancer Drug Targets.2005,5,203-220.
    43. George, S. J., Therapeutic potential of matrix metalloproteinase inhibitors in atherosclerosis. Expert. Opin. Invest. Drugs 2000,9,993-1007.
    44. Yong, V. W., The potential use of MMP inhibitors to treat CNS diseases. Expert. Opin. Invest. Drugs 1999,8,255-268.
    45. Yong, V. W.; Power, C.; Forsyth, P.; Edwards, D. R., Metalloproteinases in biology and pathology of the nervous system. Nat. Rev. Neurosci.2001,2,502-511.
    46. Begers, G.; Brekken, R.; McMahon, G.; Vu, T. H.; Itoh, T.; Tamaki, K.; Tanzawa, K.; Thorpe, P.; Itohara, S.; Werb, Z.; Hanahan, D., Nat. Cell Boil.2000,2,737.
    47. Allan, J. A.; Docherty, A. J.; Barker, P. J.; Huskisson, N. S.; Reynolds, J. J.; Murphy, G., Binding of gelatinases A and B to type-I collagen and other matrix components. Biochem. J. 1995,309,299-306.
    48. Hu, J. L.; Van den Steen, P. E.; Sang, Q.-X. A.; Opdenakker, G, Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Nat. Rev. Drug Discov.2007,6, (6),480-498.
    49.Sang, Q.-A. A.; Jin, Y.; Newcomer, R. G.; Monroe, S. C.; Fang, X.; Hurst, D. R.; Lee, S.; Cao, Q.; Schwartz, M. A., Matrix Metalloproteinase Inhibitors as Prospective Agents for the Prevention and Treatment of Cardiovascular and Neoplastic Diseases. Curr. Top Med. Chem. 2006,6, (4),289-316.
    50. Tu, G. G.; Xu, W. F.; Huang, H. M.; Li, S. H., Progress in the Development of Matrix Metalloproteinase Inhibitors. Curr. Med. Chem.2008,15, (14),1388-1395.
    51. Cheng, X. C.; Wang, Q.; Fang, H.; Xu, W. F., Role of Sulfonamide Group in Matrix Metalloproteinase Inhibitors. Curr. Med. Chem.2008,15, (4),368-373.
    52.Claudiu, T. S.; Angela, C.; Andrea, S., Protease inhibitors of the sulfonamide type:Anticancer, antiinflammatory, and antiviral agents. Med. Res. Rev.2003,23, (5),535-558.
    53. Yang, S.-M.; Scannevin, R. H.; Wang, B.; Burke, S. L.; Wilson, L. J.; Karnachi, P.; Rhodes, K. J.; Lagu, B.; Murray, W. V., [beta]-N-Biaryl ether sulfonamide hydroxamates as potent gelatinase inhibitors:Part 1. Design, synthesis, and lead identification. Bioorg. Med. Chem. Lett.2008,18,(3),1135-1139.
    54.Yang, S.-M.; Scannevin, R. H.; Wang, B.; Burke, S. L.; Huang, Z.; Karnachi, P.; Wilson, L. J.; Rhodes, K. J.; Lagu, B.; Murray, W. V., [beta]-N-Biaryl ether sulfonamide hydroxamates as potent gelatinase inhibitors:Part 2. Optimization of [alpha]-amino substituents. Bioorg. Med. Chem. Lett.2008,18, (3),1140-1145.
    55. Chou, K. C., Review:Structural bioinformatics and its impact to biomedical science. Curr. Med. Chem.2004,11,2105-2134.
    56. Chou, K. C.; Wei, D. Q.; Zhong, W. Z., Binding mechanism of coronavirus main proteinase with ligands and its implication to drug design against SARS. Biochem. Biophys. Res. Commun.2003,308,148-151.
    57.Li, Y.; Wei, D. Q.; Gao, W. N.; Gao, H.; Liu, B. N.; Huang, C. J.; Xu, W. R.; Liu, D. K.; Chen, H. F.; Chou, K. C., Computational approach to drug design for oxazolidinones as antibacterial agents. Med. Chem.2007,3,576-582.
    58. Wang, J. F.; Wei, D. Q.; Chen, C.; Li, Y.; Chou, K. C., Molecular modeling of two CTP2C19 SNPs and its implications for personalized drug design. Protein Pept. Lett.2008,15,27-32.
