用户名: 密码: 验证码:
湖冰微结构及其对热、力学参数影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
季节性冰盖的生消是我国北方地表水体的重要现象之一,如江河、湖泊、水库等。静态水体生长的湖泊冰盖对水体环境和工程设施可产生以下影响:一是冰盖几乎切断了大气-水体物质交换和削弱了其间的能量交换,改变了水体生态环境。例如,冰层切断了气-水气体交换可引起水体缺氧;冰层的透光性质和热传导性质控制着冰下水体的光、热结构,影响到水生生物和微生物的活动强度。二是受岸坡和水工结构物的限制,冰层温度改变而伴生的热胀冷缩效应,可对水库坝体、护坡、水工建筑物等施加挤压、剪切等荷载,甚至造成破坏。所以,研究冰自身的基本物理性质和热学、力学参数对于冰区环境和工程都具有重要意义。本文连续多个冬季对湖冰开展了现场调查和室内试验,来揭示湖冰生消过程和物理微结构特征,测定湖冰导热系数、剪切和弯曲强度,并探索湖冰微结构对冰热学、力学参数的影响规律和机理。
     首先,湖冰生消过程和微结构观测结果表明,(1)东北高纬度和青藏高原高海拔热融湖湖冰过程是当地气象过程的结果,融化期的东北平原湖冰和整个冰期高原湖冰存在明显的冰面升华和融化现象。(2)天然湖冰基本由表层颗粒晶体冰(P1或P3型)和中下部柱状晶体冰(S1或S2型)构成,颗粒冰厚度一般不多于最大冰厚的40%。湖冰内气泡特征较为复杂,基本形态可分为圆球型、细圆柱型、线粒型和脊椎型,区域差异显著。青藏高原湖冰内气泡尺寸和含量明显高于前人报告的关于淡水湖冰气泡含量。(3)湖冰晶体类型、尺寸不随冻结时间变化,冰内气泡随冰厚的增加先后出现圆球状气泡区、“洁净的冰”区、细圆柱气泡区,融化期开始后冰内气泡扩张、贯通,含量和尺寸增大;湖冰晶体构成和气泡特征存在年差异,主要受当年水文、气象条件控制。(4)建立了湖冰晶体和气泡参数与生长速率的关系。(5)对比分析淡水湖冰、渤海海冰、夏季北极海冰微结构异同,证实冰内孔隙的形成位置与冰晶体边界分布并不存在明显关系。
     其次,开展高纬度和高海拔湖冰导热系数测定工作,分析湖冰微结构对导热系数的影响规律。(1)湖冰晶体类型和尺寸对导热系数影响较弱,柱状冰水平向导热系数比竖直向略低(约5%)。东北高纬度湖冰气泡含量低(<3%)对导热系数影响不明显。(2)对比分析以往多孔介质导热系数理论计算模型的优劣,提出综合考虑冰内气泡含量、尺寸和分布形式的联合计算模型来计算湖冰导热系数。(3)尝试测定“高温”湖冰的导热系数,当冰温接近于融点且随着冰温的升高,湖冰导热系数迅速减小,并给出估算高温湖冰导热系数的曲线。
     再次,大量开展高纬度湖冰单剪强度和三点简支梁抗弯强度试验,测定天然湖冰剪切和弯曲强度,并探索湖冰微结构对其影响规律。(1)率先开展天然淡水湖冰剪切强度测试,在不同加载方向下颗粒冰剪切强度呈现各向同性,柱状冰表现出各向异性;本文从切断晶体比例、晶体边界和裂纹扩展机理等方面探讨冰晶体对湖冰剪切破坏形式和各向同异性的影响机理。(2)大批次开展湖冰弯曲强度测试工作,其中独立测定颗粒冰抗弯强度尚属首次,颗粒、柱状冰抗弯强度的各向同异性特征与抗剪强度相同,并从拉、压裂纹形成和扩展机理分析了冰晶体的影响。(3)冰内气泡含量虽小,但却造成湖冰抗弯强度约15%的降低,主要归因于气泡含量、结构以及其提供了拉伸破坏的原生裂纹。(4)综合评价了加载应变速率和冰温对剪切和弯曲强度的影响,随着温度降低,湖冰强度增大;湖冰峰值强度(或韧-脆转换区)对应的应变速率在2×10-5~5×104/s范围内。
     本文充分地揭示了湖冰晶体、气泡结构特征,及其年内、年际变化特征,发现湖冰生长过程对微结构的影响关系,并从本质上讨论了湖冰物理微结构对导热系数、剪切和弯曲强度的影响规律和机理。这些成果可为冬季湖泊、水库的运行、管理,水工建筑物的抗冰设计提供科学依据,对评价冰区工程行为和水体环境对气候变化的响应具有重要意义。
In norhern China, surface water bodies, such as rivers, lakes and reserviors, are usually characterized by the seasonal growth and decay of ice covers. Static grown ice covers take signifficant impacts on the aquatic environment and engineering infrastructures. On one hand, ice cover obstructs the mass exchange and weakens the heat exchange between air and water, changing the aquatic ecology. For instance, ice cover cut off the gas exchange between atmosphere and water, which can cause a hypoxia. The irradiance tranmissivity and heat conductivity of ice cover takes the charge of the thermal structure of under-ice water, which can influence the activities of hydrobios. On the other hand, constraited by the banks and hydrostructures, thermal forces can be produced in form of compression and shear due to ice temperature variation, and be exerted on or even destroy the infrastructures, such as dams, revetments and water intakes. Therefore, the knowledge of basic physical properties, thermal and mechanical parameters of ice has many implications on ice-infested environment and engineering. The present paper conducted the continuous filed investigations and lab tests of static lake ice during several winters. Its purpose is to reveal the growth and decay process and physical structure of lake ice, to determine the thermal conductivity, shear and flexural strengths, and to discuss the effects of microstructure on the thermal and mechanical properties.
