用户名: 密码: 验证码:
基于Calderón技术的计算电磁学积分方程方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于电磁理论中的Caldero′n关系与Caldero′n恒等式所揭示的不同积分算子之间的关系,系统地研究了Caldero′n预条件技术及其在计算电磁学积分方程方法中的应用。本文研究内容全面覆盖了求解理想导电体目标和均匀或分层均匀介质目标电磁散射与辐射问题的积分方程方法中的Caldero′n预条件技术。在导体积分方程方面,研究了电场积分方程在中频,低频,以及高频区的Caldero′n预处理方法。在介质积分方程方面,则研究了PMCHWT积分方程的Caldero′n预处理方法,和N-Müller积分方程的Caldero′n技术。本文也对金属问题中的第二类Fredholm积分方程和介质问题中的第二类Fredholm积分方程的精度改善进行了深入详尽的研究。
     首先,文章回顾了电磁场积分方程方法中常见积分方程,包括面积分方程和体积分方程的构造方法,并描述了对积分方程进行数值求解的矩量法的基本原理和关键步骤。接着,文章阐述了Caldero′n预条件技术在求解金属目标中频区域内的电磁问题时的理论方法与关键技术。这为全文的研究打下了理论基础。
     为了克服电场积分方程及Caldero′n预条件在低频下的低频崩溃问题,本文构造了基于曲面Rao-Wilton-Glisson (CRWG)函数和Buffa-Christiansen (BC)函数的loop-star基函数,并将其分别应用于对电场积分方程和Caldero′n预条件的数值离散上。由此构造出的低频Caldero′n预条件能够有效克服电场积分方程的低频崩溃问题,并且能够在任意低的频率下,任意形式的几何离散下无差别地快速收敛。
     在高频区域中,电场积分方程和Caldero′n预条件都有很严重的伪内谐振问题。为了克服这一问题,本文提出了使用Caldero′n预条件的增广电场积分方程方法。并通过数值算例证明这种高频Caldero′n预条件方法能够有效克服电场积分方程的伪内谐振问题,并且具有很高的计算精度和很快的收敛速度,因此可以被用于电大尺寸复杂目标的电磁仿真计算。
     在介质目标的Caldero′n预条件方法方面,本文首先研究了PMCHWT方程的预处理方法。分别构造了三种不同的Caldero′n预条件对其进行处理,并从理论分析和数值实验两个方面对这三种预条件在各个频段的性能进行了深入的比较研究。
     接下来,本文研究了N-Müller积分方程的算子性态,并且通过使用Caldero′n关系与Caldero′n恒等式,从介质EFIE和MFIE推导出了N-Müller积分方程。这一推导过程从一个全新的角度对N-Müller积分方程具有良好矩阵性态的原因做出了解释。
     最后,本文对第二类Fredholm积分方程的数值求解精度问题进行了深入的研究。在分析探讨了面积分方程中各个算子的离散方法之后,文章使用n?×BC作为权函数成功减小了第二类Fredholm积分方程的主要数值误差源,即单位算子的数值计算误差。这使得整个第二类积分方程的数值计算精度都得到了非常显著的提高。文中也对计算精度得到提高的原因进行了理论分析,为本文方法提供了理论依据。
     本文的研究工作系统而完整地探讨了Caldero′n预条件技术在积分方程方法各个方面的应用,为电磁场积分方程的快速迭代求解提供了坚实的理论基础与技术手段,因此也成为快速精确求解各种实际工程问题的有力工具。
Revealed by the Caldero′n relation and the Caldero′n identities in electromagnetictheory, the properties and relations of different integral operators in the computation-al electromagnetics (CEM) are utilized to construct the Caldero′n preconditioning tech-niques, which are applied in the integral-equation-based methods in this dissertation. Athorough and systematic research has been accomplished to cover the Caldero′n precon-ditioning techniques for the perfect electric conductor (PEC) and the dielectric cases. Forthe PEC case, the Caldero′n preconditioners for the electric-field integral equation (EFIE)at mid, low, and high frequencies are constructed and studied. For the dielectric case, theCaldero′n preconditioners for the Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT)integral equation are investigated, and the Caldero′n technique for the N-Müller integralequation is developed. Moreover, the accuracy improving technique for the second-kindFredholm integral equations for both PEC and dielectric cases is also studied in this dis-sertation.
