用户名: 密码: 验证码:
稀土磁制冷材料GdDyFe、GdDyFeNi、和GdDyFeAl的磁熵研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用非自耗真空电弧炉熔炼制备了GdDyFe、GdDyFeNi、GdDyFeAl系列磁制冷材料。利用振动样品磁强计测量了各合金在低磁场(μ_oH=0.05T)下的M-T曲线,确定了合金的居里温度T_c。在居里温度附近测量了各合金在多组温度下的恒温磁化曲线,外场变化为0~1.5T,结合公式计算出材料的磁熵变。所得结果是:GdDyFe、GdDyFeNi、GdDyFeAl合金的最大磁熵变分别可达到3.94、3.5、3.76J/(kg·K)。合金的居里温度可在室温附近250~309K的范围内变化。从实用化方面考虑,此系列合金材料价格便宜,在较低磁场下有较大的磁熵变,制冷温度可在室温附近较宽的范围内变化,若考虑将此系列合金制成更为适合磁埃里克森循环的复合材料,此系列合金是可供选择的室温磁制冷材料。
     对纳米磁制冷材料(Gd_(0.73)Dy_(0.27))_(0.925)Fe_(0.075)和(Gd_(0.73)Dy_(0.27))_(0.925)(Fe_(0.5)Ni_(0.5))_(0.075)做了初步研究,与同等条件下的块材相比,纳米材料的居里温度分别下降了16K和14K,熵变值下降了1.37J/(kg·K)和1.19J/(kg·K)。经研究还发现,纳米材料的温熵曲线较块材平滑,是较块材更为适合磁埃里克森循环的室温磁制冷材料。纳米材料也可能成为良好的室温磁制冷工质。
A series of magnetic refrigerant materials of GdDyFe,GdDyFeNi and GdDyFeAl were prepared with non-self consuming arc furnace. The M-T curve was measured in a field of 0.05T with a vibrating sample magnetometer to determine the Curie temperature. Choosing some temperatures near the Curie temperature, at every temperature the isothermal magnetization curve was measured in the field range of 0-1.5T. The magnetic entropy change can be calculated with the magnetization data and thermodynamical equilibrium equations. The maximum magnetic entropy change is 3.94 J/(kg ?K) for GdDyFe and 3.5J/(kg ?K) for GdDyFeNi and 3.76J/(kg ?K) for GdDyFeAl respectively. The Curie temperature of these alloys varied from 250K to 309K near room temperature. Considered the practicability, these alloys have comparatively large magnetic entropy change and low cost under a low field of 1.5T, their refrigerant temperature varied in a comparatively wide range, and we can consider using these alloys to make complex materials which are s
    uitable for the Ericsson cycle. For the above-mentioned advantages, these alloys are suitable candidates as magnetic refrigerant materials near room temperature.
    We made a preliminary study on nanomaterials (Gdo.73Dyo.27)o.925Feo.o75 and (Gdo.73Dyo.27)o.925-(Feo.5Nio.5)o.o75- Compared with the respective bulk alloys, the Curie temperatures of nanomaterials reduced 16K and 14K, and the maximum magnetic entropy change reduced 1.37J/(kg ?K) and 1.19J/(kg ?K) respectively. The AS -T curves of the nanomaterials are smoother than that of the bulk materials, So nanomaterials are the magnetic refrigerant materials which are more suitable for the Ericsson cycle than the bulk materials. The nanomaterials may be good magnetic refrigerant materials in the future.
