用户名: 密码: 验证码:
基于GPS和自包含传感器的行人室内外无缝定位算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着导航定位功能在手机中的普及和基于位置服务LBS(Location-Based Service)的蓬勃发展,对行人导航定位技术准确性、可靠性和连续性的要求日益迫切。然而,作为目前行人导航领域的重要定位手段,美国全球定位系统GPS(Global Positioning System)在城市峡谷和室内等复杂环境中因为信号的衰减、干扰和遮挡等,接收机定位精度很差甚至无法定位,而此类环境恰好是个人用户的主要活动区域。为了获得连续的导航定位结果,必须借助于其它定位增强技术,如自包含传感器、无线局域网WLAN(Wireless Local Area Network)、移动蜂窝网络、射频识别RFID(Radio Frequency IDentification)、伪卫星等。基于GPS和自包含传感器的导航定位技术,以其自主导航、不需要额外设施的优点,受到导航工业界和学术界的广泛关注和集中研究。
     本博士课题基于一套低成本多传感器定位平台MSP(Multi-Sensor Positioning,包含一个GPS接收机、一个两轴数字罗盘和一个三轴加速度计),研究在GPS接收机无法提供准确连续定位信息的情况下,如何通过自包含传感器测量行人的速度和航向,并设计组合滤波器融合GPS和自包含传感器的定位结果,实现行人室内外无缝定位解决方案。
     通过对各种行人无缝定位算法的调研和深入了解,考虑到硬件系统低成本传感器的性能无法满足传统惯性导航机制的精度要求,本文选择了行人航迹推算算法PDR(Pedestrian Dead Reckoning)辅助在GPS性能不佳的复杂环境中的定位,重点研究了以下三个方面:
     1.行人步频探测和步长估计算法研究
     利用行人步态的运动生理学特性,参照传统步频探测和步长估计方法,设计了基于加速度信号的集成了滑动窗口( Sliding-Window )、零交叉(Zero-Crossing)和峰值探测(Peak Detection)三种方法的步频探测算法,实现了只有一个参数的步长估计模型,通过实验评估了步频探测算法正确率和步长估计模型性能。此外,本文创新性地将肌电信号EMG(Electromyography)用于步频探测和步长估计,详细说明了行人肌肉群选择、信号预处理、探测算法实现和估计模型设计等问题,实验验证了该方法的可行性。
     2.数字罗盘航向校准算法的研究
     获取精准的航向是PDR算法的核心问题,也是困扰个人定位研究的长期难题。针对两轴数字罗盘无法实现倾斜补偿,容易受到软硬铁效应、固定偏置、比例因子和行走时平台振动等误差影响的弱点,本文采用仿真手段研究了各种因素对航向影响的误差特性,充分考虑到行人导航定位对校准方法的易操作性要求,提出了包含所有可预测误差的统一误差模型,分别实现了独立校准方式采用最小二乘法求解误差模型参数的算法,和非独立校准方式基于知识(Knowledge-based)与卡尔曼滤波器的在线训练模型参数求解算法,通过大量实验讨论了算法的适用条件,验证了该误差模型的合理性和参数求解算法的有效性。
     3.行人无缝定位算法实现
     为了实现行人室内外无缝定位技术,本文设计了一种三模式的定位机制:GPS定位模式--当GPS信号质量好时直接利用GPS定位结果;PDR定位模式--无GPS信号时完全采用PDR定位结果;GPS和PDR混合定位模式--信号质量不好时GPS与PDR定位结果通过融合Kalman滤波器得出最终定位信息。分别实现了在无GPS信号时基于加速度和航向与基于EMG和航向的两种PDR算法,通过实验验证了在环境磁干扰较少的情况下PDR算法典型定位精度能够达到甚至优于目前大多数系统的水平。基于一组在城市峡谷中室内外定位实验的数据,重点研究了GPS和PDR混合定位模式的算法,包括GPS定位质量评估和融合滤波器的设计,并探讨了与其它技术结合对于进一步提高定位精度的潜力。
As navigation function becomes a more and more common application in mobile phones and LBS (Location-Based Service) grows rapidly, requirements are increasingly urgent on the accuracy, reliability and continuity of pedestrian navigation and positioning technology. However, as a primary positioning means in pedestrian navigation, the U.S. GPS (Global Positioning System) receiver can’t provide accurate results and even fails in positioning under complex urban canyons and indoor environments due to signal attenuation, interference or blockage, etc, in which most of personal users’activities exactly happen. In order to obtain continuous navigation, GPS must be augmented by other positioning technologies, such as self-contained sensors, WLAN (Wireless Local Area Network), mobile cellular networks, RFID (Radio Frequency IDentification), Pseudolites, etc. Integrating GPS with self-contained DR sensors is autonomous and doesn’t need extra infrastructure, or a fingerprint database, so that it attracts extensive attentions and intensive investigation.