     Firstly, the investigations of lake ice processes and microstructure indicated that,(1) lake ice covers are the results of local meteorological processes in high-latitude Northeastern plain (NEP) and in high-altitude Qinghai-Tibet Plateau (QTP). The surface ice sublimation and thaw is rigorous after the beginning of melt period in NEP and during the whole ice period of QTP.(2) Lake ice is mainly consituted of the upper granular-grained ice layer (P1or P3ice) and the middle and bottom columnar-grained ice layer (S1or S2ice). The granular layer accounts for less than40%of the maximum thickness. Gas inclussion within lake ice is complicated, with the shape of sphere, slim cylinder, dotted-line and rachis. The gas inclussion is also characterized by site-specitic. QTP lake ice trapped much larger gas content than those reported previously.(3) Lake ice crystal type and size do not alter temporally. However, as the ice cover grows, the spheric bubble band, clear ice and slim cylinder bubble band emerge subsequently. As the ice starts to melt, the expanding and connecting of gas bubbles increases the bubbles sizes and contents. Annual variations of ice crystalline and gas structure are controlled by the changing local hydrology and meteorology.(4) The relationships of lake ice growth rate with ice crystal size and gas content were developed.(5) The microstructural intercomparisons of freshwater lake ice, Bohai Sea sea ice and summer Arctic sea ice were evaluated, and it is proved that the position of voids incorporated in ice is not related signifficantly to ice crystal boundaries.
     Secondly, the thermal conductivities of lake ice in high latitude and altitude were measured several times, and the effects of microstructure on conductivity were analyzed. The results showed that,(1) the size and orientation of ice crystal have minor effects on the thermal conductivity. Horizontal thermal conductivity of columnar ice is slightly smaller than vertical one by~5%. Gas inclusion does not take effective impacts on the conductivity of NEP high-latitude lake ice, due to its too minor gas content (<3%).(2) Previous porous medium models for thermal conductivity calculation were validated. Considering the effects of gas content, size and structure, a new synthetical model was formulated to determine the lake ice thermal conductivity.(3) A tempt to measure thermal conductivity of "warm" ice was conducted. For warm ice, as the ice temperature increases near the melt point, the thermal conductivity decreases drastically. A new curve was proposed to estimate the thermal conductivity of warm lake ice.
     Thirdly, a great number of single-plane shear tests and three-point singly supported beam tests were carried out to determine the shear and flexural strengths of NEP high latitude lake ice. The effects of microstructure were also analyzed on lake ice strengths. The findings are as follows:(1) a large quantities of shear tests were precursively done for natural lake ice. The granular-and columnar-grained ice have an isotropic and anisotropic shear behavior. The cross-crystal force, cohesion friction of crystal boundary and crack propagation were introduced to account for the failure modes and anisotorpy of ice specimens.(2) A large group of simple beam tests were conducted. The flexural strength of columnar ice has not been reported previously. The directional differences of flexural strengths is similar to those of shear tests for granular and columnar ice. The crystal effects were discussed from the aspects of the compression and tension crack formation and propagation.(3) Although the gas content difference is quite small, it seems to cause15%depress in flexural strength of bubbly ice specimen. This is largely attributed to gas structure that acts as the original crack in tension stress field.(4) The effects of the strain rate and ice temperature were estimated synthetically. Lake ice strengths increase with the decreasing temperature. The peak strengths takes up at strain rate of2×10-5~5×10-4/s (i.e. ductile-brittle transition section).
