人眼γD晶状体蛋白致病突变体生物物理化学性质及结构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白内障,定义为全部或部分眼睛的晶状体混浊,可分为两大类:先天性和年龄相关性白内障。先天性白内障的患病率估计为每万新生婴儿中2.2-2.5例,其中约50%可遗传。同白内障相关的晶状体蛋白基因突变发生在所有三个晶状体蛋白家族中(α-,β-和γ-晶状体蛋白),并显示为不同的表型。目前,至少有60例遗传性白内障己被记录在案,均由单基因突变引起,相应突变氨基酸也被确定。有些人源γD-晶状体蛋白(HGD)突变体同先天性白内障有着密切联系,但是详细的突变相关性白内障形成的分子机制尚不明确。
     基于HGD涉及到蛋白质沉淀疾病,即白内障的形成,本论文以HGD为对象,研究三种HGD的突变体W42R, R76S和P23T的结构,折叠以及组装,探究该晶状体结构与功能之间的关系,进而阐明白内障形成的结构基础。
     (1)部分去折叠HGD的中间体,可能使蛋白质聚集沉淀并最终导致晶状体的模糊,人源γD晶状体蛋白突变体同遗传性白内障的形成具有紧密的联系。来源于中国人家庭与白内障相关的γD晶状体蛋白突变体(W42R),表现为常染色体显性遗传,突变体蛋白较HGD溶解性大大下降。我们解析了W42R突变体的晶体结构,分辨率1.7A,同HGD的晶体结构相比较只发现了微小的变化。令人感兴趣的是,W42R突变体蛋白酶水解非常敏感,表明小量部分去折叠成分的存在;核磁共振波谱实验证实并定量分析了部分去折叠成分的存在;氢/氘交换实验也揭示了部分去折叠成分同天然折叠成分之间的化学交换,只是W42R突变体的交换速度及其缓慢。同时,HGD的紫外线辐射实验,导致了蛋白分子N端区域的损伤,辐射后的蛋白对蛋白酶具有同W42R突变体相似的敏感性。所有的实验数据允许我们建立一个基于W42R致病机理的模型,即W42R突变体致病机理可以作为光损伤和年龄相关白内障的代表。
     (2)R76S是一个从一个印度家庭新发现的与遗传性白内障相关的HGD突变体,我们在大肠杆菌中表达了该突变体蛋白,通过圆二色,荧光以及NMR确定了蛋白热稳定性和化学稳定性。出乎意料的是,R76S突变体,除了拥有较低的等电点外,在生物物理和生物化学性质方面同HGD并无明显不同,通过NMR确定的R76S突变体的液体结构,包括残余偶极耦合(Resicual Dipoie Couplings, RDCs),弛豫测定,表面其与突变体具有近似相同的液体结构。同时,变性/复性动力学实验表明无论R76S突变体还是野生型突变体都显示了类似的被αB-晶状体蛋白抑制的经由错误折叠途径产生的沉淀。综上所述,研究结果表明结构和稳定性的变化都不是R76S突变体导致白内障产生的原因,但是,等电点的改变和相关表面电位的变化或者氨基酸残基天然性质的变化极有可能影响到R76S突变体与晶状体中其他蛋白家族的相互作用。
     (3)与白内障相关的HGD P23T突变体具有地理上广泛分布和表型多样的特性。23位氨基酸残基的突变极大的降低了蛋白质本身的溶解性。由于缺乏P23T突变体的X-ray晶体结构数据,在分子水平上对突变体本身的理解并不充分。本论文工作首次成功解析了P23T突变体的晶体结构,P23T突变体采用P21的结晶群,每个不对称单元包含两个蛋白质分子。同野生型HGD相比,除了一些细微的差别,P23T突变体结构基本保持不变。这些细微差别包括:Trp42的侧链与不同的氨基酸残基形成了新的氢键,结果发生了小角度的转向;同时我们计算P23T突变体和HGD的溶液可接触表面积(SASA),结果并无明显差异。有报道表明P23T突变体溶解度表现为温度退行性(随温度的增加溶解度降低)。在我们的研究中,P23T突变体的溶解度显示出离子强度依赖性,发现在NaCl的存在下P23T突变体的沉淀聚集被部分抑制。综上所述,研究结果表明结构的变化并不是P23T突变体导致白内障产生的原因,但是Thr取代Pro确实改变了蛋白质分子间的相互作用。
     综上所述,论文研究表征了W42R突变体的结构特点并揭示了其同年龄相关白内障之间的联系;排除了R76S突变由于自身蛋白-蛋白相互作用导致白内障的可能性;首次解析了P23T突变体的晶体结构。实验数据表明突变带来的HGD主要空间构象上的变化对白内障的发生并不是必要的;但是,突变确实改变了蛋白质分子在溶液中的特性,即不同突变体的变性/复性动力学,在白内障形成中扮演了至关重要的角色。
Cataract, referred to as opacification of all or part of the eye's crystalline lens, can be broadly divided into two classes:early onset (congenital or juvenile) and age-related cataract. The congenital cataracts occur at an estimated prevalence of2.2-2.5cases per10,000live births, and approximately50%of congenital cataracts are inherited. Cataract-associated mutations in the crystallin genes are known to occur in all three crystallin families and show a variety of phenotypes. At the present time, at least60cases of inherited cataracts have been documented; these appear to be caused by a single-gene disorder, and amino acid substitutions have been mapped to the affected genes. Some mutants of human yD-crystallin (HGD) are closely linked to congenital cataracts, although the detailed molecular mechanisms of mutant-associated cataract formation are generally not known.
     We focused our studies on HGD and investigated structure-function relationships for this crystallin as it relates to protein deposition diseases, in general, and cataract formation, in particular. We investigated the structure, folding, and assembly of three yD-crystallin mutants including W42R, R76S and P23T mutants. The aim of this work is to elucidate the structural basis for cataract formation.