     Based on a self-developed low-cost Multi-Sensor Positioning platform (MSP), which includes a GPS receiver and two self-contained sensors (a 2-axis digital compass and a 3-axis accelerometer), this dissertation investigates if the GPS receiver can’t provide accurate and continuous positioning information, how to obtain a pedestrian’s speed and heading from self-contained sensors and calculate his/her position through combined Kalman filters, for achieving a seamless outdoor/indoor pedestrian positioning solution.
     After deeply studying on various seamless pedestrian positioning algorithms, taking into account that the performance of low-cost sensors in MSP can’t meet the accuracy requirement of traditional inertial navigation mechanism, the dissertation selected Pedestrian Dead Reckoning (PDR) algorithm to assist the positioning in the complex environment that GPS performance is poor, and focused on the following three aspects:
     1. Step detection and step length estimation algorithms: based on physiological characteristics of a pedestrian gait, referring to traditional step detection and step length estimation methods, a step detection algorithm is realized using accelerometer’s signals, combing three methods: sliding-window, zero-crossing and peak detection, and a 1-parameter step length estimation model is chosen. In addition, a novel biomedical signal, Electromyography (EMG) is firstly introduced into personal navigation, for detecting the pedestrian’s step occurrences and corresponding step lengths, and the details of the proposed method are presented, including setup of EMG electrodes, signal pre-processing procedure, algorithms of stride detection and stride length estimation. Several experiments were carried out to validate step detection methods and evaluate the precision of step length estimation models separately.
     2. Digital compass heading calibration algorithm: it’s always a key issue in PDR algorithms to obtain accurate heading, as well as a long-term problem in pedestrian positioning research. Since a 2-axis digital compass can’t compensate tilt error by itself, and is vulnerable to various errors, such as hard and soft iron effects, biases, scale factors and oscillation of the pedestrian’s body when walking, a simulation method is utilized to study the impact of each error on outputs of digital compasses. Fully considering the easy-to-use requirement on heading calibration methods, a unified heading error model is proposed, which includes all the possible and predictable errors. Two different algorithms are used to solve the error model’s parameters. One of these algorithms requires an independent calibration procedure using least square method, and the other one is non-independent using Knowledge-based and Kalman filter for online training the model’s parameters. The application condition and feasibility of the calibration approach has been discussed and validated through extensive field tests.
     3. Seamless pedestrian positioning algorithm: to achieve a seamless outdoor/ indoor pedestrian positioning solution, this dissertation proposes a three-mode positioning mechanism: GPS mode- when GPS signal is good, final positioning results derive from GPS receiver directly; PDR mode- when there is no GPS signal, final positioning information are obtained from PDR results; GPS/PDR hybrid mode- when GPS signal can be received but not good, the final results are the ones combined by both GPS and PDR positioning outputs through Kalman filter. When GPS signal is not available, the acceleration-based and EMG-based PDR algorithms are realized separately with the aid of the heading from digital compass, and verified in several field tests conducted in the environments including less magnetic disturbances. The results demonstrate that the typical positioning performance of the MSP can meet and even exceed the common level in most of existing pedestrian positioning systems. Based on a set of data collected in a field test conducted in the urban canyon, the GPS/PDR hybrid positioning algorithm has been developed, including quality evaluation of GPS positioning performance and design of fusion filter, and the potential of combining the algorithm with other techniques is explored in order to further improve the positioning accuracy.