     Generally, the present thesis thoroughly revealed the features, and the inter-and intra-annual variations of lake ice crystal and gas pore structure, and formulated the relationship between the ice growth rate and microstructure. The effects of microstructure on the thermal conductivity, shear and flexural strengths were also discussed essentially. The findings of this thesis would provide good grounds for the running and management of wintertime lakes and reservoirs, and for the anti-ice design of hydro-infrastructures, and also have important implications for assessing the responses of the ice-infested engineerings and equatic environment to the climate change.
引文
[1]岳前进.我国冰工程问题研究现状与展望[J].冰川冻土,1995,17(1):15-19.
    [2]Barry R G. Trends in snow and ice research[J]. Eos, Transactions American Geophysical Union, 1981,62(46):1138-1144.
    [3]Kirillin G, Lepparanta M, Terzhevik A, et al. Physics of seasonally ice-covered lakes:a review[J]. Aquatic Sciences-Research Across Boundaries,2012:1-24.
    [4]Woo M. Rivers in Cold Regions[J]. Permafrost Hydrology,2012:407-454.
    [5]Hicks F. An overview of river ice problems:CRIPE07 guest editorial[J]. Cold Regions Science and Technology,2009,55(2):175-185.
    [6]Granskog M. Investigations into the physical and chemical properties of Baltic Sea ice[D]. Helsinki: Helsinki University,2004.
    [7]李志军.渤海海冰灾害和人类活动之间的关系[J].海洋预报,2010,27(1):8-12.
    [8]Fichefet T, Tartinville B, Goosse H. Antarctic sea ice variability during 1958--1999:A simulation with a global ice-ocean model[J]. Journal of Geophysical Research,2003,108, C33102.
    [9]Levi B G. The decreasing Arctic ice cover[J]. Physics Today,2000,53:19.
    [10]Xu J, Hou S, Qin D, et al. Dust storm activity over the Tibetan Plateau recorded by a shallow ice core from the north slope of Mt. Qomolangma (Everest), Tibet-Himal region[J]. Geophysical Research Letters,2007,34, L17504.
    [11]Zhang T, Heginbottom J A, Barry R G, et al. Further statistics on the distribution of permafrost and ground ice in the Northern Hemisphere 1 [J]. Polar Geography,2000,24(2):126-131.
    [12]DeMott P J, Prenni A J, Liu X, et al. Predicting global atmospheric ice nuclei distributions and their impacts on climate[J]. Proceedings of the National Academy of Sciences,2010,107(25): 11217-11222.
    [13]张方俭,费立淑.我国的海冰灾害及其预防[J].海洋通报,1994,13(5):75-83.
    [14]高霈生,靳国厚.中国北方寒冷地区河冰灾害调查与分析[J].中国水利水电科学研究院学报,2003,2:14.
    [15]孙江岷,那文杰,李桂兰.寒区水库边坡护岸构筑物结构问题研讨[J].低温建筑技术,1994,4:11-12.
    [16]鲁仕宝,黄强,吴成国,等.黄河宁蒙段冰凌灾害及水库防凌措施[J].自然灾害学报,2010,19(4):43-47.
    [17]周玉,徐海强.黑龙江上游冰灾害成因及防凌措施[J].黑龙江水专学报,2000,27(3):86-88.
    [18]Ko P K, Ho M S, Smith F G. Thermal ice forces on concrete dams:recent developments[J]. Dam Safety,1994:17-34.
    [19]Gerard R. Thermal ice loads on dams and ancillary structures:a brief review[J]. Dam Safety,1989: 1-15.
    [20]李胜林,赵巧燕,王臣杰,等.冰荷载对某水库桥下部结构设计的影响[J].公路交通科技(技衍版),公路交通科技(技术版),2010,6(2):106-109.
    [21]姜连杰,卢永超,韩红卫,等.红旗泡水库冰层变形及护坡破坏现象成因分析[J].水利水电技术,2011,42(7):85-88.
    [22]Golosov S, Maher O A, Schipunova E, et al. Physical background of the development of oxygen depletion in ice-covered lakes[J]. Oecologia,2007,151:331-340.
    [23]Hargrave B T. A comparison of sediment oxygen uptake, hypolimnetic oxygen deficit and primary production in Lake Esrom, Denmark[J]. Verh International Verein Limnology,1972,18:134-139.
    [24]Charlton M N. Hypolimnion oxygen consumption in lakes:discussion of productivity and morphometry effects[J]. Canadian Journal of Fisheries and Aquatic Sciences,1980,37(10): 1531-1539.
    [25]Kerr D J, Shen H T, Daly S F. Evolution and hydraulic resistance of anchor ice on gravel bed[J]. Cold Regions Science and Technology,2002,35:101-114.
    [26]Turcotte B, Morse B, Bergeron N E, et al. Sediment transport in ice-affected rivers[J]. Journal of Hydrology,2011,409(1-2):561-577.
    [27]Seidou O, Ouarda T B M J, Bilodeau L. Reservoir storage loss due to grounded ice during winter operation[J]. Journal of Hydrology,2007,335:15-24.