     First, the integral equations in CEM, including the surface integral equations and thevolume integral equations, are constructed. The general principle and major steps of themethod of moments (MoM) are described. Then the Caldero′n relation and the Caldero′nidentities are introduced, and the Caldero′n preconditioner for the EFIE at mid frequenciesis reviewed. All these serve as the theoretical foundations of the entire dissertation.
     In order to overcome the low-frequency breakdown problems of the EFIE and theCaldero′n preconditioner at low frequencies, the loop-star basis functions based on thecurvilinear Rao-Wilton-Glisson (CRWG) and the Buffa-Christiansen (BC) functions areconstructed and applied to the numerical discretization of the EFIE and the Caldero′npreconditioner. This leads to the Caldero′n preconditioner at low frequencies, which iscapable of alleviating the low-frequency breakdown problem effectively and convergingat an arbitrarily low frequency rapidly and independently with respect to the mesh con-figurations.
     In the high-frequency region, both the EFIE and the Caldero′n preconditioner sufferfrom the spurious interior resonance problem. To alleviate this problem, an augmented EFIE with the Caldero′n preconditioner is proposed in this dissertation. It is demonstrat-ed by several numerical examples that this high-frequency Caldero′n preconditioner caneliminate the spurious interior resonance problem effectively and result in a fast conver-gent and accurate formulation which can be used in the electromagnetic calculations oflarge complex problems.
     In the research of Caldero′n preconditioning techniques for the dielectric case, wehave first developed and investigated three different Caldero′n preconditioners for thePMCHWT equation. Their numerical performances at different frequencies are stud-ied and compared thoroughly, through both the theoretical analysis and the numericalexperiments.
     Then the operator property of the N-Müller equation is studied, and the N-Müller e-quation is derived by preconditioning the EFIE and the MFIE (magnetic-field integralequation) for the dielectric case with the Caldero′n preconditioners and by using theCaldero′n relation. The derivation introduced in this dissertation provides a brand newexplanation for the excellent spectrum property of the N-Müller integral operator.
     At last, the numerical accuracies of the second-kind Fredholm integral equations arethoroughly studied and effectively improved. After the discussions of the discretizationschemes of different surface integral operators, the n×BC functions are used as thetesting function to suppress the major error source of the second-kind integral equations,the numerical error related to the identity operators. The proposed scheme is able togenerate much more accurate numerical solutions to the second-kind integral equations.The reasons of the accuracy improvement are also analyzed theoretically, which providethe proposed scheme with theoretical foundations.
     The research presented in this dissertation covers the major topics of the Caldero′npreconditioning techniques for the integral-equation-based methods, including the itera-tive convergence acceleration for the first-kind Fredholm integral equations and the nu-merical accuracy improvement for the second-kind Fredholm integral equations. It pro-vides us with solid theory foundations and technique approaches for the accurate andfast iterative solution of the integral equations in computational electromagnetics, andtherefore, is a powerful tool for the fast and accurate solution to the various engineeringproblems.
引文
[1] J.-M. Jin. The Finite Element Method in Electromagnetics. 2nd ed. New York: Wiley, 2003.
    [2] K. S. Yee, J. S. Chen, and A. H. Chang. Conformal finite-difference time-domain (FDTD) withoverlapping grids. IEEE Trans. Antennas Propag., 1992, 40(2):1068–1075.
    [3] A. Ta?ve. Computational electrodynamics: the finite-difference time-domain method. Nor-wood, MA: Artech House, 1995.
    [4] R. F. Harrington. Time-harmonic electromagnetic fields. New York: McGraw-Hill, 1961.
    [5] R. F. Harrington. Field Computation by Moment Methods. New York: Macmillan, 1968.
    [6] A. W. Glisson and D. R. Wilton. Simple and efficient numerical methods for problems ofelectromagnetic radiation and scattering from surfaces. IEEE Trans. Antennas Propag., 1980,28(9):593–603.
    [7] S. M. Rao, D. R. Wilton, and A. W. Glisson. Electromagnetic scattering by surfaces of arbitraryshape. IEEE Trans. Antennas Propag., 1982, 30(3):409–418.
