用户名: 密码: 验证码:
深部煤层瓦斯赋存特征与解吸规律研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对深部煤层高地应力场、较高温度场和较高孔隙压力场条件下的瓦斯赋存特征及在不同介质中煤的瓦斯解吸规律进行了研究,并基于煤的瓦斯解吸规律研究结果,提出了地勘煤层瓦斯含量测定新方法,为进一步揭示了深部煤层瓦斯赋存机制奠定了基础。
     首先,在总结前人研究成果的基础上,详细分析了煤储层特征、瓦斯赋存状态、运移过程及瓦斯赋存影响因素。在实验室研究了深部煤层的孔隙特征及吸咐特征,实验得出:在同等实验条件下,同一煤层煤的瓦斯吸咐能力随深度增加呈增强趋势。某些煤样等温吸附线并不符合朗格缪尔方程。
     以渗流理论和多物理场耦合理论为基础,首次建立了深部煤层瓦斯赋存流体动力场耦合模型,并借助数值分析软件Comsol Multiphysics对数学模型进行求解,进而揭示了深部煤层瓦斯赋存规律,分析结果表明:瓦斯压力与埋藏深度呈近似线性关系,煤层瓦斯含量与深度则呈明显的非线性关系,煤层的孔隙率和渗透率随着深度的增加而相应减小。
     实验室测试、数值模拟及现场统计的研究成果表明:深部煤层由于微孔的增多及瓦斯压力增加,使其对瓦斯的吸附能力也增强,但由于受温度等因素的显著影响,深部煤层瓦斯含量增加梯度趋于减小,最后将不再增加。
     通过方案对比,研制了具备四个方面测试功能的煤样瓦斯解吸模拟测试装置,实现了泥浆加压气体(N2)与解吸气体(CH4)的分离,为研究不同介质中煤的瓦斯解吸规律奠定了实验基础。以菲克扩散定律和模拟测试装置为基础,系统地研究了空气和泥浆介质中煤的瓦斯解吸规律,研究表明空气介质中煤的瓦斯解吸过程用幂函数类曲线拟合效果要优于指数类曲线;非等压条件下泥浆介质中煤的瓦斯解吸曲线形态呈现拉长的“S”形态,与在空气介质中的瓦斯解吸特征截然不同,故无法用空气介质中煤的瓦斯解吸规律去准确推算提钻取芯过程泥浆介质中煤芯损失瓦斯量。
     最后,在分析地勘钻孔解吸法测定煤层瓦斯含量误差产生原因与煤的瓦斯解吸规律研究结果的基础上,提出了新的瓦斯损失量补偿方法(模拟逼近法)及瓦斯残存含量快速测定新工艺,通过现场实际应用取得了较好的效果。
This paper studied gas occurrence characteristics in deep coal seam with highstress,high temperature and high pore pressure field and coal gas desorption laws indifferent medium, and put forward a new coal seam gas content measurement methodduring geological exploration based on coal gas desorption laws research results,andlaid the foundation. to further reveal gas occurrence mechanism in deep coal seam.
     Firstly, on the basis of previous research results, coal reservoir characteristics,gasoccurrence state, migration process and their influence factors in coal seam wereanalyzed in detail. Deep coal seam pore and adsorption were tested in the laboratory,andconclusion from the experiment was that gas adsorption capacity of the same coal seamis enhanced with increase of depth under the same experimental conditions,and thatsome coal isothermal adsorption curves aren’t not consistent with the Langmuirequation.
     After that, based on seepage theory and multi-physical coupling theory, fluiddynamic field coupling model of gas occurrence in deep coal seam was established forthe first time,and mathematical model was solved by using numerical analysissoftware--Comsol Multiphysics. The analysis results show that gas pressure and burieddepth is approximate linear relationship,and that coal seam gas content and deepness isapparent nonlinear relation, gradient decreases when reaching a certain depth;and Coalporosity and permeability decreases with the increase of depth.