    59. Sirois, S.; Wei, D. Q.; Du, Q. S.; Chou, K. C., Virtual Screening for SARS-CoV Protease Based on KZ7088 Pharmacophore Points. J. Chem. Inf. Comput. Sci.2004,44, (3), 1111-1122.
    60. Prado-Prado, F. J.; Gonzalez-Diaz, H.; de la Vega, O. M.; Ubeira, F. M.; Chou, K. C., Unified QSAR approach to antimicrobials. Part 3:First multi-tasking QSAR model for Input-Coded prediction, structural back-projection, and complex networks clustering of antiprotozoal compounds. Bioorg. Med. Chem.2008,16, (11),5871-5880.
    61. Du, Q., S,; Huang, R. B.; Wei, Y. T.; Du, L. Q.; Chou, K. C., Multiple field three dimensional quantitative structure-activity relationship (MF-3D-QSAR). J. Comput. Chem.2008,29, (2), 211-219.
    62. Du, Q. S.; Mezey, P. G.; Chou, K. C., Heuristic molecular lipophilicity potential (HMLP):A 2D-QSAR study to LADH of molecular family pyrazole and derivatives. J. Comput. Chem. 2005,26, (5),461-470.
    63. Chou, K. C.; Shen, H. B., Cell-PLoc:a package of Web servers for predicting subcellular localization of proteins in various organisms. Nat. Protocols 2008,3, (2),153-162.
    64. Chou, K. C.; Shen, H. B., Recent progress in protein subcellular location prediction. Anal. Biochem.2007,370, (1),1-16.
    65. Chou, K. C.; Shen, H. B., MemType-2L:A web server for predicting membrane proteins and their types by incorporating evolution information through Pse-PSSM. Biochem. Biophys. Res. Commun.2007,360,339-345.
    66. Shen, H. B.; Chou, K. C., EzyPred:A top-down approach for predicting enzyme functional classes and subclasses. Biochem. Biophys. Res. Commun.2007,364,53-59.
    67. Chou, K. C.; Shen, H. B., ProtIdent:A web server for identifying proteases and their types by fusing functional domain and sequential evolution information. Biochem. Biophys. Res. Commun.2008,376, (2),321-325.
    68. Chou, K. C., Prediction of Human Immunodeficiency Virus Protease Cleavage Sites in Proteins. Anal. Biochem.1996,233, (1),1-14.
    69. Shen, H. B.; Chou, K. C., HIVcleave:a web-server for predicting human immunodeficiency virus protease cleavage sites in proteins. Anal. Biochem.2008,375, (2),388-390.
    70. Chou, K. C.; Shen, H. B., Signal-CF:A subsite-coupled and window-fusing approach for predicting signal peptides. Biochem. Biophys. Res. Commun.2007,357, (3),633-640.
    71. Shen, H. B.; Chou, K. C., Signal-3L:A 3-layer approach for predicting signal peptides. Biochem. Biophys. Res. Commun.2007,363, (2),297-303.
    72. Smith, T. F.; M.S. Waterman, Identification of Common Molecular Subsequences. J. Mol. Biol.1981,147,195-197.
    73. Zhang, Y.; Skolnick, J., TM-align:a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res.2005,33, (7),2302-2309.
    74. Holzhiitter, H., Christoph Gille Institut fur Biochemie, Charite Group for Computational Biochemistry Group Leader:http://www. charite. de/sysbio.
    75. SYBYL6.9, Tripos Associates Inc:2003.
    76. DRAGON for Windows. Version 5.42006.
    77. Zupan, J.; Novic, M.; Ruisa'nchez, I., Kohonen and counter propagation artificial neural networks in analytical chemistry. Chemom. Intell. Lab. Syst.1997,38,1-23.
    78. Chou, K. C.; Zhang, C. T., Prediction of protein structural classes. Crit. Rev. Biochem. Mol. Biol.1995,30,275-349.
    79. Chen, K.; Kurgan, L. A.; Ruan, J., Prediction of protein structural class using novel evolutionary collocation-based sequence representation. J. Comput. Chem.2008,29, (10), 1596-1604.
    80. Chen, Y. L.; Li, Q. Z., Prediction of apoptosis protein subcellular location using improved hybrid approach and pseudo-amino acid composition. J. Theor. Biol.2007,248, (2),377-381.
    81. Zhou, X. B.; Chen, C.; Li, Z. C.; Zou, X. Y, Using Chou's amphiphilic pseudo-amino acid composition and support vector machine for prediction of enzyme subfamily classes. J. Theor. Biol.2007,248, (3),546-551.