     (i) A recently discovered γD-crystallin mutant (W42R) that has been linked to autosomal dominant, congenital cataracts in a Chinese family. The mutant protein is much less soluble and stable than wild-type γD-crystallin. We solved the crystal structure of W42R at1.7A resolution, which revealed only minor differences from the wild-type structure. Interestingly, the W42R variant is highly susceptible to protease digestion, suggesting the presence of a small population of partially unfolded proteins. This partially unfolded species was confirmed and quantified by NMR spectroscopy. Hydrogen/deuterium exchange experiments revealed chemical exchange between the folded and unfolded species. Exposure of wild-type yD-crystallin to UV caused damage to the N-terminal domain of the protein, resulting in very similar proteolytic susceptibility as observed for the W42R mutant. Altogether, our combined data allowed us to propose a model for W42R pathogenesis, with the W42R mutant serving as a mimic for photodamaged γD-crystallin involved in age-related cataract,
     (ⅱ) As part of our ongoing studies on crystallins, we investigated the recently discovered Arg76to Ser (R76S) mutation that is correlated with childhood cataract in an Indian family. We expressed the R76S yD-crystallin protein in E. coli characterized it by CD, fluorescence, and NMR spectroscopy. and determined its stability with respect to thermal and chemical denaturation. Surprisingly, no significant biochemical or biophysical differences were observed between the wild-type protein and the R76S variant, except a lowered pI. NMR assessment of the R76S yD-crystallin solution structure, by RDCs, and of its motional properties, by relaxation measurements, also revealed a close resemblance to wild type crystallin. Further, kinetic unfolding/refolding experiments for R76S and wild-type protein showed similar degrees of off-pathway aggregation suppression by aB-crystallin. Overall, our results suggest that neither structural nor stability changes in the protein are responsible for the R76S yD-crystallin variant's association with cataract. However, the change in pI and the associated surface charge or the altered nature of the amino acid could influence interactions with other lens protein species.
     (iii) The cataract-associated P23T mutant is geographically widespread and phenotypically heterogeneous. The mutation at site23of HGD dramatically lowers the solubility of the protein. As yet no X-ray structural data is available for this mutant, atomic level understanding of the mutant protein is not sufficient. Here we firstly and successfully solved the crystal structure of the mutant at2.5A resolution. P23T crystallized in a space group P21with two molecules per asymmetric unit. The structure of the mutant protein remains essentially unchanged when compared to that of HGD except certain minor differences. The side chain of Trp42shifts a small angle by forming new hydrogen bond with the backbone carbonyl group of Ser39. SASA calculations of both wild-type and P23T X-ray structure presents no significant difference as well as the SASA of the exposed hydrophobic residues. P23T was reported exhibiting the retrograde solubility and Pande et al proposed the aggregation of P23T is mediated by net hydrophobic protein-protein interactions. In this research, we observed a ionic strength-dependent solubility of the P23T mutant at room temperature. Overall, our results suggest that no major structural changes in the protein are responsible for the dramatically lower solubility associated with the cataract caused by P23T mutant.