    [28]Petit J-R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica[J]. Nature,1999,399(6735):429-436.
    [29]EPICA community members. Eight glacial cycles from an Antarctic ice core[J]. Nature,2004,429: 623-628.
    [30]Gow A J, Williamson T. Gas inclusions in the Antarctic ice sheet and their glaciological significance[J]. Journal of Geophysical Research,1975,80(36):5101-5108.
    [31]Huang W, Li Z, Han H, et al. Structural Analysis of Thermokarst Lake Ice in Beiluhe Basin, Qinghai-Tibet Plateau[J]. Cold Regions Science and Technology,2012,72:33-42.
    [32]Huang W, Han H, Shi L, et al. Effective Thermal Conductivity of Thermokarst Lake Ice in Beiluhe Basin, Qinghai-Tibet Plateau[J]. Cold Regions Science and Technology,2013,85:34-41.
    [33]Bolsenga S J, Herdendorf C E, Norton D C. Spectral transmittance of lake ice from 400-850 nm[J]. Hydrobiologia,1991,218:15-25.
    [34]Xu Z, Yang Y, Wang G, et al. Optical properties of sea ice in Liaodong Bay, China[J]. Journal of Geophysical Research,2012,117, C03007.
    [35]Xu Z, Yang Y, Sun Z, et al. In situ measurement of the solar radiance distribution within sea ice in Liaodong Bay, China[J]. Cold Regions Science and Technology,2011,71:23-33.
    [36]Winebrenner D P, Tsang L, Wen B, et al. Sea-ice characterization measurements needed for testing of microwave remote sensing models[J]. IEEE Journal of Oceanic Engineering,1989,14(2): 149-158.
    [37]Li Z, Jia Q, Zhang B, et al. Influences of gas bubble and ice density on ice thickness measurement by GPR[J]. Applied Geophysics,2010,7(2):105-113.
    [38]Iliescu D, Baker I. The structure and mechanical properties of river and lake ice[J]. Cold Regions Science and Technology,2007,48:202-217.
    [39]Michel B, Ramseier R O. Classification of River and Lake Ice Based on Its Genesis, Structure and Texture[M]. Quebec City, Canada:Laval University Press,1969.
    [40]Michel B, Ramseier R O. Classification of river and lake ice[J]. Canadian Geotechnical Journal, 1971,8(1):36-45.
    [41]Cherepanov N V. Classification of ice of natural water bodies[C]. Ocean'74-IEEE International Conference on Engineering in the Ocean Environment. Halifax, NS, Canada:1974:97-101.
    [42]Gow A J, Govoni J W. Ice growth on post pond,1973-1982[R]. Hanover, New Hampshire, USA: 1983:83-4.
    [43]Lepparanta M, Koslof P. The thickness and structure of Lake Paajarvi ice[J]. Geophysica,2000,36: 233-248.
    [44]Knight C A. Slush on lakes[J]. Structure and Dynamics of Partially Solidified Systems, NATO ASI Series,1987,125:453-465.
    [45]李志军,贾青,黄文峰,等.水库淡水冰的晶体和气泡及密度特征分析[J].水利学报,2009,40(11):1333-1338.
    [46]黄文峰,张丽敏,李志军,等.天然和人造淡水冰内部结构特征的对比研究[C].寒区水科学及国际河流研究系列丛书2:寒区水循环及冰工程研究——第2届“寒区水资源及其可持续利用”学术研讨会论文集,2009.
    [47]黄文峰,李志军,牛富俊,等.青藏高原北麓河地区热融湖塘冰晶体和气泡特征分析[J].水利学报,2011,42(01]):1277-1282.
    [48]Li Z J, Huang W F, Jia Q, et al. Distributions of crystals and gas bubbles in reservoir ice during growth period[J]. Water Science and Engineering,2011,4(2):204-211.
    [49]Weeks W F, Lee O S. The salinity distribution in young sea-ice[J]. Arctic,1962,15(2):92-108.
    [50]Weeks W F. Growth conditions and the structure and properties of sea ice[C]. M. Lepparanta (editor). Physics of ice-covered seas. Helsinki:Helsinki University Press,1998,1:25-104.
    [51]Salonen K, Lepparanta M, Viljanen M, et al. Perspectives in winter limnology:closing the annual cycle of freezing lakes[J]. Aquatic Ecology,2009,43(3):609-616.
    [52]Langway C C. Ice fabrics and the universal stage[R]. Department of Defense, Department of the Army, Corps of Engineers, Snow Ice and Permafrost Research Establishment,1959.
    [53]Cho H, Shepson P B, Barrie L A, et al. NMR investigation of the quasi-brine layer in ice/brine mixtures[J]. The Journal of Physical Chemistry B,2002,106(43):11226-11232.