    82. Chen, C.; Chen, L. X.; Zou, X. Y.; Cai, P. X., Predicting protein structural class based on multi-features fusion. J. Theor. Biol.2008,253, (2),388-392.
    83. Du, P. F.; Li, Y. D., Prediction of C-to-U RNA editing sites in plant mitochondria using both biochemical and evolutionary information. J. Theor. Biol.2008,253, (3),579-586.
    84. Liu, H.; Ding, H.; Guo, F. B.; Zhang, A. Y.; Huang, J., Predicting subcelluar localization of Mycobacterial proteins by using Chou's pseudo amino acid composition. Protein Pept. Lett. 2008,15,739-744.
    85. Shi, M. G.; Huang, D. S.; Li, X. L., A Protein Interaction Network Analysis for Yeast Integral Membrane Protein. Protein Pept. Lett.2008,15,692-699.
    86. Gramatica, P.; Giani, E.; Papa, E., Statistical external validation and consensus modeling:A QSPR case study for Koc prediction. J. Mol. Graph. Model 2007,25, (6),755-766.
    87. Pymol 0.99, Delano Scientific LLC:South San Francisco, CA,2006.
    88. Consonni, V.; Todeschini, R.; Pavan, M.; Gramatica, P., Structure/Response Correlations and Similarity/Diversity Analysis by GETAWAY Descriptors.2. Application of the Novel 3D Molecular Descriptors to QSAR/QSPR Studies. J. Chem. Inf. Comput. Sci.2002,42, (3), 693-705.
    89. Hemmer, M. C.; Steinhauer, V.; Gasteiger, J., Deriving the 3D structure of organic molecules from their infrared spectra. Vib. Spectrosc.1999,19, (1),151-164.
    90.李加忠.QSAR研究中提高模型预测能力的新方法探讨及其在药物化学中的应用.兰州大学,兰州,2009.
    91. Webster, K. R., The therapeutic potential of targeting the cell cycle. Expert. Opin. Investig. Drugs.1998,7, (6),865-887.
    92. Lei, B. L.; Li, J. Z.; Lu, J.; Du, J.; Liu, H. X.; Yao, X. J., Rational Prediction of the Herbicidal Activities of Novel Protoporphyrinogen Oxidase Inhibitors by Quantitative Structure-Activity Relationship Model Based on Docking-Guided Active Conformation. J. Agric. Food Chem.2009,57, (20),9593-9598.
    93. Pirard, B.; Pickett, S. D., Classification of Kinase Inhibitors Using BCUT Descriptors. J. Chem. Inf. Comput. Sci.2000,40, (6),1431-1440.
    94. Anzini, M.; Cappelli, A.; Vomero, S.; Seeber, M.; Menziani, M. C.; Langer, T.; Hagen, B.; Manzoni, C.; Bourguignon, J.-J., Mapping and Fitting the Peripheral Benzodiazepine Receptor Binding Site by Carboxamide Derivatives. Comparison of Different Approaches to Quantitative Ligand-Receptor Interaction Modeling. J. Med. Chem.2001,44,(8),1134-1150.
    95. Santos-Filho, O. A.; Mishra, R. K.; Hopfinger, A. J., Free energy force field (FEFF) 3D-QSAR analysis of a set of Plasmodium falciparum dihydrofolate reductase inhibitors. J. Comput. AidedMol. Des.2001,15, (9),787-810.
    96. Zamora, I.; Oprea, T.; Cruciani, G.; Pastor, M.; Ungell, A.-L., Surface Descriptors for Protein-Ligand Affinity Prediction. J. Med. Chem.2002,46, (1),25-33.
    97. Lapinsh, M.; Prusis, P.; Mutule, I.; Mutulis, F.; Wikberg, J. E. S., QSAR and Proteo-chemometric Analysis of the Interaction of a Series of Organic Compounds with Melanocortin Receptor Subtypes. J. Med. Chem 2003,46, (13),2572-2579.
    98. Tominaga, Y.; Jorgensen, W. L., General Model for Estimation of the Inhibition of Protein Kinases Using Monte Carlo Simulations. J. Med. Chem.2004,47, (10),2534-2549.
    99. Tuppurainen, K.; Viisas, M.; Perakyla, M.; Laatikainen, R., Ligand intramolecular motions in ligand-protein interaction:ALPHA, a novel dynamic descriptor and a QSAR study with extended steroid benchmark dataset. J. Comput. Aided Mol. Des.2004,18, (3),175-187.