引文
邓江平. 2009. GPS/SBAS伪卫星多模式定位信号接收处理技术研究[D]:[博士].北京:中科院研究生院.
    秦永元. 1998.卡尔曼滤波与组合导航原理[M].西北工业大学出版社.
    孙作雷,茅旭初,田蔚风,张相芬. 2008.基于动作识别和步幅估计的步行者航位推算[J].上海交通大学学报,42(12):2002-2006.
    孙作雷,茅旭初,张相芬,田蔚风. 2009.基于粒子滤波和概率神经网络的步行者定位参数校正[J].上海交通大学学报,43(6):885-889.
    田增山等. 2009.行人导航系统中航迹推算参数估计方法的研究[J].测量控制与仪器仪表,12:82-87.
    王耀南. 2003.智能信息处理技术[M].高等教育出版社.
    许睿. 2008.行人导航系统算法研究与应用实现[D]:[硕士].南京:南京航空航天大学.
    章仁为. 1998.卫星姿态轨道动力学与控制[M].北京航空航天大学出版社.
    张旭. 2010.基于表面肌电信号的人体动作识别与交互[D]: [博士].合肥:中国科学技术大学.
    Andrei O. 2010. On Precise Point Positioning as a positioning technique using carrier phase measurements[D]: [Ph.D.]. Romania: Technical University of Iasi.
    Anders C, Wagner H, Puta C, Grassme R, Petrovitch A, Scholle HC. 2007. Trunk muscle
    activation patterns during walking at different speeds[J]. J Electromyogr Kinesiol, 17: 245–252.
    Beauregard S, Haas H. 2006. Pedestrian dead reckoning: a basis for personal positioning[C]. Proceedings of the 3rd Workshop on Positioning, Navigation and Communication, Hannover, Germany, 27-35.
    Bahl P, Padmanabhan VN. 2000. Radar: An in-building RF-based user location and tracking system[C]. In Proceedings of the IEEE Infocom, pp. 775-784, Tel-Aviv, Israel, March 2000.
    Bill R, Cap C, Kofahl M, Mundt T. 2004. Indoor and Outdoor Positioning in Mobile Environments-A Review and some Investigations on WLAN Positioning[J]. Geographic Information Sciences, 10(2): 91-98.
    Brown RG, Hwang PYC. 1997. Introduction to Random Signals and Applied Kalman Filtering[B], 3rd ed., John Wiley & Sons, Inc.
    Campanini I, Merlo A, Degola P, Merletti R, Vezzosi G, Farina D. 2007. Effect of electrode location on EMG signal envelope in leg muscles during gait[J]. J Electromyogr Kinesiol 17: 515–526.
    Caruso MJ. 1997. Applications of magnetoresistive sensors in navigation systems[J]. Sensors and Actuators, SAE SP-1220, 15-21.
    Caruso MJ. 2000. Applications of magnetic sensors for low cost compass systems[C]. Proc. IEEE Position Location and Navigation Symposium (PLANS), San Diego, 177-184.
    Chai HM. 2004. Applications of kinesiology– gait during ambulation (url: http://www.pt.ntu.edu.tw/hmchai/Kines04/KINapplication/Gait.htm, last visited 2010.07.11)
    Chen R, Chen Y, Pei L, Chen W, Kuusniemi H, Liu J, Lepp?koski H, Takala, J. 2009a. A
    DSP-based multi-sensor multi-network positioning platform[C]. Proc. ION GNSS 2009, Savannah, Georgia, USA, 615-621.