引文
[1] 陈鹏,王敦辉,都有为.磁制冷工质材料的研究进展[J].物理学进展,1999,19(4):371~385
    [2] Warburg E. Magnetische Untersuchungen. I. bereinige Wirkungen der Corcitivkraft[J]. Ann. Phys, 1881, (13): 141~164
    [3] Weiss P, Piccsrd A. Sur un nouveau Phénoménr magétocalorique et lachaleur spéeifique[J]. Compt Rend, 1918, (166): 325~354
    [4] Debye P. Einige Be merkunge zur Magnetisierung bei tiefer temperature[J]. Ann phys, 1926, (81): 1154~1160
    [5] W. F. Giauque. A hermodynamic treatment of certain magnetic effects. A proposed method of producing temperature below 1 ° absolute[J]. J Amer Chem Soc, 1927, 49:1864~1869
    [6] W. F. Giauque, D. P. McDougall. Attainment of temperatures below 1° absolute by the magnetization of Gd_2(SO4)_3·SH_2O[J]. Phys Rev, 1933, 43:768
    [7] P. J. Hakonen, S. Yin, O. V. Lounasmaa. Nuclear magnetism in silver in at Positive and Negative Absolute Temperatures in the Low Nanolelvin Range[J]. Phys Rev Lett, 1990,(64): 2707~2713
    [8] 曾汉民主编.高技术新材料要览[M]。北京:中国科技出版社,1993,169~173
    [9] R.D. Mcmichael, J. J. Ritter, R. D. Shull. Enchanced magnetocaloric effect in Gd_3Ga_(5-x)FexO_(12)[J]. Appl Phys, 1993, (73): 6946~6970
    [10] K. A. Gsehneidner, Jr., V. K. Pecharsky. Utlization of the magnetic entropy in active magnetic refrigerator Materials[J]. Adv Cryog Eng, 1996, (42): 465
    [11] V. K. Pecharsky, K. A. Gschneidner, Jr. New Er-based materials for active magnetic refrigeration below 20 K[J]. Adv Cryog Eng, 1996, (42): 451
    [12] B. J. Korte, V. K. Pecharsky, K. A. Gschneidner, Jr. The correlation of the magnetic properities and the magnetocaloric effect in (Gd_(1-x) Er_x )Al_2 alloys[J]. J Appl Phys, 1998, 84 (10): 5677
    [13] B. J. Korte, V. K. Pecharsky, K. A. Gschneidner, Jr. The influence of multiple magnetic ording on the magnetoealoric effect in RNiAI alloys[J]. Adv Cryog Eng, 1998, (43): 1737
    
    
    [14] P. J.Von Ranke, V. K. Pecharsky, K. A. Gschneidner, Jr. Influence of crystalline electrical field on the magnetocaloric effect of DyAl_2, ERAl_2 and DyNi_2[J]. Phys Rev B, 1998, 58 (18): 12110
    [15] K. A. Gschneidner, Jr., V. K. Pecharsky, S. K. Malik. The (Dy_(1-x)Er_x)Al_2 alloys as active magnetic refrigeration[J]. Adv Cryog Eng, 1996, (42): 475
    [16] K. A. Gschneidner, Jr., H. Takeya, J. O. Moorman. (Dy_(0.5)Er_(0.5))Al_2: A large magnetocaloric effect material for low-temperature magnetic refrigeration[J]. Appl Phys Lett, 1994, 64 (2): 253~255
    [17] G. V. Brown. Magnetic heat pumping near room temperature[J]. J Appl Phys, 1976, 47 (8): 3673-3680
    [18] W. A. Steyert. Stirling-cycle rotating magnetic refeigerators and heat engines for use near room temperature[J]. J Appl Phys, 1978, 49(3): 1216