     Comprehensive analysis results of laboratory test, numerical simulation and fieldstatistical show that micropore and gas pressure in deep coal seam increase, accordinglygas adsorption capacity is also enhanced,but gas content increased gradient willdecrease due to obvious influence of temperature, finally will no longer increase.
     A equipment for simulating coal seam gas desorption was developed throughcomparison of different schemes, it had four functions and realized separation of slurrypressure gas (N2) and desorption gas (CH4),which provided experimental base toresearch coal gas desorption laws in different medium. Based on Fick's law of diffusionand simulation testing device, coal gas desorption laws in air and slurry medium weresystemly studied.,research result showed that curve fitting effect of power function classis superior to exponential function class about gas desorption process in the air; Coal gas desorption curve in slurry medium under non-pressure conditions formed anelongated "S" shape,it is completely different from desorption characteristics in the airmedium.So coal core gas loss quantity during drilling coring can not be accuratelypredicted if we use coal gas desorption laws in air medium.
     Finally,based on causes of error about geological exploration drilling desorptionmethod and coal gas desorption laws research results, new gas loss compensationmethod (simulation approximation) and gas residue quantity measurement technologywere put forward, and they achieved better results by practical application.
引文
[1]周世宁,林柏泉.煤矿瓦斯动力灾害防治理论及控制技术[M].北京:科学出版社,2007.
    [2]中国煤炭工业协会.煤炭工业“十二五”科技规划,2012.
    [3]柴肇云,康天合.深部开采及其理论研究的现状和方向[J].山西煤炭,2004,24(3):13-6.
    [4]国家煤矿安全监察局.2011年全国煤矿事故分析报告[R].2012,2:4-10.
    [5]贠东风,刘听成.煤矿开采深度现状及发展趋势[J].煤,1997(6):38-41.
    [6]张永平.矿井深部开采问题探讨[J].煤炭技术,2000,19(3):24-25.
    [7]李海燕,刘玉萍,秦佳之,等.煤矿深井开采的合理经济深度研究[J].地下空间与工程学报,2008,4(4):645-648.
    [8]张俊杰.深部开采优化开采技术的探讨[J].矿山压力与顶板管理,2005,22(3):74-76.
    [9]刘玉鼎,霍丙杰,辛龙泉,等.深部开采环境及岩体力学行为研究[J].矿业工程,2009,7(3):14-15.
    [10]谢中朋,宋晓燕,等.高温矿井地温分布规律与反问题研究[J].能源技术与管理,2009(4):84-86.
    [11]王志国.深部开采上覆岩层中采动裂隙网络演化规律研究[D].北京:中国矿业大学(北京),2010.
    [12]刘洪永.远程采动煤岩体变形与卸压瓦斯流动气固耦合动力学模型及其应用研究[D].徐州:中国矿业大学,2010.
    [13]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1999.
    [14]周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].北京:煤炭工业出版社,1999.
    [15]何学秋.含瓦斯煤岩流变动力学[M].徐州:中国矿业大学出版社,1995.
    [16]余楚新,鲜学福,谭学术,等.煤层气流动理论及渗流控制方程研究[J].重庆大学学报,1989(5):1-9.
    [17]章梦涛,潘一山,梁冰,等.煤岩流体力学[M].北京:科学出版社,1995.
    [18]赵阳升.矿井岩石流体力学[M].北京:煤炭工业出版社,1994.
    [19]赵阳升.煤体-瓦斯耦合数学模型及数值解法[J].岩石力学与工程学报,1994,13(3):220-239.
    [20]刘建军,梁冰,章梦涛,等.非等温条件下煤层瓦斯运移规律的研究[J].西安矿业学院学报,1999,19(4):302-308.
    [21]梁冰,刘建军,范厚彬,等.非等温条件下煤层中瓦斯流动数学模型及数值解法[J].岩石力学与工程学报,2000,19(1):1-5.