    [54]Eicken H, Bock C, Wittig R, et al. Magnetic resonance imaging of sea-ice pore fluids:methods and thermal evolution of pore microstructure[J]. Cold Regions Science and Technology,2000,31(3): 207-225.
    [55]Mercier O R, Hunter M W, Callaghan P T. Brine diffusion in first-year sea ice measured by Earth's field PGSE-NMR[J]. Cold Regions Science and Technology,2005,42(2):96-105.
    [56]Schneebeli M, Sokratov S A. A Microstructural Approach to Model Heat Transfer in Snow[J]. Geophysical Research Letters,2005,32(L21503):1-10.
    [57]Golden K M, Eicken H, Heaton A L, et al. Thermal evolution of permeability and microstructure in sea ice[J]. Geophysical Research Letters,2007,34(L16501):1-6.
    [58]Perovich D K, Gow A J. A quantitative description of sea ice inclusions[J]. Journal of Geophysical Research,1996,101(C8):18327-18343.
    [59]Light B, Maykut G A, Grenfell T C. Effects of temperature on the microstructure of first-year Arctic sea ice[J]. Journal of Geophysical Research,2003,108(3051):10-1029.
    [60]Iliescu D, Baker I, Cullen D. Preliminary microstructural and microchemical observations on pond and river accretion ice[J]. Cold regions science and technology,2002,35(2):81-99.
    [61]Iliescu D, Baker I, Chang H. Determining the orientations of ice crystals using electron backscatter patterns[J]. Microscopy Research and Technique,2004,63(4):183-187.
    [62]Baker I, Iliescu D, Obbard R, et al. Microstructural characterization of ice cores[J]. Annals of Glaciology,2005,42(1):441-444.
    [63]Baker I, Cullen D, Iliescu D. The microstructural location of impurities in ice[J]. Canadian Journal of Physics,2003,81(1-2):1-9.
    [64]Tsafnat N, Amanat N, Jones A S. Analysis of coke under compressive loading:A combined approach using micro-computed tomography, finite element analysis, and empirical models of porous structures[J]. Fuel,2011,90(1):384-388.
    [65]Pierret A, Capowiez Y, Belzunces L, et al.3D reconstruction and quantification of macropores using X-ray computed tomography and image analysis[J]. Geoderma,2002,106:247-271.
    [66]Sturm M, Perovich D K, Holmgren J. Thermal conductivity and heat transfer through the snow on the ice of the Beaufort Sea[J]. Journal of Geophysical Research,2002,107(C21):8043-8061.
    [67]Pringle D J, Trodahl H J, Haskell T G. Direct measurement of sea ice thermal conductivity:No surface reduction[J]. Journal of Geophysical Research,2006,111, C05020:1-9.
    [68]Pringle D J, Eicken H, Trodahl H J, et al. Thermal conductivity of landfast Antarctic and Arctic sea ice[J]. Journal of Geophysical Research,2007,112, C04017:1-13.
    [69]Klinger J, Rochas G. Anisotropic heat conduction of fresh hexagonal ice single crystals at low temperature[J]. Journal of Physics, C Series:Solid State Physics,1982,15:4503-4509.
    [70]Klinger J. Low-temperature heat conduction in pure monocrystalline ice[J]. Journal of Glaciology, 1975,14(72):517-528.
    [71]李志军,孟广琳,严德成,等.黄河口附近海冰导热系数的室内测试方法[J].海洋环境科学,1992,1:39-43.
    [72]Shoshany Y, Prialnik D, Podolak M. Monte Carlo modeling of the thermal conductivity of porous cometary ice[J]. Icarus,2002,157(1):219-227.
    [73]Chen N J, Morikawa J, Kishi A, et al. Thermal diffusivity of eutectic of alkali chloride and ice in the freezing-thawing process by temperature wave analysis[J]. Thermokimica Acta,2005,429:73-79.
    [74]Gavriliev R I. Thermal conductivity of segregated ground ice[J]. Permafrost and Periglacial Processes,2008,19(4):333-340.
    [75]Fang X, Stefan H G. Potential climate warming effects on ice covers of small lakes in the contiguous U. S.[J]. Cold Regions Science and Technology,1998,27:119-140.
    [76]Mishra V, Cherkauer K A, Bowling L C. Changing thermal dynamics of lakes in the Great Lakes region:Role of ice cover feedbacks[J]. Global and Planetary Change,2011,75(3-4):155-172.
    [77]Latifovic R, Pouliot D. Analysis of climate change impacts on lake ice phenology in Canada using the historical satellite data record[J]. Remote Sensing of Environment,2007,106:492-507.
    [78]Lindholm J E, Makela K, Zheng C B. Structure-ice interaxtion for a Bohai Bay oil production project[C]. Proceedings of the 3rd International Offshore and Polar Engineering Conference. Golden, CO (USA):1993.