    [19] V. K. Pecharsky, K. A. Gschneidner, Jr. Tunable magnetic regenerator alloys with a giant magnetocaloric effect for magnetic refrigeration from ~20 to ~290K[J]. Appl Phys Lett, 1997, 70(24): 3299-3301
    [20] 李卓棠,吴佩芳.稀土材料的磁热效应及其应用[J].化学进展,1995,7(2):140-150
    [21] 龙毅.室温范围内大磁热效应的Gd-Tb材料的研究[J].科学通报,1993,38(21): 1944~1946
    [22] 邵元智,张介立,周若珍.Gd二元系金属间化合物的磁热熵效应[J].中山大学学报(自然科学版),1994,33(1):103~105
    [23] 龙毅.室温磁制冷稀土类化合物磁热效应研究[J].低温工程,1991,(5):5~11
    [24] 邵元智.稀土纳米复合材料[J].中国有色金属学报,1996,6(1):70~73
    [25] 李卓棠,吴佩芳,刘兰兰.稀土合金GdCo_2与Gd_6Fe_(23)的磁熵变测定[J].上海大学学报(自然科学版),1999,15(5):393~396
    [26] F.W. Wang, X. X. Zhang, F. X. Hu. Large magnetic entropy change in TbAl_2 and (Tb_(0.4)Gd_(0.6))Al_2[J]. Applied Physics Letter, 2000, 77(9): 1360-1362
    [27] Sui-Geng Jin, Lin-Mei Liu, Yun-Lan. Research for room-temperature magnetic regerants in R_xCe_(2-x)Fe_(17)[J]. J Appl Phys, 1991, 70(10): 6275~6276
    [28] 谢鲲,杨森,孙占波.(Dy_(1-x)Gd_x)Co_2的磁熵变研究[J].西安交通大学学报,2003,37(6):635-637
    [29] 张喜燕,杨玲,刘志农.Gd-Tb-Nd 系室温磁致冷材料研究[J].金属热处理学报,2000,21(2):78-82
    
    
    [30]都有为.铁氧体磁卡效应[J].物理学报,1994,43(2):322~325
    [31]M. D. Kuz min, A. M. Tishin . Magnetocaloric effect. Part 1 : An introduction to various aspects of theory and practice[J]. Cryogenics, 1992,32 (6) : 545~548
    [32]V. K. Pecharsky, K.A. Gschneidner, Jr. Giant magnetocaloric effect in Gd_5(Si_2Ge_2) [J]. Phys Rev Lett. 1997, 78(23): 4494-4497
    [33]V. K.Pecharsky, K.A. Gschneidner, Jr. Effect of alloys on the gaint magnetocaloric effect of Gd_5(Si_2Ge_2) [J]. J Mang Mang Mater, 1997, 78(6): L179~184
    [34]K.Vitalij, V. K.Pecharsky, K.A. Gschneidner, Jr. Magnetocaloric effect magnetic refrigeration [J]. J Mang Mang Mater, 1999,200:44-56
    [35]K.A. Gsehneidner, Jr., V.K.Peeharsky, A.O.Pecharsky. The nonpareil R_5(Si_xGe_(1-x))4 phases [J]. Jorunal of Alloys an Compounds, 2000,303-304 : 214~222
    [36]K.A. Gschneidner, Jr., V. K. Pecharsky, E. Brüek. Comment on "Direct Measurement of the 'Giant' Adiabatic Temperature Change in Gd_5Si_2Ge_2"[J]. Physical Review Letters, 2000 , 85 (19) :4190~4192
    [37]V. K. Pecharsky, K.A. Gschneidner Jr..Heat capacity near first order phase transitions and the magnetocaloric effect: An analysis of the errors, and a case study of Gd_5(Si_2Ge_2) and Dy[J]. J Appl Phys, 1999,86 (11) : 6315~6321
    [38]W. Choe, V. K. Pecharsky, A. O. Pecharsly. Making and Breaking Covaleng Bonds across the Magnetic Transition in the Giant Magnetocaloric Material Gd_5(Si_2Ge_z)[J]. Physical Review Letters, 2000,84(20): 4617~4620
    [39]钟伟,陈伟,都有为.LaNaMn-O纳米微粒磁卡效应研究[J].功能材料,1998,29(增刊): 350~351
    [40]钟伟,陈伟,都有为.室温磁制冷最新进展[J].功能材料, 1998,29(3):236~239
    [41]Z. B. Guo, J. S. Zhu, Y. W. Du. Large magnetic entropy change in perovskite-type manganese Oxides[J]. Phys Rev Lett, 1997, 78(6) : 1142~1144
    [42]都有为,郭载兵,黄河等.高温磁制冷工质的新进展[J].物理,1997,26(7):385~343