    [22]梁冰,章梦涛,王泳嘉,等.煤层瓦斯渗流与煤体变形的耦合数学模型及数值解法[J].岩石力学与工程学报,1996,15(2):135-142.
    [23] Cao Yunxing, He Dingdong, Glick, D C. Coal and gas outbursts in footwalls of reverse faults[J].International Journal of Coal Geology,2001,48(1):47-63.
    [24]杨晓娜,张子戌,刘高峰,等.第七次全国瓦斯地质学术年会论文汇编[C].北京:煤炭工业出版社,2007(8):137-140.
    [25]余申翰.煤层内瓦斯的赋存状态[J].煤炭学报,1981,2(2):1-4.
    [26]艾鲁尼(唐修义,宋德淑,王荣龙译).煤矿瓦斯动力现象的预测和预防[M].北京:煤炭工业出版社,1992.
    [27]张晓东,秦勇,桑树勋,等.煤储层吸附特征的研究现状及展望[J].中国煤田地质,2005,17(1):16-29.
    [28] H Harpalani S,Pariti U M. Study of coal sorption isotherm using a multicomponentgas mixture[J]. International Coalbed Methane Symposium,1993.
    [29] Greaves.K.H,Owen L B,McLenman J Det al. Multi-compoent gas adsorption-desorption behavoir of coal [J]Proceedings of the1993International Coalbed Methane Symposium,1993.
    [30]聂百胜.煤粒瓦斯解吸扩散动力过程的实验研究[D].太原:太原理工大学,1997..
    [31] Sellers E J,Klerck P.Modeling of the effect ofdiscontinuities on the extent ofthe fracture zone surrounding deep tunnels[J].Tunneling and Underground Space Technology.2000,15(4):463-469.
    [32] Kidybinski A,Dubimski J.Strata Control in Deepines[M].A.A.Balkcma,1990:84-98.
    [33]尹传理,李化敏.我国煤矿深部开采问题探讨[J].煤矿设计,1998(8):7-11.
    [34]谢和平.矿山岩体力学及工程的研究进展与展望[J].中国工程科学,2003,5(3):31-38.
    [35]董小砸.煤矿深部开采可能出现的问题及对策[J].煤炭技术,2003,22(7):29-331.
    [36]李化敏,付凯.煤矿深部开采面临的主要技术问题及对策[J].采矿与安全工程学报,2006,23(4):468-471.
    [37]何满潮,谢和平,彭苏萍,等.深部开采岩体力学研究[J].岩石力学与工程学报,2005,24(16):2804-2813.
    [38]何满潮.第八次岩石力学与工程学术大会论文集[C].北京:科学山版社,2004:84-94.
    [39]张俊杰.深部开采优化开采技术的探讨[J].矿山压力与顶板管理,2005,22(3):74-76.
    [40]姜耀东,刘文岗,赵毅鑫,等.开滦矿区深部开采中巷道同岩稳定性研究[J].岩石力学与工程学报,2005,24(11):1857-1862.
    [41]刘同友.国际采矿技术发展的趋势[J].中国矿山工程,2005,34(1):35-40.
    [42]梁政国.煤矿山深浅部开采界线划分问题[J].辽宁工程技术大学学报:自然版,2001,20(4):554-556.
    [43] Sun J’Wang S J.Rock Mechanics and rock engineefing in China:developments and current state-of the-art[J].Intermational Journal ofRock Meckanies and Mining Science,2000,37(3):447-465.
    [44]何满潮.深部的概念体系及工程评价指标[J].岩石力学与工程学报,2005,24(16):2854-2858.
    [45]张新民,张遂安,钟玲文等.中国的煤层甲烷[M].西安:陕西科学技术出版社,1991.
    [46]张胜利,陈晓东,等.控制煤层气含量及可采性的主要地质因素[J].天然气工业,1997,17(4):15-19.
    [47]秦勇.中国煤层气产业化面临的形势与挑战(Ⅱ)—关键科学技术问题[J].天然气工业,2006,26(2):6-10.