    100. Khedkar, S. A.; Malde, A. K.; Coutinho, E. C., Design of Inhibitors of the MurF Enzyme of Streptococcus pneumoniae Using Docking,3D-QSAR, and de Novo Design. J. Chem. Inf. Model 2007,47, (5),1839-1846.
    101. Zhong, S.; MacKerell, A. D., Binding Response:A Descriptor for Selecting Ligand Binding Site on Protein Surfaces. J. Chem. Inf. Model 2007,47, (6),2303-2315.
    102. Santos-Filho, O. A.; Cherkasov, A., Using Molecular Docking,3D-QSAR, and Cluster Analysis for Screening Structurally Diverse Data Sets of Pharmacological Interest. J. Chem. Inf. Model 2008,48, (10),2054-2065.
    103. Cherkasov, A.; Ban, F.; Santos-Filho, O.; Thorsteinson, N.; Fallahi, M.; Hammond, G L., An Updated Steroid Benchmark Set and Its Application in the Discovery of Novel Nanomolar Ligands of Sex Hormone-Binding Globulin. J. Med. Chem.2008,51, (7), 2047-2056.
    104. Aqvist, J.; Medina, C.; Samuelsson, J. E., A new method for predicting binding affinity in computer-aided drug design. Protein Eng.1994,7, (3),385-391.
    105. Holger, G.; Gerhard, K., Approaches to the Description and Prediction of the Binding Affinity of Small-Molecule Ligands to Macromolecular Receptors. Angew. Chem., Int. Ed 2002,41, (15),2644-2676.
    106. Marco, E.; Negri, A.; Luque, F. J.; Gago, F., Role of stacking interactions in the binding sequence preferences of DNA bis-intercalators:insight from thermodynamic integration free energy simulations. Nucleic Acids Res.2005,33, (19),6214-6224.
    107. Srinivasan, J.; Cheatham, T. E.; Cieplak, P.; Kollman, P. A.; Case, D. A., Continuum Solvent
    Studies of the Stability of DNA,RNA,and Phosphoramidate-DNA Helices.J.Am.Chem. Soc.1998,120,(37),9401-9409.
    108.Archontis,G;Watson,K.A.;Xie,Q.;Andreou,G.;Chrysina,E.D.;Zographos,S.E.; Oikonomakos,N.G;Karplus,M.,Glycogen phosphorylase inhibitors:A free energy perturbation analysis of glucopyranose spirohydantoin analogues.Proteins 2005,61,(4), 984-998.
    109.Zhou,R.H.;Friesner,R.A.;Ghosh,A.;Rizzo,R.C.;Jorgensen,W.L.;Levy,R.M.,New Linear Interaction Method for Binding Affinity Calculations Using a Continuum Solvent Model.J.Phys.Chem.B2001,105,(42),10388-10397.
    110.Li,S.Y;Xi,L.L.;Wang,C.Q.;Li,J.Z.;Lei,B.L.;Liu,H.X.;Yao,X.J.,A novel method for protein-ligand binding affinity prediction and the related descriptors exploration.J. Comput.Chem.2009,30,(6),900-909.
    111.Leeman,M.F.;Curran,S.;Murray,G I.,The structure,regulation,and function of human matrix metalloproteinase-13.Crit.Rev.Biochem.Mol.Biol.2002,37,(3),149-166.
    112.Freije,J.M.;Diez-Itza,I.;Balbin,M.;Sanchez,L.M.;Blasco,R.;Tolivia,J.;L6pez-Otin, C., Molecular cloning and expression of collagenase-3, a novel human matrix metalloproteinase produced by breast carcinomas.J.Biol. Chem.1994,269,(24), 16766-16773.
    113.Takasishi,H.;Kimura,H.;Dalal,S.;Okada,Y;D'Armiento,J.,Joint Diseases and Matrix Metalloproteinases:A Role for MMP-13.Curr.Pharm.Biotechnol.2008,9,(1),47-54.