    Chen R, Kuusniemi H, Hyypp? J, Zhang J, Takala J, Kuittinen R, Chen J, Pei L, Liu Z, Zhu L, Qin
    Y, Lepp?koski H, Wang J. 2010a. Going 3D, Personal Nav and LBS[J]. GPS World, 21(2): 14-18.
    Chen R, Kuusniemi H, Chen Y, Pei L, Chen W, Liu J, Lepp?koski H, Takala J. 2010b.
    Multi-Sensor, Multi-Network Positioning[J]. GPS World, 21(2): 18-27.
    Chen R, Chen W, Chen X, Zhang X, Chen Y. 2010c. Sensing strides using EMG signal for pedestrian navigation[J]. GPS Solutions, DOI: 10.1007/s10291-010-0180-x.
    Chen W, Fu Z, Chen R, Chen Y, Andrei O, Kroger T, Wang J. 2009b. An integrated GPS and multi-sensor pedestrian positioning system for 3D urban navigation[C]. Proc. Joint Urban Remote Sensing Event 2009, Shanghai, China, 1-6.
    Chen W, Chen R, Chen Y, Kuusniemi H, Wang J, Fu Z. 2010d. An adaptive calibration approach for a 2-axis digital compass in a low-cost pedestrian navigation system[C]. Proc. IEEE I2MTC, Austin, TX, USA, 2010, 1392-1397.
    Chen W, Zhang X. 2010e. A novel EMG-based stride length estimation method for pedestrian dead reckoning[C]. Proc. ION GNSS 2010, Portland, Oregon, USA
    Chen X, Zhang X, Zhao Z, Yang J, Lantz V, Wang K. 2007. Hand gesture recognition research
    based on surface EMG sensors and 2D-accelerometers[C]. Proc. 11th IEEE International Symposium on Wearable Computers, Boston MA, USA, 11-14.
    Chen Y, Chen R, Pei L, Kroeger T, Chen W, Kuusniemi H, Liu J. 2010f. Knowledge-based error detection and correction method of a multi-sensor multi-network positioning platform for pedestrian indoor navigation[C]. Proc. IEEE/ION Position, Location and Navigation Symposium (PLANS) 2010, Indian Wells, CA, USA
    Cho DK, Mun M, et al. 2010. AutoGait: A mobile platform that accurately estimates the distance walked[C]. Proc. Pervasive Computing and Communications (PerCom), Mannheim, Germany, 116-124.
    Cho S, Park C, Yim H. 2003a. Sensor fusion and error compensation algorithm for pedestrian navigation system[C]. Proc. ICCAS, Gyeongju, Korea, 1001-1006
    Cho S, Park C. 2003b. Tilt compensation algorithm for 2-axis magnetic compass[J]. IEEE Electronics Letter, 39(22): 1-2.
    Cho S, Park C. 2006. MEMS based pedestrian navigation system[J]. Journal of Navigation, 59: 135-153.
    Cram JR, Kasman GS, Holtz J. 1998. Introduction to surface electromyography[M]. Aspen Publishers, USA.
    Duckworth J, Cyganski D, Makarov S et al. 2007. WPI precision personnel locator system: evaluation by first responders[C]. Proc. ION GNSS 2007, Fort Worth, Texas, USA, 1427-1435.
    Denne W. 1998. Magnetic Compass Deviation and Correction[M]. 3rd edition, Glasgow, Scotland: Brown, Son & Ferguson, Ltd.
    Fang L, Antsaklis P, Montestruque L, McMickell M, Lemmon M, Sun Y, Fang H, Koutroulis I, Haenggi M, Xie M, Xie X. 2005. Design of a wireless assisted pedestrian dead reckoning system - the NavMote experience[J]. IEEE Trans Instrum and Meas, 54(6): 2342-2358.
    Farley G, Chapman M. 2008. An alternate approach to GPS denied navigation based on monocular SLAM techniques[C]. Proc. ION NTM 2008, San Diego, CA, USA.