    [79]Gold L W. Some observations on the dependence of strain on stress for ice[J]. Canadian Journal of Physics,1958,36(10):1265-1275.
    [80]Timco G W, Frederking R M W. Comparative strengths of fresh water ice[J]. Cold Regions Science and Technology,1982,6(1):21-27.
    [81]Sinha N K. Constant strain-and stress-rate compressive strength of columnar-grained ice[J]. Journal of Materials Science,1982,17(3):785-802.
    [82]Hawkes I, Mellor M. Deformation and fracture of ice under uniaxial stress[J]. Journal of Glaciology, 1972,11:103-131.
    [83]Cole D M. Strain-rate and grain-size effects in ice[J]. Journal of Glaciology,1987,33(115):274-280.
    [84]Dutta P K, Cole D M, Schulson E M, et al. A fracture study of ice under high strain rate loading[J]. International Journal of Offshore and Polar Engineering,2004,14(3).
    [85]Traetteberg A, Gold L W, Frederking R M W. The strain rate and temperature dependence of Young's modulus of ice[C]. G.E. Frankenstein. Proceedings of 3rd International Symposium on Ice Problems. Hanover, NH (USA):Division of Building Research, National Research Council,1975: 479-489.
    [86]Richter J A, Cox G F N. A preliminary examination of the effect of structure on the compressive strength of ice samples from multi-year pressure ridges[C]. Third International Offshore Mechanics and Arctic Engineering Symposium. New Orleans, US:1984:140-144.
    [87]Nadreau J-P, Nawwar A M, Wang Y S. Triaxial testing of freshwater ice at low confining pressures.[J]. Transactions of the ASME Journal of Offshore Mechanics and Arctic,1991,113(3): 260-265.
    [88]Barrette P D, Jordaan I J. Pressure--temperature effects on the compressive behavior of laboratory-grown and iceberg ice[J]. Cold Regions Science and Technology,2003,36(1):25-36.
    [89]Currier J H, Schulson E M. The tensile strength of ice as a function of grain size[J]. Acta Metallurgica, 1982,30(8):1511-1514.
    [90]Weiss J, Schulson E M. The failure of fresh-water granular ice under multiaxial compressive loading[J]. Acta Metallurgica et Materialia,1995,43(6):2303-2315.
    [91]Bjerkas M. Compressive behaviour of Norwegian Arctic sea ice under vertical and horizontal loading[R]. Norwegian University of Science and Technology, Trondheim, Norway,2003.
    [92]Frankenstein G E. Strength date on lake ice[R]. Wilmette, Illinois, US:1961.
    [93]Lavrov V. Deformation and strength of ice[R]. Leningrad:1971:1-164.
    [94]Gow A J. Flexural strength of ice on temperate lakes[J]. Journal of GLaciology,1977,19(81): 247-256.
    [95]Ueda H T, Gow A J, Ricard J A. Flexural Strength of Ice on Temperate Lakes:Comparative Tests of Large Cantilever and Simply Supported Beams[R]. Hanover, NH (USA):Cold Regions Research and Engineering Laboratory, Hanover NH,1978:1-14.
    [96]Frederking R M W, Timco G W. On measuring flexural properties of ice using cantilever beams[J]. Annals of glaciology,1983,4:58-65.
    [97]Frederking R M W, Svec O J. Stress-relieving techniques for cantilever beam tests in an ice cover[J]. Cold Regions Science and Technology,1985,11(3):247-253.
    [98]Gow A J, Ueda H T. Structure and temperature dependencd of the flexural properties of laboratory freshwater ice sheets[J]. Cold Regions Science and Technology,19.89,16:249-269.
    [99]Butkovich T R. Strength studies of sea ice[R]. Wilmetre, USA:1956.
    [100]Pounder E R, Little E M. Some physical properties of sea ice. I[J]. Canadian Journal of Physics,1959, 37(4):443-473.
    [101]Paige R A, Lee C W. Preliminary studies on sea ice in McMurdo Sound, Antarctica, during[J]. Journal of Glaciology,1967,6:515-528.
    [102]Dykins J E. Tensile properties of sea ice grown in a confined system[C]. H. Oura (editor). Proceedings of International Conference on Loe Temperature Science. Physics of Snow and Ice: proceedings=雪水の物理学:论文集.Hokaido, Japan:Institute of Low Temperature Science, Hokkaido University,1967,1(1):523-537.
    [103]Frederking R M W, Timco G W. Measurement of shear strength of granular/discontinuous-columnar sea ice[J]. Cold Regions Science and Technology,1984,9(3):215-220.
    [104]Frederking R M W, Timco G W. Field measurements of the shear strength of columnar-grained sea ice[C]. Proceedings of 8th IAHR Symposium on Ice. Iowa City, USA,1986:279-292.