    114.Monvich,L.G;Tommasi,R.A.;Fujimoto,R.A.;Blancuzzi,V;Clark,K.;Cornell,W.D.; Doti,R.;Doughty,J.;Fang,J.;Farley,D.;Fitt,J.;Ganu, V;Goldberg,R.;Goldstein,R.; Lavoie,S.;Kulathila,R.;Macchia,W,;Parker,D.T.;Melton,R.;O'Byme,E.;Pastor,G.; Pellas,T.;Quadros,E.;Reel,N.;Roland,D.M.;Sakane,Y;Singh,H.;Skiles,J.;Somers,J.; Toscano,K.;Wigg,A.;Zhou, S.;Zhu,L.;Shieh,W.-C.;Xue,S.;McQuire,L.W,Discovery of Potent,Selective,and Orally Active Carboxylic Acid Based Inhibitors of Matrix Metalloproteinage-13.J.Med Chem.2009,52,(11),3523-3538.
    115.Glide,version 5.5,Schr6dinger,LLC:New York,NY,2009.
    116.Maestro,version 9.0,Schr6dinger,LLC:New York,NY,2009.
    117.Impact,version 5.5,Schr6dinger,LLC:New York,NY,2009.
    118. LigPrep, version 2.3, Schrodinger,LLC:New York, NY,2009.
    119. Liasion, version 5.5, Schrodinger,LLC:New York, NY,2005.
    120. Prime, version 2.1, Schrodinger,LLC:New York, NY,2005.
    121.MacroModel, version 9.7, Schrodinger,LLC:New York, NY,2005.
    122. QikProp, version 3.2, Schrodinger,LLC:New York, NY,2005.
    123. Efron, B., The Jackknife,the Bootstrap, and Other Resampling Plans. Society for Industrial Mathematics, Philadelphia, PA 1982.
    124. van der Voet, H., Comparing the predictive accuracy of models using a simple randomization test. Chemom. Intell. Lab. Syst.1994,25, (2),313-323.
    1.杨秀伟;杨晓达;蒲小平;钱忠明;王夔,创新药物研究中的吸收、分布、代谢、排泄/毒性(ADME/Tox)平台建设.北京大学学报(医学版)2004,36,5-8.
    2.熊方武;吴佳,2005年全世界上市新药.抗感染药学2006,3,(4),193-194.
    3. Kennedy, T., Managing the drug discovery/development interface. Drug Discovery Today 1997,2, (10),436-444.
    4. van de Waterbeemd, H.; Gifford, E., ADMET in silico modelling:towards prediction paradise? Nat. Rev. Drug Discov.2003,2, (3),192-204.
    5. Ekins, S.; Waller, C. L.; Swaan, P. W.; Cruciani, G.; Wrighton, S. A.; Wikel, J. H., Progress in predicting human ADME parameters in silico. J. Pharmacol. Toxicol. Methods 44, (1), 251-272.
    6. Butina, D.; Segall, M. D.; Frankcombe, K., Predicting ADME properties in silico:methods and models. Drug Discovery Today 2002,7, (11), S83-S88.
    7. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J., Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Delivery Rev.1997,23, (1-3),3-25.
    8. Richard, A. M.; Benigni, R., AI and SAR approaches for predicting chemical carcinogenicity: survey and status report. SAR QSAR Environ. Res.2002,13, (1),1-19.
    9. Greene, N., Computer systems for the prediction of toxicity:an update. Adv. Drug Delivery Rev 2002,54, (3),417-431.
    10. Durham, S. K.; Pearl, G. M., Computational methods to predict drug safety liabilities. Curr. Opin. DrugDiscov. Dev.2001,4, (1),110-115.
    11. Fischer, H.; Kansy, M.; Potthast, M.; Csato, M., Prediction of in vitro phospholipidosis of drugs by means of their amphiphilic properties. Rational Approaches to Drug Design (eds. Holtje, H.-D.& Sippl, W.) Prous Science, Barcelona 2001,286-289
    12. Van de Waterbeemd, H.; Rose, S., The Practice of Medicinal Chemistry 2nd (ed Wermuth, L. G.). Academic Press 2003,1367-1385.
    13. Sybyl6.9. Tripos Associates Inc.2003.
    14. Cruciani, G.; Crivori, P.; Carrupt, P. A.; Testa, B., Molecular fields in quantitative structure-permeation relationships:the VolSurf approach. J. Mol. Struct:THEOCHEM 2000, 503,(1-2),17-30.
    15. QikProp,version3.2,Schrodinger,LLC,New York,NY.2009.
    16. Buchwald, P.; Bodor, N., Computer-aided drug design:the role of quantitative structure-property, structure-activity and structure-metabolism relationships (QSPR, QSAR, QSMR). Drugs of the Future 2002,27,577-588.