     Altogether, our current results and combined previous data clearly show that no major conformational changes of HGD are necessary, as evidenced by the very similar X-ray structures, but that it is solution behavior and in particular (un/folding) dynamics of the different mutants that play critical roles in cataract formation. Indeed, this notion is unambiguously borne out by the results of the study presented here.
引文
[1]McCarty C A, Mukesh B N, Dimitrov P N, et al. Incidence and progression of cataract in the Melbourne Visual Impairment Project [J]. Am J Ophthalmol,2003,136:10-17.
    [2]Foster A, Gilbert C, Rahi J. Epidemiology of cataract in childhood:a global perspective [J]. J Cataract Refract Surg,1997,23 Suppl 1:601-604.
    [3]Moore A T. Understanding the molecular genetics of congenital cataract may have wider implications for age related cataract [J]. Br J Ophthalmol,2004,88:2-3.
    [4]Berry V, Francis P, Reddy M A, et al. Alpha-B crystallin gene (CRYAB) mutation causes dominant congenital posterior polar cataract in humans [J]. Am J Hum Genet,2001,69: 1141-1145.
    [5]Shiels A, Mackay D, Ionides A, et al. A missense mutation in the human connexin50 gene (GJA8) underlies autosomal dominant "zonular pulverulent" cataract, on chromosome 1q [J]. Am J Hum Genet,1998,62:526-532.
    [6]Augusteyn R C. On the growth and internal structure of the human lens [J]. Experimental eye research,2010,90:643-654.
    [7]Andley U P. Crystallins and hereditary cataracts:molecular mechanisms and potential for therapy [J]. Expert reviews in molecular medicine,2006,8:1-19.
    [8]Michael R, van Marie J, Vrensen G F, et al. Changes in the refractive index of lens fibre membranes during maturation--impact on lens transparency [J]. Experimental eye research, 2003,77:93-99.
    [9]Bassnett S. Lens organelle degradation [J]. Experimental eye research,2002,74:1-6.
    [10]Delaye M, Tardieu A. Short-range order of crystallin proteins accounts for eye lens transparency [J]. Nature,1983,302:415-417.
    [11]Oyster, The human eye:structure and function,1999/11/05 ed.,1999.
    [12]Clapp C A. The Iris Inclusion Operations for Glaucoma, with Especial Reference to Iridotasis [J]. Trans Am Ophthalmol Soc,1934,32:191-208.
    [13]Duke-Elder S. The Frederick H. Verhoeff Lecture:The Saga of a Century [J]. Trans Am Ophthalmol Soc,1964,62:193-202.
    [14]Francois J, Haustrate G. Juvenile Cataract in 2 Univitelline Twins [J]. J Genet Hum,1963, 12:154-167.
    [15]Lambert S R, Drack A V. Infantile cataracts [J]. Surv Ophthalmol,1996,40:427-458.
    [16]Marner E, Rosenberg T, Eiberg H. Autosomal dominant congenital cataract. Morphology and genetic mapping [J]. Acta Ophthalmol (Copenh),1989,67:151-158.
    [17]Eckstein M P, Whiting J S. Visual signal detection in structured backgrounds. L Effect of number of possible spatial locations and signal contrast [J]. J Opt Soc Am A Opt Image Sci Vis,1996,13:1777-1787.
    [18]Ionides A, Francis P, Berry V, et al. Clinical and genetic heterogeneity in autosomal dominant cataract [J]. Br J Ophthalmol,1999,83:802-808.
    [19]Sharma K K, Santhoshkumar P. Lens aging:effects of crystallins [J]. Biochimica et biophysica acta,2009,1790:1095-1108.
    [20]Moreau K L, King J A. Protein misfolding and aggregation in cataract disease and prospects for prevention [J]. Trends in molecular medicine,2012,18:273-282.