    Foxlin E. 2005. Pedestrian tracking with shoe-mounted inertial sensors[J]. IEEE Comput Graph Appl, 25(6):38–46.
    Fu Q, Retscher G. 2009. Active RFID Trilateration and Location Fingerprinting Based on RSSI for Pedestrian Navigation[J]. The Journal of Navigation, 62(2):323-340.
    Gabaglio V. 2003. GPS/INS integration for pedestrian navigation[D]: [Ph.D.]. Swiss: Institute of Geomatics of the Swiss Federal Institute of Technology in Lausanne.
    Godha S, Lachapelle G, Cannon ME. 2006. Integrated GPS/INS system for pedestrian navigation in a signal degraded environment[C]. Proc. ION GNSS 2006, Fort Worth, TX, USA, 2151-2164.
    Grejner-Brzezinska D, Toth C, Moafipoor S, Jwa Y, Kwon J. 2006. Multi-sensor personal navigator supported by human motion dynamics model[C]. Proc. 3rd IAG Symposium on
    Geodesy for Geotechnical and Structural Engineering and 12th FIG Deformation Measurement Symposium, May 22-24, 2006, Baden, Austria.
    Grejner-Brzezinska D, Toth C, Moafipoor S. 2007. Pedestrian tracking and navigation using an adaptive knowledge system based on neural networks[J]. J Appl Geod, 1(2007): 111-123.
    Grejner-Brzezinska D, Toth C, Moafipoor S. 2008. Performance assessment of a multi-sensor personal navigator supported by an adaptive knowledge based system[C]. Proc. ISPRS Archives,XXXVII (B5), Beijing, 857-867.
    Gebre-Egziabher D, Elkaim G, Powell J, Parkinson B. 2006. Calibration of strapdown magnetometers in magnetic field domain[J]. ASCE Journal of Aerospace Engineering, 19(2): 1-16.
    Grewal MS, Andrews AP. 2001. Kalman Filtering: Theory and Practice Using MATLAB[M]. Second edition, John Wiley & Sons, Inc.
    Ivanenko YP, Poppele RE, Lacquaniti F. 2004. Five basic muscle activation patterns account for muscle activity during human locomotion[J]. J Physiol, 556: 267-282.
    Insiteo’s navigation system. 2010. http://www.esa.int/esaCP/SEMT9CRZ5BG_index_0.html, last visited 2010.07.11.
    Jee GI, Hong JS, et al. 1999. Portable positioning system for mobile communication network performance test[C]. Proc. ION GPS 1999, Nashville, TN, USA, 1091-1098.
    Judd T. 1997. A personal dead reckoning module[C]. Proc. ION GPS 1997, Kansas, Missouri, USA, 47-51.
    Jirawimut R, Ptasinski P, Garaj V, Cecelja F, Balachandran W. 2003. A method for dead reckoning parameter correction in pedestrian navigation system[J]. IEEE Trans. Instrum. and Meas., 52(1): 209-215.
    Jimenez AR, et al. 2009. A comparison of pedestrian dead-reckoning algorithms using a low-cost MEMS IMU[C]. Proc. 6th IEEE International Symposium on Intelligent Signal Processing, 26-28 August, 2009, Budapest, Hungary.
    Kaplan Elliott D., Hegarty Christopher J. 2006. Understanding GPS Principles and Applications[M]. 2nd Edition, Artech House Inc.
    K?ppi J, Syrj?rinne J, Saarinen J. 2001. MEMS-IMU based pedestrian navigator for handheld devices[C]. Proc. ION GPS 2001, Salt Lake City, UT, USA, 1369-1373.
    Kolodziej KW, Hjelm J. 2006. Local Positioning Systems-LBS Applications and Services[M]. Taylor &Francis Group.