    17.Friesner, R. A.; Guallar, V, AB INITIO QUANTUM CHEMICAL AND MIXED QUANTUM MECHANICS/MOLECULAR MECHANICS (QM/MM) METHODS FOR STUDYING ENZYMATIC CATALYSIS. Annual. Rev. Phys. Chem.2004,56, (1),389-427.
    18. Bathelt, C. M.; Zurek, J.; Mulholland, A. J.; Harvey, J. N., Electronic Structure of Compound I in Human Isoforms of Cytochrome P450 from QM/MM Modeling. J. Am. Chem. Soc.2005, 127,(37),12900-12908.
    19. Schoneboom, J. C.; Cohen, S.; Lin, H.; Shaik, S.; Thiel, W., Quantum Mechanical/Molecular Mechanical Investigation of the Mechanism of C蓥扝Hydroxylation of Camphor by Cytochrome P450cam:Theory Supports a Two-State Rebound Mechanism. J. Am. Chem. Soc. 2004,126, (12),4017-4034.
    20. Zamora, I.; Afzelius, L.; Cruciani, G., Predicting Drug Metabolism:A Site of Metabolism Prediction Tool Applied to the Cytochrome P4502C9. J. Med. Chem.2003,46, (12), 2313-2324.
    21. Kemp, C. A.; Marechal, J.-D.; Sutcliffe, M. J., Progress in cytochrome P450 active site modeling. Arch. Biochem. Biophys.2005,433, (2),361-368.
    22. Williams, P. A.; Cosme, J.; Vinkovic, D. M.; Ward, A.; Angove, H. C.; Day, P. J.; Vonrhein, C.; Tickle, I. J.; Jhoti, H., Crystal Structures of Human Cytochrome P4503A4 Bound to Metyrapone and Progesterone. Science 2004,305, (5684),683-686.
    23. Oh, W. S.; Kim, D. N.; Jung, J.; Cho, K.-H.; No, K. T., New Combined Model for the Prediction of Regioselectivity in Cytochrome P450/3A4 Mediated Metabolism. J.Chem. Inf. Model 2008,48, (3),591-601.
    24.王永华.计算ADME研究--P-糖蛋白和细胞色素P4503A4.中国科学院大连化学物理研究所,大连,2006.
    25. Montellano, P. R. O. d., Chapter 4:The Cytochrome P450 Oxidative System. In Handbook of Drug Metabolism 2nd edition., Pearson, P. G.; Wienkers, L. C., Eds. Informa Healthcare USA, Inc.:New York, NY,2009.
    26. King, R. S., Chapter 3:Biotransformations in Drug Metabolism. In Drug Metabolism Handbook—Concept and Applications, Nassar, A. F.; Hollenberg, P. F.; Scatina, J., Eds. John Wiley& Sons, Inc.:Hoboken, New Jersey,2009.
    27. Nebert, D. W.; Russell, D. W, Clinical importance of the cytochromes P450. The Lancet 2002,360,(9340),1155-1162.
    28. Gonzalez, F. J., The molecular biology of cytochrome P450s. Pharmacol. Rev.1988,40, (4), 243-288.
    29. Shimada, T.; Yamazaki, H.; Mimura, M.; Inui, Y.; Guengerich, F. P., Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals:studies with liver microsomes of 30 Japanese and 30 Caucasians. J. Pharmacol. Exp. Then 1994,270, (1),414-423.
    30. Evans, W. E.; Relling, M. V., Pharmacogenomics:Translating Functional Genomics into Rational Therapeutics. Science 1999,286, (5439),487-491.
    31. Chohan, K. K.; Paine, S. W.; Mistry, J.; Barton, P.; Davis, A. M., A Rapid Computational Filter for Cytochrome P4501A2 Inhibition Potential of Compound Libraries. J. Med. Chem. 2005,48, (16),5154-5161.
    32. de Graaf, C.; Vermeulen, N. P. E.; Feenstra, K. A., Cytochrome P450 in Silico:An Integrative Modeling Approach. J. Med. Chem.2005,48, (8),2725-2755.
    33. Jan M, K.; Thomas, A.; Bernd, B.; Thomas, F., Prediction of Human Cytochrome P450 Inhibition Using Support Vector Machines. QSAR Comb. Sci.2005,24, (4),491-502.