    [21]Pollreisz A, Schmidt-Erfurth U. Diabetic cataract-pathogenesis, epidemiology and treatment [J]. Journal of ophthalmology,2010,2010:608751.
    [22]Truscott R J. Age-related nuclear cataract-oxidation is the key [J]. Experimental eye research, 2005,80:709-725.
    [23]Kyselova Z. Different experimental approaches in modelling cataractogenesis:An overview of selenite-induced nuclear cataract in rats [J]. Interdisciplinary toxicology,2010,3:3-14.
    [24]Shearer T R, Ma H, Fukiage C, et al. Selenite nuclear cataract:review of the model [J]. Molecular vision,1997,3:8.
    [25]Rooban B N, Lija Y, Biju P G, et al. Vitex negundo attenuates calpain activation and cataractogenesis in selenite models [J]. Experimental eye research,2009,88:575-582.
    [26]Sasikala V, Rooban B N, Priya S G, et al. Moringa oleifera prevents selenite-induced cataractogenesis in rat pups [J]. Journal of ocular pharmacology and therapeutics:the official journal of the Association for Ocular Pharmacology and Therapeutics,2010,26:441-447.
    [27]Marsili S, Salganik R I, Albright C D, et al. Cataract formation in a strain of rats selected for high oxidative stress [J]. Experimental eye research,2004,79:595-612.
    [28]Delcourt C, Carriere I, Ponton-Sanchez A, et al. Light exposure and the risk of cortical, nuclear, and posterior subcapsular cataracts:the Pathologies Oculaires Liees a l'Age (POLA) study [J]. Archives of ophthalmology,2000,118:385-392.
    [29]McCarty C A, Taylor H R. A review of the epidemiologic evidence linking ultraviolet radiation and cataracts [J]. Developments in ophthalmology,2002,35:21-31.
    [30]Wang Y, Petty S, Trojanowski A, et al. Formation of amyloid fibrils in vitro from partially unfolded intermediates of human gammaC-crystallin [J]. Investigative ophthalmology & visual science,2010,51:672-678.
    [31]Giblin F J, Leverenz V R, Padgaonkar V A, et al. UVA light in vivo reaches the nucleus of the guinea pig lens and produces deleterious, oxidative effects [J]. Experimental eye research, 2002,75:445-458.
    [32]Simpanya M F, Ansari R R, Leverenz V, et al. Measurement of lens protein aggregation in vivo using dynamic light scattering in a guinea pig/UVA model for nuclear cataract [J]. Photochemistry and photobiology,2008,84:1589-1595.
    [33]Chen J, Callis P R, King J. Mechanism of the very efficient quenching of tryptophan fluorescence in human gamma D-and gamma S-crystallins:the gamma-crystallin fold may have evolved to protect tryptophan residues from ultraviolet photodamage [J]. Biochemistry, 2009,48:3708-3716.
    [34]Mizdrak J, Hains P G, Truscott R J, et al. Tryptophan-derived ultraviolet filter compounds covalently bound to lens proteins are photosensitizers of oxidative damage [J]. Free radical biology & medicine,2008,44:1108-1119.
    [35]De Maria A, Shi Y, Kumar N M, et al. Calpain expression and activity during lens fiber cell differentiation [J]. The Journal of biological chemistry,2009,284:13542-13550.
    [36]Biswas S, Harris F, Dennison S, et al. Calpains:targets of cataract prevention? [J]. Trends in molecular medicine.2004,10:78-84.
    [37]Li N, Zhu Y, Deng X, et al. Protective effects and mechanism of tetramethylpyrazine against lens opacification induced by sodium selenite in rats [J]. Experimental eye research,2011,93: 98-102.
    [38]Kmoch S, Brynda J, Asfaw B. et al. Link between a novel human gammaD-crystallin allele and a unique cataract phenotype explained by protein crystallography [J]. Human molecular genetics,2000,9:1779-1786.
    [39]Pande A, Pande J, Asherie N, et al. Crystal cataracts:human genetic cataract caused by protein crystallization [J]. Proceedings of the National Academy of Sciences of the United States of America,2001,98:6116-6120.
    [40]Pande A, Pande J, Asherie N. et al. Molecular basis of a progressive juvenile-onset hereditary cataract [J]. Proceedings of the National Academy of Sciences of the United States of America,2000,97:1993-1998.