    [8] J. J. H. Wang. Generalized moment methods in electromagnetics: formulation and computersolution of integral equations. New York: Wiley, 1991.
    [9] E. Darrigrand. Coupling of fast multipole method and microlocal discretization for the 3-DHelmholtz equation. J. Computational Physics, 2002, 181(1):126–154.
    [10] R. D. Graglia, D. R. Wilton, and A. F. Peterson. Higher order interpolatory vector bases forcomputational electromagnetics. IEEE Trans. Antennas Propag., 1997, 45(3):329–342.
    [11] K. C. Donepudi, J.-M. Jin, and W. C. Chew. A higher order multilevel fast multipole algorithmfor scattering from mixed conducting/dielectric bodies. IEEE Trans. Antennas Propag., 2003,51(10):2814–2821.
    [12] E. Jorgensen, J. L. Volakis, P. Meincke, et al. Higher order hierarchical Legendre basis func-tions for iterative integral equation solvers with curvilinear surface modeling. in Proc. IEEEAntennas Propag. Symp., San Antonio, TX, 2002, 4:618–621.
    [13] E. Jorgensen, J. L. Volakis, P. Meincke, et al. Higher order hierarchical Legendre basis functionsfor electromagnetic modeling. IEEE Trans. Antennas Propag., 2004, 52(11):2985–2995.
    [14] R. L. Wagner and W. C. Chew. A study of wavelets for the solution of electromagnetic integralequations. IEEE Trans. Antennas Propag., 1995, 43(8):802–810.
    [15] Z. Altman and R. Mittra. Combining an extrapolation technique with the method of momentsfor solving large scattering problems involving bodies of revolution. IEEE Trans. AntennasPropag., 1996, 44(4):548–553.
    [16] Z. Altman and R. Mittra. A technique for extrapolating numerically rigorous solutions of elec-tromagnetic scattering problems to higher frequencies and their scaling properties. IEEE Trans.Antennas Propag., 1999, 47(4):744–751.
    [17] K. R. Aberegg and A. F. Peterson. Application of the integral equation-asymptotic phasemethod to two-dimensional scattering. IEEE Trans. Antennas Propag., 1995, 43(5):534–537.
    [18] X. Shen, A. W. Davis, K. R. Aberegg, et al. Highly parallel implementation of the 3D inte-gral equation asymptotic phase method for electromagnetic scattering. Applied ComputationalElectromagnetics Society (ACES) Journal, 1998, 13(2):107–115.
    [19] M. E. Kowalski, B. Singh, L. C. Kempel, et al. Application of the integral equation asymptoticphase (IE-AP) method to three-dimensional scattering. J. of Electromagn. Waves and Appl.,2001, 15(7):885–900.
    [20] D. H. Kwon, R. J. Burkholder, and P. H. Pathak. Efficient method of moments formulationfor large PEC scattering problems using asymptotic phasefront extraction (APE). IEEE Trans.Antennas Propag., 2001, 49(4):583–591.
    [21] J. M. Taboada, F. Obelleiro, J. L. Rodriguez, et al. Incorporation of linear-phase progression inRWG basis functions. Microw. Opt. Technol. Lett., 2005, 44(2):106–112.
    [22] Z. Nie, S. Yan, S. He, et al. On the basis functions with traveling wave phase factor for efficientanalysis of scattering from electrically large targets. Progress In Electromagnetics Research,PIER, 2008, 85:83–114.
    [23] S. Yan, S. He, Z. Nie, et al. Simulating wide band radar response from PEC targets using phaseextracted basis functions. Progress In Electromagnetics Research B, 2009, 13:409–431.
    [24] V. Rokhlin. Rapid solution of integral equations of scattering theory in two dimensions. Journalof Computational Physics, 1990, 86:414–437.
    [25] N. Engheta, W. D. Murphy, V. Rokhlin, et al. The fast multipole method (FMM) for electro-magnetic scattering problems. IEEE Trans. Antennas Propag., 1992, 40(6):634–641.
    [26] B. Dembart and E. Yip. A 3-D fast multipole method for electromagnetics with multipole levels.in 11th Annu. Rev. progress Appl. Computat. Electromagn., Monterery, CA, 1995.