    [48]聂怀耀,李俊生,张俊.焦作煤田深部煤层含气量预测[J].煤矿安全,2009,40(6):79-82.
    [49]张华,徐磊,范炳恒,等.两淮地区深部煤储层含气性预测[J].安徽地质,2002(1):35-38.
    [50]赵忠英,王宇付,孙样,等.辽河盆地东部凹陷深部煤层气成藏条件评价[J].天然气地球科学,2007,18(4):572-573.
    [51]刘爱华,傅雪海,张军,等.峰峰、大城、开平矿区深部煤层含气量预测[J].黑龙江科技学院学报,2009(3):165-168.
    [52]王宏图,张仁松.煤矿深部开采煤层气含量计算的解析法[J].中国矿业大学学报,2002,31(4):367-369.
    [53] R.M.Barrer,Difussion in and through Solid,Cambridge University Press,1951.
    [54] P.G.Sevenster,Difussion of Gas from Coal.Fuel,Vol.38,1959.
    [55] Satyendra,P.Nandi and Philip L.Walker,Activated Difussion of Methane from Coal atelevated Pressure.Fuel,Vol.54,1975.
    [56] K.Winter&H.Janas,Gas Emission characteristics of Coal and Methods of Determining the Desorbable Gas content by means of Desorbometers.XIV international Conference of Coal Mine Safety Research.
    [57]宋世钊译.煤矿沼气涌出[M].北京:煤炭工业出版社,1983.
    [58] E.M.Airey,Gas Emission from Broken Coal. Int. J. Rock Mech. and Min. Sci.Vol.5,1968.
    [59] B.A.Bolt&Innes,Diffusion of Carbon Dioxide from Coal.Fuel,Vol.38,1959.
    [60]王佑安,杨思敬,等.煤与瓦斯突出煤层的某些特征[J].煤炭学报,1981.
    [61]孙重旭.煤与瓦斯突出第三次学术论文集[C].重庆:煤炭科学研究总院重庆分院,1983.
    [62]杨其銮.关于煤屑瓦斯放散规律的试验研究及其在煤的突出危险性和瓦斯含量预测方面的应用[D].抚顺:煤炭科学研究总院抚顺分院,1986.
    [63]王兆丰.空气、水和泥浆介质中煤的瓦斯解吸规律与应用研究[D].徐州:中国矿业大学,2001.
    [64]于良臣.地质勘探过程中应用解吸法直接测定煤层瓦斯含量的试验研究[R].抚顺:煤炭科学研究总院抚顺分院,1981.
    [65] Kissell,F.N.Meculloch,The Direct Method of Determining Methane Content of Coal seams for Ventilation Design.U.S. Bureau of Mines Report of Investigation,R17767,1973.
    [66] D.M.Smith and Williams,A New Technique for Determining the Methane Content ofCoal,Proceedings of the16th Intersociety Energy Conversion Engineering Conference,Atlanta,GA,1981.
    [67] D.M.Smith and Williams,Diffusion Models for Gas Production from Coals.Fuel,Vol.63,1984.
    [68] J.P.Seidle and R.S.Metcalfe,Development of Coal seams Methane.SPE23025,1991.
    [69]王以峰.岩浆侵入对下部煤层瓦斯赋存的影响[J].煤炭科技,2007(3):84-88.
    [70]秦玉金,罗海珠,姜文忠,等.煤层瓦斯含量主控因素的研究[J].煤矿安全,2009(5):84-87.
    [71]吴铁军.古汉山矿瓦斯含量分布规律探讨[J].煤矿安全,1999,30(12):37-38.
    [72]刘明举,牟全斌,魏建平,等.新安煤矿瓦斯赋存规律及影响因素探讨[J].煤矿安全,2007,38(11):60~62.
    [73]王兆丰.方庄煤矿煤与瓦斯突出防治技术研究报告[R].抚顺:煤科总院抚顺分院,1995.