    [41]Banerjee P R, Puttamadappa S S, Pande A, et al. Increased hydrophobicity and decreased backbone flexibility explain the lower solubility of a cataract-linked mutant of gammaD-crystallin [J]. Journal of molecular biology,2011,412:647-659.
    [42]Jung J, Byeon I J, Wang Y, et al. The structure of the cataract-causing P23T mutant of human gammaD-crystallin exhibits distinctive local conformational and dynamic changes [J]. Biochemistry,2009,48:2597-2609.
    [43]Flaugh S L, Mills 1 A, King J. Glutamine deamidation destabilizes human gammaD-crystallin and lowers the kinetic barrier to unfolding [J]. The Journal of biological chemistry,2006,281:30782-30793.
    [44]Kong F, King J. Contributions of aromatic pairs to the folding and stability of long-lived human gammaD-crystallin [J]. Protein science:a publication of the Protein Society,2011,20: 513-528.
    [45]Talla V, Srinivasan N, Balasubramanian D. Visualization of in situ intracellular aggregation of two cataract-associated human gamma-crystallin mutants:lose a tail, lose transparency [J]. Investigative ophthalmology & visual science,2008,49:3483-3490.
    [46]Fu L, Liang J J. Alteration of protein-protein interactions of congenital cataract crystallin mutants [J]. Investigative ophthalmology & visual science,2003,44:1155-1159.
    [47]Fu L, Liang J J. Conformational change and destabilization of cataract gammaC-crystallin T5P mutant [J]. FEBS Lett,2002,513:213-216.
    [48]Liu B F, Song S, Hanson M, et al. Protein-protein interactions involving congenital cataract T5P gammaC-crystallin mutant:a confocal fluorescence microscopy study [J]. Experimental eye research,2008,87:515-520.
    [49]Ma Z, Piszczek G, Wingfield P T, et al. The G18V CRYGS mutation associated with human cataracts increases gammaS-crystallin sensitivity to thermal and chemical stress [J]. Biochemistry,2009,48:7334-7341.
    [50]Ma Z, Yao W, Theendakara V, et al. Overexpression of human gammaC-crystallin 5 bp duplication disrupts lens morphology in transgenic mice [J]. Investigative ophthalmology & visual science,2011,52:5369-5375.
    [51]Wang K, Cheng C, Li L, et al. GammaD-crystallin associated protein aggregation and lens fiber cell denucleation [J]. Investigative ophthalmology & visual science,2007,48: 3719-3728.
    [52]Churchill A, Graw J. Clinical and experimental advances in congenital and paediatric cataracts [J]. Philosophical transactions of the Royal Society of London. Series B, Biological sciences,2011,366:1234-1249.
    [53]Lee S, Mahler B, Toward J, et al. A single destabilizing mutation (F9S) promotes concerted unfolding of an entire globular domain in gammaS-crystallin [J]. Journal of molecular biology, 2010,399:320-330.
    [54]Sinha D, Wyatt M K, Sarra R, et al. A temperature-sensitive mutation of Crygs in the murine Opj cataract [J]. The Journal of biological chemistry,2001,276:9308-9315.
    [55]Moreau K L, King J. Hydrophobic core mutations associated with cataract development in mice destabilize human gammaD-crystallin [J]. The Journal of biological chemistry,2009, 284:33285-33295.
    [56]Horwitz J. The function of alpha-crystallin in vision [J]. Semin Cell Dev Biol,2000,11: 53-60.
    [57]Kamradt M C, Chen F, Sam S, et al. The small heat shock protein alpha B-crystallin negatively regulates apoptosis during myogenic differentiation by inhibiting caspase-3 activation [J]. J Biol Chem,2002,277:38731-38736.
    [58]Basak A, Bateman O, Slingsby C, et al. High-resolution X-ray crystal structures of human gammaD crystallin (1.25 A) and the R58H mutant (1.15 A) associated with aculeiform cataract [J]. J Mol Biol,2003,328:1137-1147.
    [59]Purkiss A G, Bateman O A, Goodfellow J M, et al. The X-ray crystal structure of human gamma S-crystallin C-terminal domain [J]. The Journal of biological chemistry,2002,277: 4199-4205.