    [43]Huang H, Guo Zai-bing, Zhang Jian-rong etc. large magnetic entropy change in perovskite La_(0.67-x)Cd_xCa_(0.33)MnO_3 [J]. Chin Phys Lett, 1997, (10) : 786~788
    [44]Huang H, Guo Zai-bing, DuYou-wei. Large magnetic entropy change in La_(0.67-x)Cd_xCa_(0.33)MnO_3 [J]. J Mang Mang Mater, 1997, (173): 302~304
    
    
    [45] Guo Z B, Zhang J R, Du You-wei. Large magnetic entropy change in La_(0.75)Ca_(0.25)MnO_3[J]. Appl Phys Lett, 1997, 70(7): 904~905
    [46] Q.Y.Xu, K.M.Gu, X.L.Liang. Magnetic entropy change in La_(0.54)Ca_(0.32)MnO_(3-δ)[J]. J Appl Phys, 2001, 90(1): 524~526
    [47] Z.M.Wang, G.Ni, Q.Y. Xu Magnetocaloric effect in perovskite manganites La_(0.7-x)Nd_xCa_(0.3)MnO_3 and La_(0.7)Ca_(0.3)MnO_3[J]. J Appl Phys, 2001, 90(11) : 5689~5691
    [48] O. Tegus, E. Bruck, K. H. J. Buschow &F. R.de Boer. Transition-metal-based magnetic refrigerants for room-temperature applications[J]. Letters to nature, 2002, 415(10) : 150~152
    [49] Songlin, Dagula, O.Tegus. Magnetic phase transition and magnetocaloric effect in Mn_(5-x)Fe_xSi_3[J]. Journal of Alloys and Compounds, 2002, (334): 249~252
    [50] Songlin, Dagula, O.Tegus. Magnetocaloric properties of Mn_5Ge_(3-x)Sb_x[J]. Journal of Alloys and Compounds, 2002, (337) : 269~271
    [51] HU Feng-Xia, SHEN Bao-Gen, Great Magnetic Entropy Change in Heusler Alloys Ni- Mn- Ga and NaZn_(13)- Type Compounds La(Fe,Co,M)13 M=Si,Al[J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2002, 19(2): 192~197
    [52] Feng-Xia HU, Bao-gen Shen, Ji-rong Sun. Large Magnetic Entropy Change in Compound LaFe_(11.44)Al_(1.56) with Two Magnetic phase Transitions[J]. IEEE Transactions On Magnetic, 2001,37 (4): 2328-2330
    [53] Feng-Xia HU, Bao-gen Shen, Ji-rong Sun. Very large magnetic entropy change near room temperature in LaFe_(11.2)CO_(0.7)Si_(1.1)[J]. Applied Physic Letters, 2002, 80(5): 826~828
    [54] Feng-Xia HU, Bao-gen Shen, Ji-rong Sun, and Zhao-hua Cheng. Large magnetic entropy change in La(Fe,Co)_(11.83)Al_(1.17) [J]. Physical Review B, 2001, 64(1) : 012409
    [55] Feng-Xia HU, Ji-rong Sun, Guang-heng Wu, and Bao-gen Shen. Magnetic entropy change change in Ni_(50.1)Mn_(20.7)Ga_(29.6) single crystal[J]. Journal of applied physics 2001, 90(10): 5216~5219
    [56] Feng-Xia HU, Bao-gen Shen, Ji-rong Sun, and Guang-heng Wu. Large magnetic entropy in a Heusler alloy Ni_(52.6)Mn_(23.1)Ga_(24.3) single crystal [J]. Physical review B, 2001, 64(13): 132412
    [57] M. P. Annaorazov, S. A. Nikitin, A. L. Tyurin. Anomalously high entropy change in FeRh alloy [J].J Appl Phys, 1996, 79(3): 1689~1695
    [58] A.M.Tishin, Yu. I. Spichkin. Relationship of Asiabatic, Isothermal and field constant changes
    