    34. Yap, C. W.; Chen, Y. Z., Prediction of Cytochrome P4503A4,2D6, and 2C9 Inhibitors and Substrates by Using Support Vector Machines. J. Chem. Inf. Model 2005,45, (4),982-992.
    35.Fox, T.; Kriegl, J. M., Machine learning techniques for in silico modeling of drug metabolism. Curr. TopMed. Chem.2006,6, (15),1579-1591.
    36. Yap, C. W.; Xue, Y.; Li, Z. R.; Chen, Y Z., Application of support vector machines to in silico prediction of cytochrome p450 enzyme substrates and inhibitors. Curr. Top Med. Chem. 2006,6,(15),1593-1607.
    37. Eitrich, T.; Kless, A.; Druska, C.; Meyer, W.; Grotendorst, J., Classification of Highly Unbalanced CYP450 Data of Drugs Using Cost Sensitive Machine Learning Techniques. J. Chem. Inf. Model 2006,47, (1),92-103.
    38. Terfloth, L.; Bienfait, B.; Gasteiger, J., Ligand-Based Models for the Isoform Specificity of Cytochrome P4503A4,2D6, and 2C9 Substrates. J. Chem. Inf. Model 2007,47, (4), 1688-1701.
    39. Zhou, D. S.; Liu, R. F.; Otmani, S. A.; Grimm, S. W., Rapid Classification of CYP3A4 Inhibition Potential Using Support Vector Machine Approach. Lett. Drug Des. Discov.2007, 4,(3),192-200.
    40. Jan M, K.; Thomas, A.; Bernd, B.; Thomas, F., Prediction of Human Cytochrome P450 Inhibition Using Support Vector Machines. QSAR Comb. Sci.2005,24, (4),491-502.
    41. Jensen, B. F.; Vind, C.; Brockhoff, P. B.; Refsgaard, H. H. F., In Silico Prediction of Cytochrome P4502D6 and 3A4 Inhibition Using Gaussian Kernel Weighted k-Nearest Neighbor and Extended Connectivity Fingerprints, Including Structural Fragment Analysis of Inhibitors versus Noninhibitors. J. Med. Chem.2007,50, (3),501-511.
    42. Vasanthanathan, P.; Taboureau, O.; Oostenbrink, C.; Vermeulen, N. P. E.; Olsen, L.; Jorgensen, F. S., Classification of Cytochrome P4501A2 Inhibitors and Noninhibitors by Machine Learning Techniques. DrugMetab. Dispos.2009,37, (3),658-664.
    43. LigPrep version 2.3, Schrodinger, LLC:New York, NY,2009.
    44. SYBYL6.9, Tripos Associates Inc:2003.
    45. DRAGON for Windows (Software for molecular Descriptor Calculation), Version5.4., Talete srl:2006.
    46. Kennard, R. W.; Stone, L. A., Computer Aided Design of Experiments. Technometrics 1969, 11,(1),137-148.
    47. Breiman, L., Random Forests. Machine Learning 2001,45, (1),5-32.
    48. http://www.stat.berkeley.edu/-breiman/RandomForests.
    49. Matthews, B. W., Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim. Biophy. Acta 1975,405, (2),442-451.
    50. Konstantinova, E. V., The Discrimination Ability of Some Topological and Information Distance Indices for Graphs of Unbranched Hexagonal Systems. J. Chem. Inf. Comput. Sci. 1996,36, (1),54-57.
    51.Galvez, J.; Garcia, R.; Salabert, M. T.; Soler, R., Charge Indexes. New Topological Descriptors. J. Chem. Inf. Comput. Sci.1994,34, (3),520-525.
    52. Todeschini, R.; Consonni, V, Handbook of Molecular Descriptors. Wiley-VCH, Weinheim, Germany:2000.
    53. Riahi, S.; Ganjali, M. R.; Norouzi, P.; Jafari, F., Application of GA-MLR, GA-PLS and the DFT quantum mechanical (QM) calculations for the prediction of the selectivity coefficients of a histamine-selective electrode. Sens. Actuators, B 2008,132, (1),13-19.
    54. Consonni, V.; Todeschini, R.; Pavan, M.; Gramatica, P., Structure/Response Correlations and Similarity/Diversity Analysis by GETAWAY Descriptors.2. Application of the Novel 3D Molecular Descriptors to QSAR/QSPR Studies. J. Chem. Inf. Comput. Sci.2002,42, (3), 693-705.