    [27] R. Coifman, V. Rokhlin, and S. Wandzura. The fast multipole method for the wave equation: apedestrian prescription. IEEE Antennas Propag. Mag., 1993, 25(3):7–12.
    [28] S. S. Bindiganavale and J. L. Volakis. Guidelines for using the fast multipole method to cal-culate the RCS of large objects. Microwave and Optical Technology Letters, 1996, 11(4):190–194.
    [29] C. C. Lu and W. C. Chew. Fast algorithm for solving hybrid integral equations. IEEEproceedings-H, 1993, 140(6):455–460.
    [30] J. M. Song and W. C. Chew. Fast multipole method solution using parametric geometry. Mi-crow. Opt. Technol. Lett., 1994, 7(16):760–765.
    [31] J. M. Song, C. C. Lu, and W. C. Chew. Multilevel fast multipole algorithm for electromagneticscattering by large complex objects. IEEE Trans. Antennas Propag., 1997, 45(10):1488–1493.
    [32] J. M. Song, C. C. Lu, and W. C. Chew. Fast illinois solver code (FISC). IEEE Trans. AntennasPropag., 1998, 40(3):27–34.
    [33] J. M. Song and W. C. Chew. A multilevel algorithm for solving a boundary integral equation ofwave scattering. Microwave and Optical Technology Letters, 1994, 7(10):466–470.
    [34] J. M. Song and W. C. Chew. Multilevel fast-multipole algorithm for solving combined fieldintegral equations of electromagnetic scattering. Microwave and Optical Technology Letters,1995, 8(1):14–19.
    [35] W. C. Chew, J.-M. Jin, E. Michielssen, et al, Eds.. Fast and Efficient Algorithms in Computa-tional Electromagnetics. Norwood, MA: Artech House, 2001.
    [36] M. F. Catedra, E. Gago, and L. Nulo. A numerical scheme to obtain the RCS of three dimension-al bodies of resonant size using the conjugate gradient method and the fast fourier transform.IEEE Trans. Antennas Propag., 1989, 37(5):528–537.
    [37] H. Gan and W. C. Chew. A discrete BCG-FFT algorithm for solving 3D inhomogeneous scatterproblems. J. Electromagn. Waves Appl., 1995, 9(10):1339–1357.
    [38] E. Bleszynski, M. Bleszynski, and T. Jaroszewicz. AIM: Adaptive integral method for solvinglarge-scale electromagnetic scattering and radiation problems. Radio Sci., 1996, 31:1225–1251.
    [39] F. Ling, C. F. Wang, and J.-M. Jin. Application of adaptive integral method to scattering andradiation analysis of arbitrary shaped planar structures. J. Electromagn. Waves Appl., 1998,12:1021–1038.
    [40] S. V. Velamparambil, W. C. Chew, and J. M. Song. 10 million unknowns: is it that big? IEEEAntennas Propag. Mag., 2003, 45(2):43–58.
    [41] G. C. Hsiao and R. E. Kleinman. Mathematical foundations for error estimation in numeri-cal solutions of integral equations in electromagnetics. IEEE Trans. Antennas Propag., 1997,45(3):316–328.
    [42] J. Rahola. On the eigenvalues of the volume integral operator of electromagnetic scattering.SIAM J. Sci. Comput., 2000, 21(5):1740–1754.
    [43] N. V. Budko and A. B. Samokhin. Spectrum of the volume integral operator of electromagneticscattering. SIAM J. Sci. Comput., 2006, 28(2):682–700.
    [44] S. H. Christiansen and J. C. Ne′de′lec. A preconditioner for the electric field integral equationbased on Caldero′n formulas. SIAM J. Numer. Anal., 2002, 40(3):1100–1135.
    [45] R. J. Adams. Physical and analytical properties of a stabilized electric field integral equation.IEEE Trans. Antennas Propag., 2004, 52(2):362–372.
    [46] R. J. Adams and N. J. Champagne. A numerical implementation of a modified form of theelectric field integral equation. IEEE Trans. Antennas Propag., 2004, 52(9):2262–2266.
    [47] A. Buffa and S. H. Christiansen. A dual finite element complex on the barycentric refinement.Mathematics of Computation, 2007, 76(260):1743–1769.