    of a magnetic entropy[J]. Advances in Cruogenid Engineering : Proceedings of the International Cruogenie Materisla Conference-ICMC, 2002,48:27~33
    [59] M. Fldeáki, R. Chahine, T. K. Bose. Magnetic measurements: A powerful tool in magnetic refrigerator design [J]. J Appl Phys, 1995,77 (7) : 3528~3537
    [60] 陈远富,滕保华,陈云贵.磁制冷发展现状及趋势: Ⅰ磁制冷材料[J].低温工程, 2001,119(1):49~58
    [61] 李国栋.稀土材料物理学[M].内蒙古大学理工学院教材,2003,102~106
    [62] T.Hashimoto and T. Kuzuhara. New application of complex magnetic materials to themagnetic refrigerant in an Ericsson magnetic refrigerator[J]. J Appl Phys, 1987, 62(9) : 3873~3878
    [63] T.Hashimoto. A new method for producing the magnetic refrigerant suitable for the Ericsson magnetic[J]. IEEE Erans Mag-23, 1987, (5): 2847
    [64] Y. Z. Shao, J. K. L. Lai, C. H. Shek. Preparation of nanocomposite working substances for room-temperature magnetic refrigeration[J]. Journal of Magnetism and Magnetic Materials, 1996, 163(1-2):103~108
    [65] 常秀敏,严俊联,周寿增等.Gd-Al-Dy系磁制冷材料的研究[J].稀有金属,1997,21(5): 360~362
    [66] T. Hashimoto, T.Numasawa, M.Shino and T.Okada. Magnetic refrigeration in the tempeature range from 10 K to room temperature: the ferromagnetic refrigerants[J]. Cryogenics, 1981,(81): 647-653
    [67] 滕云,李碚.磁制冷材料的发展与研究概况[J].功能材料,1994,25(2):111~116
    [68] H. Oesterreicher, F.T. Parker. Magneic cooling near Curie temperature above 300 K[J]. J Appl Phys, 1984,55 (12) : 4334~4338
    [69] 王宝珠,温鸣,曹晓明.稀土过渡族磁制冷功能材料的研究[J].金属功能材料,2000,7(4): 24~28
    [70] 戴道生,钱昆明.铁磁学(上册)[M].科学出版社,2000,124~127
    [71] 钟文定.铁磁学(中册) [M].科学出版社,2000,44~52
    [72] R. D. McMichael, R. D. Shull, L. J. Swartzendruber, L. H. Bennett. Magnetocaloric effect in superparamagnets[J]. Journal of Magnetism and Magnetic Materials, 1992,11 (1-2): 29-33
    [73] R. D. Shull, R. D. McMichael, etc. Nanocomposite for magnetic refrigeration[J].Materials Research Society Symposium Proceeding, 1992, 286(1-3): 449~453.
    
    
    [74]R. D. Shull, R. D. McMichael. Magnetic Nanocomposite formagnetic refrigeration[J]. Nanostructured Materials, 1993, 2(2): 205
    [75]L. H. Bennett, R. D. McMichael,etc. Monte Carlo and meanfield calculations of the magnetocaloric effect of ferromagnetically interacting clusters[J]. J Mang Mang Mater, 1992, 104(2): 1094-1095
    [76]邵元智,熊正烨.Gd二元相合金纳米固体的磁热熵特性[J].物理学报,1996,45(10): 1749-1754.
    [77]Zhang Jie li, Shao Yuanzhi. Preparation of nanocomposite binary gadoium alloys and their enhanced magnetic entropy change[J]. Transactions of Nonferrous Metals Society of China (English Edition), 1996, 6(3):86~91
    [78]陈伟,钟伟,侯登录等.La_(1-x)K_xMnO_3磁卡效应的研究[J].河北科技大学学报,1998,19(1):1~5
    [79]陈伟,钟伟,侯登录等.La-Na-Mn-O纳米颗粒的磁卡效应[J].材料研究学报,1999,13(5):552-554
    [80]陈伟,钟伟,潘成福等.La_(0.8-x)Ca_(0.2)MnO_3纳米颗粒的居里温度与磁热效应[J].物理学报,2001,50(2):319-332

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700