    [105]Timco G W, Weeks W F. A review of the engineering properties of sea ice[J]. Cold Regions Science and Technology,2010,60(2):107-129.
    [106]Walter K M, Zimov S A, Chanton J P, et al. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming[J]. Nature,2006,443(7107):71-75.
    [107]Carte A E. Air bubbles in ice[J]. Proceedings of the Physical Society,1961,77(3):757-768.
    [108]周幼吾.中国冻土[M].科学出版社,2000.
    [109]Lin Z, Niu F, Xu Z, et al. Thermal regime of a thermokarst lake and its influence on permafrost, Beiluhe Basin, Qinghai-Tibet Plateau[J]. Permafrost and Periglacial Processes,2010,21(4): 315-324.
    [110]王国志,黄文峰,李志军,等.大庆红旗泡水库冰内部组构观测方法[J].黑龙江水专学报,2009,36(4):75-78.
    [111]Raff G L, Gallagher M J, O'Neill W W, et al. Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography [J]. Journal of the American College of Cardiology,2005,46(3):552-557.
    [112]Copley D C, Eberhard J W, Mohr G A. Computed tomography part I:introduction and industrial applications[J]. Journal of the Minerals, Metals and Materials Society,1994,46(1):14-26.
    [113]Ren J, Hui X. Primary study on meso-damage propagation mechanism of cracked-sandstone using computerized tomography under uniaxial compression[J]. Rock and Soil Mechanics,2005,26:48.
    [114]Schilling P J, Karedla B P R, Tatiparthi A K, et al. X-ray computed microtomography of internal damage in fiber reinforced polymer matrix composites[J]. Composites Science and Technology,2005, 65(14):2071-2078.
    [115]Holler P, Kogler F C. Computer tomography:a nondestructive, high-resolution technique for investigation of sedimentary structures[J]. Marine Geology,1990,91(3):263-266.
    [116]Schneebeli M, Sokratov S A. Tomography of temperature gradient metamorphism of snow and associated changes in heat conductivity[J]. Hydrological Processes,2004,18(18):3655-3665.
    [117]Schwarz J, Frederking R, Gavrillo V, et al. Standardized testing methods for measuring mechanical properties of ice[J]. Cold Regions Science and Technology,1981,4(3):245-253.
    [118]Lepparanta M, Reinart A, Erm A, et al. Investigation of ice and water properties and under-ice light fields in fresh and brackish water bodies[J]. Nordic Hydrology,2003,34(3):245-266.
    [119]Lepparanta M, Terzhevik A, Shirasawa K. Solar radiation and ice melting in Lake Vendyurskoe, Russian Karelia[J]. Hydrology Research,2010,41(1):51-62.
    [120]Jakkila J, Lepparanta M, Kawamura T, et al. Radiation transfer and heat budget during the ice season in Lake Paajarvi, Finland[J]. Aquatic Ecology,2009,43(3):681-692.
    [121]Duguay C R, Flato G M, Jeffries M O, et al. Ice-cover variability on shallow lakes at high latitudes: model simulations and observations[J]. Hydrological Processes,2003,17(17):3465-3483.
    [122]Lepparanta M. A growth model for black ice, snow ice and snow thickness in subarctic basins[J]. Nordic Hydrology,1983,14(2):59-70.
    [123]Saloranta T M, Andersen T. MyLake—A multi-year lake simulation model code suitable for uncertainty and sensitivity analysis simulations[J]. Ecological Modelling,2007,207(1):45-60.
    [124]Shirasawa K, Lepparanta M, Saloranta T, et al. The thickness of coastal fast ice in the Sea of Okhotsk[J]. Cold Regions Science and Technology,2005,42(1):25-40.
    [125]Saloranta T M. Modeling the evolution of snow, snow ice and ice in the Baltic Sea[J]. Tellus A,2000, 52(1):93-108.
    [126]Maykut G A, Untersteiner N. Some results from a time-dependent thermodynamic model of sea ice[J]. Journal of Geophysical Research,1971,76(6):1550-1575.
    [127]Lepparanta M. Modelling the formation and decay of lake ice[C]. George G (editor). The Impact of Climate Change on European Lakes. Springer, Netherlands,2010:63-83.
    [128]Lepparanta M. A review of analytical models of sea-ice growth[J]. Atmosphere-Ocean,1993,31(1): 123-138.
    [129]Zubov N N. L'dy Arktiki (Arctic ice)[J]. Moskva, Izdatel'stvo Glavsevmorputi,1945.
    [130]Muller-Stoffels M, Langhorne P J, Petrich C, et al. Preferred crystal orientation in fresh water ice[J]. Cold Regions Science and Technology,2009,56(1):1-9.