    [48] F. P. Andriulli, K. Cools, H. Bag?ci, et al. A multiplicative Caldero′n preconditioner for theelectric field integral equation. IEEE Trans. Antennas Propag., 2008, 56(8):2398–2412.
    [49] M. B. Stephanson and J. F. Lee. Preconditioned electric field integral equation using Caldero′nidentities and dual loop/star basis functions. IEEE Trans. Antennas Propag., 2009, 57(4):1274–1279.
    [50] S. Yan, J.-M. Jin, and Z. Nie. EFIE analysis of low-frequency problems with loop-star de-composition and Caldero′n multiplicative preconditioner. IEEE Trans. Antennas Propag., 2010,58(3):857–867.
    [51] K. Cools, F. P. Andriulli, F. Olyslager, et al. Time domain Caldero′n identities and their applica-tion to the integral equation analysis of scattering by PEC objects part I: Preconditioning. IEEETrans. Antennas Propag., 2009, 57(8):2352–2364.
    [52] F. P. Andriulli, K. Cools, F. Olyslager, et al. Time domain Caldero′n identities and their applica-tion to the integral equation analysis of scattering by PEC objects part II: Stability. IEEE Trans.Antennas Propag., 2009, 57(8):2365–2375.
    [53] F. Olyslager, K. Cools, J. Peeters, et al. A Caldero′n multiplicative preconditioner for the PM-CHWT integral equation. in Proc. IEEE Antennas Propag. Symp., North Charleston, SC, 2009.
    [54] S. Yan, J.-M. Jin, and Z. Nie. A comparative study of Caldero′n preconditioners for PMCHWTequations. IEEE Trans. Antennas Propag., 2010, 58(7):2375–2383.
    [55] S. Yan, J.-M. Jin, and Z. Nie. Implementation of the Caldero′n multiplicative preconditioner forthe EFIE solution with curvilinear triangular patches. in Proc. IEEE Antennas Propag. Symp.,North Charleston, SC, 2009.
    [56] F. Valde′s, F. P. Andriulli, K. Cools, et al. High-order quasi-curl conforming functions for multi-plicative Caldero′n preconditioning of the EFIE. in Proc. IEEE Antennas Propag. Symp., NorthCharleston, SC, 2009.
    [57] H. Bag?ci, F. P. Andriulli, K. Cools, et al. A Caldero′n multiplicative preconditioner for thecombined field integral equation. IEEE Trans. Antennas Propag., 2009, 57(10):3387–3392.
    [58] S. Yan, J.-M. Jin, and Z. Nie. Analysis of electrically large problems using the augmented EFIEwith a Caldero′n preconditioner. IEEE Trans. Antennas Propag., 2011, 59(6):2303–2314.
    [59] C. A. Balanis. Advanced Engineering Electromagnetics. New York: Wiley, 1989.
    [60] J. M. Song and W. C. Chew. Moment method solution using parametric geometry. Journal ofElectromagnetic Wave and Applications, 1995, 9:71–83.
    [61] R. Barrett, M. Berry, T. F. Chan, et al. Templates for the Solution of Linear Systems: BuildingBlocks for Iterative Methods. Philadelphia: SIAM, 1994.
    [62] M. R. Hestenes and E. L. Stiefel. Methods of conjugate gradients for solving linear systems. J.Res. Nat. Bureau Standards, 1952, 49:409–436.
    [63] C. Esmith, A. Epeterson, and R. Mittra. The biconjugate gradient method for electromagneticscattering. IEEE Trans. Antennas Propag., 1990, 38(6):938–940.
    [64] G. L. G. Sleijpen and D. R. Fokkema. BiCGstab(l) for linear equations involving unsymmetricmatrices with complex spectrum. Electronic Trans. Numer. Anal., 1993, 1:11–32.
    [65] Y. Saad and M. H. Schultz. GMRes: A generalized minimal residual algorithm for solvingnonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 1986, 7(3):856–869.
    [66] R. B. Morgan. GMRES with de?ated restarting. SIAM J. Sci. Comput., 2002, 24(1):20–37.
    [67] G. Alle′on, M. Benzi, and L. Giraud. Sparse approximate inverse preconditioning for denselinear systems arising in computational electromagnetics. Numer. Algorithms, 1997, 16:1–15.