    [74].王兆丰.淮南张集矿井瓦斯预测研究报告[R].抚顺:煤科总院抚顺分院,1989.
    [75]姜文忠.2007年全国煤矿安全技术年会会议资料汇编[C].抚顺:煤科总院沈阳研究院,2007.
    [76]刘继岩,黄旭.沙曲矿煤层瓦斯赋存特征及抽放前景[J],辽宁工程技术大学学报:自然科学版,1998,17(6):578-581.
    [77]王佑安.煤矿安全手册——第二篇矿井瓦斯防治[M].北京:煤炭工业出版社,1995.
    [78]秦胜飞,宋岩,唐修义,等.水动力条件对煤层气含量的影响——煤层气滞留水控气论[J].天然气地球科学,2005,16(2):149-52.
    [79]梁红侠,陈萍,童柳华,等.淮南煤田深部煤的孔隙特征及其意义[J].中国煤炭地质,2010,22(6):5-9.
    [80] Lama RD, Bodziony J. Management of outburst in underground coal mines [J].International Journal of Coal Geology,1998,35(1):83-115.
    [81] King GR. Numerical simulation of the simultaneous flow of methane and water through dual porosity coal seams during the degasification process[D].PhD Dissertation,Pennsylvania State University,1984.
    [82]唐巨鹏,潘一山,李成全,等.有效应力对煤层气解吸渗流影响试验研究[J].岩石力学与工程学报,2006,25(08):1563-1569.
    [83]李祥春,郭勇义,吴世跃,等.考虑吸附膨胀应力影响的煤层瓦斯流–固耦合渗流数学模型及数值模拟[J].岩石力学与工程学报,2007(z1):2743-2749.
    [84] Sampath, K. and Keighin,C.W.Factors affecting gas slippage in tight sandstones of cretaceous age in the uinta basin[J].J.Petrol.Technol.1982,34(11):2715-2720.
    [85]郭立稳,俞启香,蒋承林,王凯,等.煤与瓦斯突出过程中温度变化的实验研究[J].石力学与工程学报,2000,19(3):366-368.
    [86]秦玉金,罗海珠,姜文忠,等.非等温吸附变形条件下的瓦斯运移多场耦合模型研究[J].煤炭学报,2011,36(3):412-416.
    [87]易俊,姜永东,鲜学福,等.应力场、温度场瓦斯渗流特性实验研究[J].中国矿业,2007,16(5):113-116.
    [88]罗新荣.煤层气运移物理模拟与理论分析[J].中国矿业大学学报,1991,20(3):36-42.
    [89] Zhao,Y.S,Qing,H.Z,Bai,Q.Z.Mathematical model for solid-gas coupled problems on methane flowing in coal seam[J].Acta Mechanica Solida Sinica,1993,6(4):459-472.
    [90]孔祥言,李道伦,徐献芝,等.热-流-固耦合渗流的数学模型研究[J].水动力学研究与进展,2005,20(2):269-275.
    [91]张丽萍.低渗透煤层气开采的热-流-固耦合作用机理及应用研究[D].徐州:中国矿业大学,2011.
    [92] Klinkenberg L J. The permeability of porous media to liquid sand gases[J]. API Drilling and Production Practice,1941:200-213.
    [93] Turgay Eetekin. Dynamic gassippage-auniquepual-mechanism approach to the flow gas slippage eintight formation[C],SPE12045.
    [94] LI K,HORNE R.An experimental and analytical study of steam/water capillary pressure[J]. SPE Reservoir Evaluation&Engineering,2001,4(6):477-482.
    [95] Biot MA.Thermoelasticity and Irreversible Themodynamics[J].Journal of Applied Physics,1956,27(3):240-253.
    [96] Zhang Hongbin, Liu Jishan, Elsworth D. How sorption-induced matrix deformation affects gas flow in coal seams: A new FE model[J].International Journal of Rock Mechanics&Mining Sciences,2008,45(8):1226-1236.