    [60]Van Montfort R L, Bateman O A, Lubsen N H, et al. Crystal structure of truncated human betaB1-crystallin [J]. Protein Sci,2003,12:2606-2612.
    [61]Lampi K J, Ma Z, Shih M, et al. Sequence analysis of betaA3, betaB3, and betaA4 crystallins completes the identification of the major proteins in young human lens [J]. The Journal of biological chemistry,1997,272:2268-2275.
    [62]Takata T, Oxford J T, Brandon T R, et al. Deamidation alters the structure and decreases the stability of human lens betaA3-crystallin [J]. Biochemistry,2007,46:8861-8871.
    [63]Bagneris C, Bateman O A, Naylor C E, et al. Crystal structures of alpha-crystallin domain dimers of alphaB-crystallin and Hsp20 [J]. Journal of molecular biology,2009,392: 1242-1252.
    [64]Laganowsky A, Benesch J L, Landau M, et al. Crystal structures of truncated alphaA and alphaB crystallins reveal structural mechanisms of poiydispersity important for eye lens function [J]. Protein science:a publication of the Protein Society,2010,19:1031-1043.
    [65]Congdon N, Vingerling J R, Klein B E, et al. Prevalence of cataract and pseudophakia/aphakia among adults in the United States [J]. Archives of ophthalmology,2004, 122:487-494.
    [66]Bloemendal H, de Jong W, Jaenicke R, et al. Ageing and vision:structure, stability and function of lens crystallins [J]. Progress in biophysics and molecular biology,2004,86: 407-485.
    [67]Carver J A, Nicholls K A, Aquilina J A, et al. Age-related changes in bovine alpha-crystallin and high-molecular-weight protein [J]. Experimental eye research,1996,63:639-647.
    [68]Horwitz J. Proctor Lecture. The function of alpha-crystallin [J]. Investigative ophthalmology & visual science,1993,34:10-22.
    [69]Heys K R, Friedrich M G, Truscott R J. Presbyopia and heat:changes associated with aging of the human lens suggest a functional role for the small heat shock protein, alpha-crystallin, in maintaining lens flexibility [J]. Aging cell,2007,6:807-815.
    [70]van Montfort R L, Basha E, Friedrich K L, et al. Crystal structure and assembly of a eukaryotic small heat shock protein [J]. Nat Struct Biol,2001,8:1025-1030.
    [71]Koteiche H A, McHaourab H S. Folding pattern of the alpha-crystallin domain in alphaA-crystallin determined by site-directed spin labeling [J]. J Mol Biol,1999,294: 561-577.
    [72]Haley D A, Horwitz J, Stewart P L. The small heat-shock protein, alphaB-crystallin, has a variable quaternary structure [J]. J Mol Biol,1998,277:27-35.
    [73]Haley D A, Horwitz J, Stewart P L. Image restrained modeling of alphaB-crystallin [J]. Exp Eye Res,1999,68:133-136.
    [74]McHaourab H S, Dodson E K, Koteiche H A. Mechanism of chaperone function in small heat shock proteins. Two-mode binding of the excited states of T4 lysozyme mutants by alphaA-crystallin [J]. J Biol Chem,2002,277:40557-40566.
    [75]Wistow G. Identification of lens crystallins:a model system for gene recruitment [J]. Methods Enzymol,1993,224:563-575.
    [76]Reddy M A, Francis P J, Berry V, et al. Molecular genetic basis of inherited cataract and associated phenotypes [J]. Survey of ophthalmology,2004,49:300-315.
    [77]Kosinski-Collins M S, King J. In vitro unfolding, refolding, and polymerization of human gammaD crystallin, a protein involved in cataract formation [J]. Protein science:a publication of the Protein Society,2003,12:480-490.
    [78]Liu H, Du X, Wang M, et al. Crystallin{gamma}B-I4F mutant protein binds to {alpha}-crystallin and affects lens transparency [J]. J Biol Chem,2005,280:25071-25078.
    [79]David L L, Lampi K J, Lund A L, et al. The sequence of human betaB1-crystallin cDNA allows mass spectrometric detection of betaB 1 protein missing portions of its N-terminal extension [J]. J Biol Chem.1996,271:4273-4279.
    [80]Miesbauer L R, Smith J B, Smith D L. Amino acid sequence of human lens beta B2-crystallin [J]. Protein Sci,1993,2:290-291.