    Kim J, Jang J, Hwang DH, Park C. 2004. A step, stride and heading determination for the pedestrian navigation system[J]. Journal of Global Positioning Systems, 3: 273–276.
    Ladetto Q. 2000. On foot navigation: continuous step calibration using both complementary recursive prediction and adaptive Kalman filtering[C]. Proc. ION GPS 2000, Salt Lake City, UT, USA, 1735-1740.
    Ladetto Q, Merminod B. 2002. Digital magnetic compass and gyroscope integration for pedestrian navigation[C]. Proc. 9th Saint Petersburg International Conference on Integrated Navigation Systems, Saint Petersburg, Russia.
    Ladetto Q, Gabaglio V, et al. 2001. Pedestrian navigation method and apparatus operative in a dead reckoning mode[P]. US Patent, US2003/0018430 A1.
    Levi R, Judd T. 1999. Dead reckoning navigational system using accelerometer to measure foot impacts[P]. U.S. Patent, US5583776.
    Legat K, Lechner W. 2000. Navigation systems for pedestrians a basis for various value-added services[C]. Proc. ION GPS 2000, Salt Lake City, UT, USA, 1713-1720.
    Lepp?koski H, K?ppi J, Syrj?rinne J, Takala J. 2002. Error analysis of step length estimation in pedestrian dead reckoning[C]. Proc. ION GPS 2002, Portland, OR, USA.
    Lachapelle G, Godha S, Cannon ME. 2006. Performance of integrated HSGPS-IMU technology for pedestrian navigation under signal masking[C]. Proc. European Navigation Conference, Manchester, UK, 1-24.
    Mezentsev O, Lachapelle G, Collin J. 2005a. Pedestrian Dead Reckoning--A Solution to Navigation in GPS Signal Degraded Areas[J]. Geomatica, 59(2):175-182.
    Mezentsev O. 2005b. Sensor aiding of HSGPS pedestrian navigation[D]: [Ph.D.]. Canada: University of Calgary.
    Miller MM, et al. 2008a. Navigating in Difficult Environments: Alternatives to GPS– 1[C]. Proc. NATO RTO Lecture Series on“Low Cost Navigation Sensors and Integration Technology,”SET-116, 2008.
    Miller MM, et al. 2008b. Navigating in Difficult Environments: Alternatives to GPS– 2[C]. Proc. NATO RTO Lecture Series on“Low Cost Navigation Sensors and Integration Technology,”SET-116, 2008.
    Moafipoor S, Grejner-Brzezinska D, Toth C. 2008. A fuzzy dead reckoning algorithm for a personal navigator[J]. J Inst Navig 55(4): 241-254.
    Moafipoor S. 2009. Intelligent personal navigator supported by knowledge-based systems for estimating dead reckoning navigation parameters[D]: [Ph.D]. USA: Ohio State University. Pei L, et al. 2010. An Inquiry-based Bluetooth Indoor Positioning Approach for the Finnish Pavilion at Shanghai World Expo 2010[C]. Proc. IEEE/ION Position, Location and Navigation Symposium (PLANS) 2010, Indian Wells, CA, USA.
    Pittet S, Renaudin V, Merminod B, and Kasser M. 2008. UWB and MEMS Based Indoor Navigation[J]. The Journal of Navigation, Royal Institute of Navigation, 61: 369-384.
    Priyantha NB , Chakraborty A, Balakrishnan H. 2000. The Cricket location-support system[C]. Proc. 6th annual international conference on Mobile computing and networking, 32-43, August 06-11, 2000, Boston, Massachusetts, United States.
    Reaz MBI, Hussain MS, Mohd-Yasin F. 2006. Techniques of EMG signal analysis: detection,processing, classification and applications[J]. Biol Proced Online 8(1): 11-35.
    Retscher G. 2007. Test and integration of location sensors for a multi-sensor personal navigator[J]. J Navig 60: 107-117.
    Retscher G, Fu Q. 2007. Integration of RFID, GNSS and DR for Ubiquitous Positioning in Pedestrian Navigation[J]. Journal of Global Positioning Systems, 6(1): 56-64.