    [68] B. Carpentieri, I. S. Duff, and L. Giraud, Experiments with sparse preconditioning of denseproblems from electromagnetic applications. CERFACS. Toulouse, France. Tech. Rep.Tech.Rep. TR/PA/00/04, 2000.
    [69] M. Carr, M. Bleszynski, and J. L. Volakis. A near-field preconditioner and its performance inconjunction with the BiCGstab(ell) solver. IEEE Antennas Propag. Mag., 2004, 46(2):23–30.
    [70] Y. Xie, J. He, A. Sullivan, et al. A sinple preconditioner for electric-field integral equations.Micro. Opt. Tech. Lett., 2001, 30(1):51–54.
    [71] H. Contopanagos, B. Dembart, M. Epton, et al. Well-conditioned boundary integral equa-tions for three-dimensional electromagnetic scattering. IEEE Trans. Antennas Propag., 2002,50(12):1824–1830.
    [72] K. Cools, F. P. Andriulli, F. Olyslager, et al. On Caldero′n techniques in time-domain integralequation solvers. in International Conference on Electromagnetics in Advanced Applications,2007.
    [73] Q. Chen and D. R. Wilton. Electromagnetic scattering by three-dimensional arbitrary com-plex material/conducting bodies. in 1990 IEEE Antennas and Propagation Society InternationalSymposium, Dallas, Texas, 1990, 2:590–593.
    [74] D. R. Wilton and A. W. Glisson. On improving the electric field integral equation at low fre-quencies. in Proc. URSI Radio Sci. Meet. Dig., Los Angeles, CA, 1981.
    [75] J. S. Zhao and W. C. Chew. Integral equation solution of Maxwell’s equations from zero fre-quency to microwave frequencies. IEEE Trans. Antennas Propag., 2000, 48(10):1635–1645.
    [76] J. F. Lee, R. Lee, and R. J. Burkholder. Loop star basis functions and a robust preconditionerfor EFIE scattering problems. IEEE Trans. Antennas Propag., 2003, 51(8):1855–1863.
    [77] T. A. Davis. (2007, Nov.) UMFPACK: unsymmetric multifrontal sparse LU factorizationpackage. [Online]. Available: http://www.cise.u?.edu/research/sparse/umfpack/
    [78] J. S. Zhao, W. C. Chew, T. J. Cui, et al. Cancellations of surface loop basis functions. in Proc.IEEE Antennas Propag. Symp., 2002.
    [79] T. F. Eibert. Interative-solver convergence for loop-star and loop-tree decompositions inmethod-of-moments solutions of the electric-field integral equation. IEEE Antennas Propag.Mag., 2004, 46(3):80–85.
    [80] A. F. Peterson. The“interior resonance”problem associated with surface integral equations ofelectromagnetics: Numerical consequences and a survey of remedies. Electromagnetics, 1990,10(3):293–312.
    [81] J. R. Mautz and R. F. Harrington. H-field, E-field, and combined-field solutions for con-ducting bodies of revolution. Arch. Elektron. Ubertragungstech. (Electron. Commun.), 1978,32(4):159–164.
    [82] L. Gu¨rel and O¨. Ergu¨l. Contamination of the accuracy of the combined-field integral equa-tion with the discretization error of the magnetic-field integral equation. IEEE Trans. AntennasPropag., 2009, 57(9):2650–2657.
    [83] O¨. Ergu¨l and L. Gu¨rel. Discretization error due to the identity operator in surface integral equa-tions. Computer Physics Communications, 2009, 180(10):1746–1752.
    [84] A. D. Yaghjian. Augmented electric- and magnetic-field integral equation. Radio Sci., 1981,16(6):987–1001.
    [85] A. D. Yaghjian, Augmented electric and magnetic-field integral equations. Hanscom Air ForceBase. Mass. Tech. Rep.RADC-TR-81-45, 1981.
    [86] Z. G. Qian and W. C. Chew. An augmented electric field integral equation for high-speed inter-connect analysis. Microw. Opt. Technol. Lett., 2008, 50(10):2658–2662.
    [87] J. R. Mautz and R. F. Harrington. A combined-source solution for radiation and scattering froma perfectly conducting body. IEEE Trans. Antennas Propag., 1979, 27(4):445–454.