    [131]Gow A J. Orientation textures in ice sheets of quietly frozen lakes[J]. Journal of crystal growth,1986, 74(2):247-258.
    [132]Gray N H. Geometric selection in two-dimensional crystal aggregates[J]. Mathematical Geology, 1984,16(1):91-100.
    [133]Langhorne P J, Robinson W H. Alignment of crystals in sea ice due to fluid motion[J]. Cold Regions Science and Technology,1986,12(2):197-214.
    [134]Chen D F, Wang M C, Xia B. Formation condition and distribution prediction of gas hydrate in Qinghai-Tibet Plateau permafrost[J]. Chinese Journal of Geophysics,2005,48(1):165-172.
    [135]Hamre B, Winther J G, Gerland S, et al. Modeled and measured optical transmittance of snow-covered first-year sea ice in Kongsfjorden, Svalbard[J]. Journal of Geophysical Research,2004, 109, C10006.
    [136]Winebrenner D P, Tsang L, Wen B, et al. Sea-ice characterization measurements needed for testing of microwave remote sensing models[J]. IEEE Journal of Oceanic Engineering,1989,14(2): 149-158.
    [137]Maeno N. Air bubble formation in ice crystals[C]. Physics of Snow and Ice:proceedings=雪水の物理学:论文集.Institute of Low Temperature Science, Hokkaido University,1967,1(1):207-218.
    [138]Iliescu D, Baker I. Characterization of the microstructure and mechanical properties in seasonal lake and river ice[R]. Hanover NH:2004.
    [139]Nakawo M, Sinha N K. A note on brine layer spacing of first-year sea ice[J]. Atmosphere-Ocean, 1984,22(2):193-206.
    [140]Lofgren G, Weeks W F. Effect of growth parameters on substructure spacing in NaCI ice crystals[J]. Journal of Glaciology,1969,8(52):153-164.
    [141]Golden K M, Ackley S F, Lytle V I. The percolation phase transition in sea ice[J]. Science,1998, 282(5397):2238-2241.
    [142]Cox G F N, Weeks W F. Salinity variations in sea ice[J]. Journal of Glaciology,1974,13(67): 109-120.
    [143]Landauer J K, Plumb H. Measurements on anisotropy of thermal conductivity of ice[M]. Snow, Ice and Permafrost Research Establishment, Corps of Engineers, US Army,1956:16.
    [144]Hamilton R L, Crosser O K. Thermal conductivity of heterogeneous two-component systems[J]. Industrial and Engineering Chemistry Fundamentals,1962,1(3):187-191.
    [145]Wang J, Carson J K, North M F, et al. A new approach to modelling the effective thermal conductivity of heterogeneous materials[J]. International Journal of Heat and Mass Transfer,2006, 49(17):3075-3083.
    [146]Eucken A. Allgemeine gesetzmaβigkeiten fur das warmeleitvermogen verschiedener stoffarten und aggregatzustande[J]. Forschung im Ingenieurwesen,1940,11(1):6-20.
    [147]Maxwell J C. A treatise on electricity and magnetism[M]. Clarendon Press,1881,1.
    [148]Usowicz B, Lipiec J, Marczewski W, et al. Thermal conductivity modelling of terrestrial soil media—A comparative study [J]. Planetary and Space Science,2006,54(11):1086-1095.
    [149]Kou J, Liu Y, Wu F, et al. Fractal analysis of effective thermal conductivity for three-phase (unsaturated) porous media[J]. Journal of Applied Physics,2009,106(5):54905.
    [150]Sakazume S, Seki N. On the thermal properties of ice and snow in a low temperature region[J]. Bulletin of the Japanese Society of Mechanical Engineering,1978,44:2059-2069.
    [151]Schwerdtfeger P. The thermal properties of sea ice[J]. Journal of Glaciology,1963,4(36):789-807.
    [152]Fukusako S. Thermophysical properties of ice, snow, and sea ice[J]. International Journal of Thermophysics,1990,11(2):353-372.
    [153]Wang M, Pan N, Wang J, et al. Mesoscopic simulations of phase distribution effects on the effective thermal conductivity of microgranular porous media[J]. Journal of Colloid and Interface Science, 2007,311(2):562-570.
    [154]Light B, Maykut G A, Grenfell T C. A temperature-dependent, structural-optical model of first-year sea ice[J]. Journal of Geophysical Research,2004,109, C06013.
    [155]Golden K M. Brine percolation and the transport properties of sea ice[J]. Annals of Glaciology,2001, 33(1):28-36.
    [156]Gold L W. The process of failure of columnar-grained ice[J]. Philosophical Magazine, Eighth Series, 1972,26(2):311-328.
    [157]Schulson E M. The Structure and Mechanical Behavior of Ice[J]. The Journal of the Minerals, Metals and Materials Society,1999,51(2):21-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700