    Retscher, G, Kealy A. 2006. Ubiquitous positioning technologies for modern intelligent navigation systems[J]. Journal of Navigation, 59(1):91-103.
    Retscher, G. 2009. Multi-sensor fusion using a kalman filter and knowledge-based systems[C]. Proc. ION GNSS 2009, USA.
    Saarinen, J. 2009. A sensor-based personal navigation system and its application for incorporating humans into a human-robot team[D]: [Ph.D.]. Finland: Helsinki University of Technology.
    Saponas TS, Tan DS, Morris D, Balakrishnan R. 2008. Demonstrating the feasibility of using forearm electromyography for muscle-computer interfaces[C]. Proc. CHI 2008, Florence, Italy. Shin SH, Park CG, et al. 2005. MEMS-based personal navigator equipped on the users body[C]. Proc. ION GNSS 18th NTM, Long Beach, CA, USA, 1998-2002.
    Stirling R. 2004. Development of a pedestrian navigation system using shoe mounted sensors[D]: [Master]. Canada: University of Alberta.
    Soehren W and Hawkinson W. 2006. A prototype personal navigation system[C]. Proc. IEEE/ION PLANS 2006, San Diego, CA, USA, 539-546.
    Soloviev A, Bates D, et al. 2007. Tight coupling of laser scanner and inertial measurements for a fully autonomous relative navigation solution[C]. Proc. ION NTM 2007, San Diego, CA, USA, 1089-1103.
    Sugimoto M, et al. 2009. An Ultrasonic 3D Positioning System Using a Single Compact Receiver Unit[C]. Springer Lecture Notes in Computer Science: Location and Context Awareness, 240-253.
    TUT Summer Course, 2009. Wireless Positioning- challenges and solutions for ubiquitous navigation, Department of Communications Engineer, Tampere University of Technology, August 19-21, 2009.
    Vildjiounaite E, Malm E, Kaartinen J, Alahuhta P. 2002. Location estimation indoors by means of small computing power devices, accelerometers, magnetic sensors, and map knowledge[C]. Proc. 1st Int’l Conf. Pervasive Computing, Lecture Notes In Computer Science, 2414, 211-224.
    Vasconcelos J, Elkaim G, Silvestre C, Oliveira P, Cardeira B. 2008. A geometric approach to strapdown magnetometer calibration in sensor frame[C]. Proc. IFAC Workshop on Navigation,
    Guidance, and Control of Underwater Vehicles (NGCUV), Killaloe, Ireland, 1-11
    Waegli A, Skaloud J. 2009. Optimization of two GPS/MEMS-IMU integration strategies with application to sports[J]. GPS solutions 13(4): 315-326.
    Weimann F, Abwerzger G, Hofman-Wellenhof B. 2007. A pedestrian navigation system for urban and indoor environments[C]. Proc. ION GNSS 2007, Fort Worth, TX, USA, 1380-1389
    Weinberg H. 2002. Using the ADXL202 in pedometer and personal navigation applications[C]. Analog Devices AN-602 application Note.
    Woodman, OJ. 2007. An introduction of inertial navigation[M]. University of Cambridge, Computer Laboratory, Tech. Rep. UCAMCL-TR-696.
    Zhang X, Chen X, Wang W, Yang J, Lantz V, Wang K. 2009. Hand gesture recognition and virtual game control based on 3D accelerometer and EMG sensors[C]. Proc. IUI’09, Sanibel Island, Florida, USA, 401-405.
    Zhao X, Syed Z, Wright DB, El-Sheimy N. 2009. An economical and effective multi-sensor integration for portable navigation system[C]. Proc. ION GNSS 2009, Savannah, Georgia, USA, 2088-2095.
    Zogg Jean-Marie. 2002. GPS Basics- Introduction to the system application overview[M]. u-blox ag.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700