    [88] W. D. Murphy, V. Rokhlin, and M. S. Vassiliou. Solving electromagnetic scattering problemsat resonance frequencies. J. Appl. Phys., 1990, 67:6061–6065.
    [89] C. A. Klein and R. Mittra. An application of the“condition number”concept to the solution ofscattering problems in the presence of the interior resonant frequencies. IEEE Trans. AntennasPropag., 1975, 23(3):431–435.
    [90] A. J. Poggio and E. K. Miller, Integral equation solutions of three dimensional scattering prob-lems, in Computer Techniques for Electromagnetics. R. Mittra, Ed. Elmsford, NY: Permagon,1973.
    [91] Y. Chang and R. Harrington. A surface formulation for characteristic modes of material bodies.IEEE Trans. Antennas Propag., 1977, 25(6):789–795.
    [92] T.-K. Wu and L. L. Tsai. Scattering from arbitrarily-shaped lossy dielectric bodies of revolution.Radio Sci., 1977, 12(5):709–718.
    [93] C. Mu¨ller. Foundations of the Mathematical Theory of Electromagnetic Waves. Berlin, Ger-many: Springer, 1969.
    [94] M. S. Yeung. Single integral equation for electromagnetic scattering by three-dimensional ho-mogeneous dielectric objects. IEEE Trans. Antennas Propag., 1999, 47(10):1615–1622.
    [95] P. Yla¨-Oijala and M. Taskinen. A novel combined field integral equation formulation for solvingelectromagnetic scattering by dielectric and composite objects. in Proc. IEEE Antennas Propag.Symp., 2005, 4B:297–300.
    [96] P. Yla¨-Oijala and M. Taskinen. Well-conditioned Mu¨ller formulation for electromagnetic scat-tering by dielectric objects. IEEE Trans. Antennas Propag., 2005, 53(10):3316–3323.
    [97] S. Yan, J.-M. Jin, and Z. Nie. Caldero′n preconditioner: From EFIE and MFIE to N-Mu¨llerequations. IEEE Trans. Antennas Propag., 2010, 58(12):4105–4110.
    [98] B. M. Kolundzija and A. R. Djordjevic. Electromagnetic Modeling of Composite Metallic andDielectric Structures. Boston, MA: Artech House, 2002.
    [99] H. Walle′n, S. Ja¨rvenpa¨a¨, P. Yla¨-Oijala, et al. Broadband Mu¨ller-MLFMA for electromagneticscattering by dielectric objects. IEEE Trans. Antennas Propag., 2007, 55(5):1423–1430.
    [100] P. Yla¨-Oijala, M. Taskinen, and S. Ja¨rvenpa¨a¨. Analysis of surface integral equations in elec-tromagnetic scattering and radiation problems. Engineering Analysis with Boundary Elements,2008, 32(3):196–209.
    [101] K. Cools, F. P. Andriulli, F. Olyslager, et al. Improving the MFIE’s accuracy by using a mixeddiscretization. in Proc. IEEE Antennas Propag. Symp., North Charleston, SC, 2009.
    [102] C. T. Tai. Dyadic Green Functions in Electromagnetic Theory. 2nd ed. Piscataway, NJ: IEEEPress, 1994.
    [103] E. I. Fredholm. Sur une classe d’equations fonctionnelles. Acta Mathematica, 1903, 27:365–390.
    [104] J. M. Rius, E. U′beda, and J. Parro′n. On the testing of the magnetic field integral equationwith RWG basis functions in method of moments. IEEE Trans. Antennas Propag., 2001,49(11):1550–1553.
    [105] O¨. Ergu¨l and L. Gu¨rel. Improving the accuracy of the MFIE with the choice of basis functions.in 2004 IEEE AP-S Int. Symp. and URSI Radio Sci. Mtg., Monterey, CA, 2004.
    [106] E. U′beda and J. M. Rius. MFIE MoM-formulation with curl-conforming basis functions andaccurate kernel-integration in the analysis of perfectly conducting sharp-edged objects. Microw.Opt. Technol. Lett., 2005, 44(4):354–358.
    [107] L. Gu¨rel and O¨. Ergu¨l. Singularity of the magnetic-field integral equation and its extraction.IEEE Antennas Wireless Propag. Lett., 2005, 4:229–232.