    [97] Liu J, Sheng J C, Zhu W C. Effects of heterogeneity on the multiphysics of fractured rocks [C].In:Xu WY editor, Proceedings of the2nd International Conference onCoupled THMC Processes in Geo-systems: Fundamentals, Modeling, Experiments and Applications. Nanjing:2006:045-061.
    [98] Detournay E,Cheng AHD.Fundamentals of poroelasticity[M].In:Fairhurst C,editor.Comprehensive rock engineering, vol.2.Oxford:Pergamon.1993:113-171.
    [99] CUI X, BUSTIN R M. Volumetric strain associated with methane desorption and itsimpact on coalbed gas production from deep coal seams[J].Aapg Bulletin,2005,89(9):1181-1202.
    [100] Robertson EP,Christiansen RL.Modeling permeability in coal using sorption-induced strain data.In:Proceedings of the2005SPE annual technical conference and exhibition,Dallas,9-12October2005, paper SPE97068.
    [101] ZHOU Y,RAJAPAKSER,GRAHAM J.A coupled thermoporoelastic model with thermo-osmosis and thermal-filtration[J].International journal of solids and structures,1998,35(34):4659-4683.
    [102]赵再春,彭担任.煤的比热测定与结果分析[J].煤矿安全,1994,25(6):14-16.
    [103]李建伟,葛岭梅,徐精彩,等.松散煤体导热系数测定实验[J].辽宁工程技术大学学报:自然科学版,2004,23(1):5-9.
    [104]梁冰.温度对煤的瓦斯吸附性能影响的试验研究[J].黑龙江矿业学院学报,2000,10(1):20-22.
    [105]陈大力.浅析煤系地层围岩体的瓦斯赋存特征[J].煤矿安全,2006,37(12):48-49.
    [106]陈向军.强烈波坏煤瓦斯解吸规律研究[D].焦作:河南理工大学,2008.
    [107]唐书恒,蔡超,朱宝存,等.煤变质程度对煤储层物性的控制作用[J].天然气工程,2008,28(12):30-33.
    [108]张晓东,桑树勋,秦勇,等.不同粒度的煤样等温吸附研究[J].中国矿业大学学报,2005,34(4):427-432.
    [109]张小东,刘浩,刘炎昊,等.煤体结构差异的吸附响应及其控制机理[J].中国地质大学学报,2009,34(5):848-854.
    [110]于不凡.煤和瓦斯突出机理[M].北京:煤炭工业出版社,1985.
    [111] R.E.科林斯.流体通过多孔材料的流动[M].北京:石油工业出版社,1984.
    [112]王佑安,杨思敬..煤与瓦斯突出煤层的某些特征[J].煤炭学报,1981,5(1):41-53.
    [113] SMITH D,WILLIAMS F. Diffusional effects in the recovery of methane from coalbeds[J].Old SPE Journal,1984,24(5):529-535.
    [114]何学秋.含瓦斯煤岩流变动力学[M].徐州:中国矿业大学出版社,1995.
    [115]王刚,马明书,李德茂,等.偏微分方程数值解法简明教程[M].内蒙古:内蒙古大学出版社,1997.
    [116]关德师,论中国煤层甲烷可采资源量及当前主要勘探区.煤层气开发与利用国际会议论文集(A),1995.
    [117]中华人民共和国煤炭工业部.煤层瓦斯含量和成分测定方法(解吸法)(MT77-84)[S].北京:煤炭工业出版社,1983.
    [118]中华人民共和国煤炭工业部.煤层气测定方法(解吸法)(MT/T77-94)[S].北京:煤炭工业出版社,1993.
    [119]中华人民共和国国家.地勘时期煤层瓦斯含量测定方法(GB/T23249-2009)[S].北京:中国标准出版社.2009(3):5-7.
    [120]秦玉金.地勘期间煤层瓦斯含量测定方法存在问题及对策分析[J].煤矿安全,2011,42(8):144-146.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700