    [81]Nalini V, Bax B, Driessen H, et al. Close packing of an oligomeric eye lens beta-crystallin induces loss of symmetry and ordering of sequence extensions [J]. J Mol Biol,1994,236: 1250-1258.
    [82]Aarts H J, den Dunnen J T, Leunissen J, et al. The gamma-crystallin gene families:sequence and evolutionary patterns [J]. J Mol Evol,1988,27:163-172.
    [83]Wistow G, Turnell B, Summers L, et al. X-ray analysis of the eye lens protein gamma-Ⅱ crystallin at 1.9 A resolution [J]. J Mol Biol,1983,170:175-202.
    [84]Kosinski-Collins M S, Flaugh S L, King J. Probing folding and fluorescence quenching in human gammaD crystallin Greek key domains using triple tryptophan mutant proteins [J]. Protein science:a publication of the Protein Society,2004,13:2223-2235.
    [85]Flaugh S L, Kosinski-Collins M S, King J. Contributions of hydrophobic domain interface interactions to the folding and stability of human gammaD-crystallin [J]. Protein science:a publication of the Protein Society,2005,14:569-581.
    [86]Francis P J, Berry V, Bhattacharya S S, et al. The genetics of childhood cataract [J]. Journal of medical genetics,2000,37:481-488.
    [87]Graw J, Neuhauser-Klaus A, Klopp N, et al. Genetic and allelic heterogeneity of Cryg mutations in eight distinct forms of dominant cataract in the mouse [J]. Invest Ophthalmol Vis Sci,2004,45:1202-1213.
    [88]Litt M, Kramer P, LaMorticella D M, et al. Autosomal dominant congenital cataract associated with a missense mutation in the human alpha crystallin gene CRYAA [J]. Hum Mol Genet,1998,7:471-474.
    [89]Pras E, Frydman M, Levy-Nissenbaum E, et al. A nonsense mutation (W9X) in CRYAA causes autosomal recessive cataract in an inbred Jewish Persian family [J]. Invest Ophthalmol Vis Sci,2000,41:3511-3515.
    [90]Mackay D S, Andley U P, Shiels A. A missense mutation in the gammaD crystallin gene (CRYGD) associated with autosomal dominant "coral-like" cataract linked to chromosome 2q [J].Mol Vis,2004,10:155-162.
    [91]Vanita V, Hennies H C, Singh D, et al. A novel mutation in GJA8 associated with autosomal dominant congenital cataract in a family of Indian origin [J]. Mol Vis,2006,12:1217-1222.
    [92]Gill D, Klose R, Munier F L, et al. Genetic heterogeneity of the Coppock-like cataract:a mutation in CRYBB2 on chromosome 22q 11.2 [J]. Invest Ophthalmol Vis Sci,2000,41: 159-165.
    [93]Bhat S P. Transparency and non-refractive functions of crystallins--a proposal [J]. Exp Eye Res,2004,79:809-816.
    [94]Kannabiran C, Rogan P K, Olmos L, et al. Autosomal dominant zonular cataract with sutural opacities is associated with a splice mutation in the betaA3/Al-crystallin gene [J]. Mol Vis, 1998,4:21.
    [95]Mackay D S, Boskovska O B, Knopf H L, et al. A nonsense mutation in CRYBB1 associated with autosomal dominant cataract linked to human chromosome 22q [J]. Am J Hum Genet,2002,71:1216-1221.
    [96]Heon E, Priston M, Schorderet D F, et al. The gamma-crystallins and human cataracts:a puzzle made clearer [J]. Am J Hum Genet,1999,65:1261-1267.
    [97]Stephan D A, Gillanders E, Vanderveen D, et al. Progressive juvenile-onset punctate cataracts caused by mutation of the gammaD-crystallin gene [J]. Proc Natl Acad Sci USA, 1999,96:1008-1012.
    [98]Pande A, Gillot D, Pande J. The cataract-associated R14C mutant of human gamma D-crystallin shows a variety of intermolecular disulfide cross-links:a Raman spectroscopic study [J]. Biochemistry,2009,48:4937-4945.