    [108] O¨. Ergu¨l and L. Gu¨rel. Solid-angle factor in the magnetic-field integral equation. Microw. Opt.Technol. Lett., 2005, 45(5):452–456.
    [109] O¨. Ergu¨l and L. Gu¨rel. Improved testing of the magnetic-field integral equation. IEEE AntennasWireless Propag. Lett., 2005, 15:615–617.
    [110] O¨. Ergu¨l and L. Gu¨rel. Improving the accuracy of the magnetic field integral equation with thelinear-linear basis functions. Radio Sci., 2006, 41:1–15.
    [111] E. U′beda, A. Heldring, and J. M. Rius. Accurate computation of the impedance elements of themagnetic-field integral equation with RWG basis functions through field-domain and source-domain integral swapping. Microw. Opt. Technol. Lett., 2007, 49(3):709–712.
    [112] O¨. Ergu¨l and L. Gu¨rel. Linear-linear basis functions for MLFMA solutions of magnetic-fieldand combined-field integral equations. IEEE Trans. Antennas Propag., 2007, 55(4):1103–1110.
    [113] S. Yan and Z. Nie. On the Rayleigh-Ritz scheme of 3D MFIE and its normal solution. in Proc.IEEE Antennas Propag. Symp., San Diego, California, USA, 2008.
    [114] E. U′beda and J. M. Rius. Novel monopolar mfie mom-discretization for the scattering analysisof small objects. IEEE Trans. Antennas Propag., 2006, 54(1):50–57.
    [115] O¨. Ergu¨l and L. Gu¨rel. Investigation of the inaccuracy of the MFIE discretized with the RWGbasis functions. in 2004 IEEE AP-S Int. Symp. and URSI Radio Sci. Mtg., Monterey, CA,2004.
    [116] O¨. Ergu¨l and L. Gu¨rel. On the accuracy of MFIE and CFIE in the solution of large electro-magnetic scattering problems. in Proc. European Conference on Antennas and Propagation(EuCAP), 2006.
    [117] E. U′beda and J. M. Rius. Curl-conforming MFIE in the analysis of perfectly conductingsharply-edged objects. in Proc. IEEE Antennas Propag. Symp., 2004.
    [118] E. U′beda and J. M. Rius. Advantages of rectangular and uniform-triangular discretization on thescattering analysis of very small sharp-edged objects with the magnetic field integral equation.in USNC/URSI national Radio Science Meeting, 2006.
    [119] O¨. Ergu¨l and L. Gu¨rel. Iterative solution of the normal-equations form of the electric-fieldintegral equation. in IEEE APS Int. Symp. Dig., Honolulu, HI, 2007.
    [120] C. P. Davis and K. F. Warnick. High-order convergence with a low-order discretization of the2-D MFIE. IEEE Antennas Wireless Propag. Lett., 2004, 3(1):355–358.
    [121] K. F. Warnick and A. F. Peterson. 3D MFIE accuracy improvement using regularization. inProceedings of IEEE Antennas and Propagation Society International Symposium, Honolulu,HI, 2007.
    [122] B. A. Finlayson and L. E. Serven. The method of weighted residuals—a review. Applied Me-chanics Review, 1966, 19(9):735–748.
    [123] S. Yan, J.-M. Jin, and Z. Nie. On the testing of the identity operator and the accuracy improve-ment of the second-kind SIEs. in Proc. IEEE Antennas Propag. Symp., Spokane, WA, 2011.
    [124] P. Yla¨-Oijala and M. Taskinen. Calculation of CFIE impedance matrix elements with RWG andn?×RWG functions. IEEE Trans. Antennas Propag., 2003, 51(8):1837–1846.
    [125] X. Q. Sheng, J.-M. Jin, J. Song, et al. Solution of combined-field integral equation using mul-tilevel fast multipole algorithm for scattering by homogeneous bodies. IEEE Trans. AntennasPropag., 1998, 46(11):1718–1726.
    [126] S. Yan and Z. Nie. A set of novel surface integral equations for electromagnetic scattering fromhomogeneous penetrable objects. in Asia-Pacific Microwave Conference, Hong Kong, China,2008.
    [127] W. C. Chew. Waves and Fields in Inhomogeneous Media. New York: IEEE Press, 1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700