    55. Fung, M.; Thornton, A.; Mybeck, K.; Wu, J. H.-H.; Hornbuckle, K.; Muniz, E., Evaluation of the characteristics of safety withdrawal of prescription drugs from worldwide pharmaceutical markets-1960 to 1999. Drug Information Journal2001,35, (1),293-317.
    56. Paul, B. W.; Leonard, B. S., Drug-induced liver injury:Summary of a single topic clinical research conference. Hepatology 2006,43, (3),618-631.
    57. Egan, W. J.; Zlokarnik, G.; Grootenhuis, P. D. J., In silico prediction of drug safety:despite progress there is abundant room for improvement. Drug Discovery Today:Technologies 2004, 1,(4),381-387.
    58. O'Brien, P.; Irwin, W.; Diaz, D.; Howard-Cofield, E.; Krejsa, C.; Slaughter, M.; Gao, B.; Kaludercic, N.; Angeline, A.; Bernardi, P.; Brain, P.; Hougham, C., High concordance of drug-induced human hepatotoxicity with in vitro cytotoxicity measured in a novel cell-based model using high content screening. Arch. Toxicol.2006,80, (9),580-604.
    59. Kaplowitz, N., Drug-induced liver injury. Clin. Infect. Dis.2004,38, (Suppl.2), S44-D48.
    60. Ballet, F., Hepatotoxicity in drug development:detection, significance and solutions. J. Hepatol.1997,26, (Supplement 2),26-36.
    61. Suter, W., Predictive value of in vitro safety studies. Curr. Opin. Chem. Biol.2006,10, (4), 362-366.
    62. Farkas, D.; Tannenbaum, S. R., In vitro methods to study chemically-induced hepatotoxicity: a literature review. Curr. DrugMetab.2005,6, (2),111-125.
    63. Elferink, M. G. L.; Olinga, P.; Draaisma, A. L.; Merema, M. T.; Bauerschmidt, S.; Polman, J.; Schoonen, W. G.; Groothuis, G. M. M., Microarray analysis in rat liver slices correctly predicts in vivo hepatotoxicity. Toxicol. Appl. Pharmacol.2008,229, (3),300-309.
    64. Xu, J. J.; Henstock, P. V; Dunn, M. C.; Smith, A. R.; Chabot, J. R.; de Graaf, D., Cellular Imaging Predictions of Clinical Drug-Induced Liver Injury. Toxicol. Sci.2008,105, (1), 97-105.
    65. Blomme, E. A. G.; Yang, Y.; Waring, J. F., Use of toxicogenomics to understand mechanisms of drug-induced hepatotoxicity during drug discovery and development. Toxicol. Lett.2009, 186,(1),22-31.
    66. Cheng, A.; Dixon, S., In silico models for the prediction of dose-dependent human hepatotoxicity. J. Comput. AidedMol. Des.2003,17, (12),811-823.
    67. Clark, R. D.; Wolohan, P. R. N.; Hodgkin, E. E.; Kelly, J. H.; Sussman, N. L., Modelling in vitro hepatotoxicity using molecular interaction fields and SIMCA. J. Mol. Graph. Model 2004,22, (6),487-497.
    68. Contrera, J. F.; Matthews, W. J.; Benz, R. D.; Kruhlak, N. L.; Weaver, J. L.; Hanig, J. P. MCASE Prediction of Hepatotoxicity using Post-Market Adverse Effects Data; Rockville, 2003.
    69. Maykel, C.-M.; Cordeiro, M. N. D. S.; Fernanda, B., Computational chemistry approach for the early detection of drug-induced idiosyncratic liver toxicity. J. Comput. Chem.2008,29, (4),533-549.
    70. Fourches, D.; Barnes, J. C.; Day, N. C.; Bradley, P.; Reed, J. Z.; Tropsha, A., Cheminformatics Analysis of Assertions Mined from Literature That Describe Drug-Induced Liver Injury in Different Species. Chem. Res. Toxicol.2009,23, (1),171-183.
    71. Burden, F. R., Molecular identification number for substructure searches. J. Chem. Inf. Comput. Sci.1989,29, (3),225-227.
    72. Todeschini, R.; Gramatica, P., The Whim Theory:New 3D Molecular Descriptors for Qsar in Environmental Modelling. SAR QSAR Environ. Res.1997,7, (1),89-115.
    73. Balaban, A. T.; Balaban, T.-S., New vertex invariants and topological indices of chemical graphs based on information on distances. J. Math. Chem.1991,8, (1),383-397.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700