    [99]Pande A, Annunziata O, Asherie N, et al. Decrease in protein solubility and cataract formation caused by the Pro23 to Thr mutation in human gamma D-cryslallin [J]. Biochemistry,2005,44:2491-2500.
    [100]Pande A, Ghosh K S, Banerjee P R, et al. Increase in surface hydrophobicity of the cataract-associated P23T mutant of human gammaD-crystallin is responsible for its dramatically lower, retrograde solubility [J]. Biochemistry,2010,49:6122-6129.
    [101]Santhiya S T, Shyam Manohar M, Rawlley D, et al. Novel mutations in the gamma-crystallin genes cause autosomal dominant congenital cataracts [J]. J Med Genet,2002, 39:352-358.
    [102]Mackay D S, Andley U P, Shiels A. A missense mutation in the gammaD crystallin gene (CRYGD) associated with autosomal dominant "coral-like" cataract linked to chromosome 2q [J]. Molecular vision,2004,10:155-162.
    [103]Nandrot E, Slingsby C, Basak A, et al. Gamma-D crystallin gene (CRYGD) mutation causes autosomal dominant congenital cerulean cataracts [J]. J Med Genet,2003,40:262-267.
    [104]Shentu X, Yao K, Xu W, et al. Special fasciculiform cataract caused by a mutation in the gammaD-crystallin gene [J]. Mol Vis,2004,10:233-239.
    [105]Burdon K P, Wirth M G, Mackey D A, et al. Investigation of crystallin genes in familial cataract, and report of two disease associated mutations [J]. The British journal of ophthalmology,2004,88:79-83.
    [106]Wang B, Yu C, Xi Y B, et al. A novel CRYGD mutation (p.Trp43Arg) causing autosomal dominant congenital cataract in a Chinese family [J]. Human mutation,2011,32:E1939-1947.
    [107]Li F, Wang S, Gao C, et al. Mutation G61C in the CRYGD gene causing autosomal dominant congenital coralliform cataracts [J]. Mol Vis,2008,14:378-386.
    [108]Roshan M, Vijaya P H, Lavanya G R, et al. A novel human CRYGD mutation in a juvenile autosomal dominant cataract [J]. Molecular vision,2010,16:887-896.
    [109]Vendra V P, Balasubramanian D. Structural and aggregation behavior of the human gammaD-crystallin mutant E107A, associated with congenital nuclear cataract [J]. Mol Vis, 2010,16:2822-2828.
    [110]Santhiya S T, Shyam Manohar M, Rawlley D, et al. Novel mutations in the gamma-crystallin genes cause autosomal dominant congenital cataracts [J]. Journal of medical genetics,2002,39:352-358.
    [111]Hains P G, Truscott R J. Post-translational modifications in the nuclear region of young, aged, and cataract human lenses [J]. Journal of proteome research,2007,6:3935-3943.
    [112]Hains P G, Truscott R J. Proteomic analysis of the oxidation of cysteine residues in human age-related nuclear cataract lenses [J]. Biochimica et biophysica acta,2008,1784:1959-1964.
    [113]Lampi K J, Ma Z, Hanson S R, et al. Age-related changes in human lens crystallins identified by two-dimensional electrophoresis and mass spectrometry [J]. Experimental eye research,1998,67:31-43.
    [114]Zhang Z, Smith D L, Smith J B. Human beta-crystallins modified by backbone cleavage, deamidation and oxidation are prone to associate [J]. Experimental eye research,2003,77: 259-272.
    [115]Wilmarth P A, Tanner S, Dasari S, et al. Age-related changes in human crystallins determined from comparative analysis of post-translational modifications in young and aged lens:does deamidation contribute to crystallin insolubility? [J]. Journal of proteome research, 2006,5:2554-2566.
    [116]Hains P G, Truscott R J. Age-dependent deamidation of lifelong proteins in the human lens [J]. Investigative ophthalmology & visual science,2010,51:3107-3114.
    [117]Hanson S R, Hasan A, Smith D L, et al. The major in vivo modifications of the human water-insoluble lens crystallins are disulfide bonds, deamidation, methionine oxidation and backbone cleavage [J]. Experimental eye research,2000,71:195-207.
    [118]Kim Y H, Kapfer D M, Boekhorst J, et al. Deamidation, but not truncation, decreases the urea stability of a lens structural protein, betaB1-crystallin [J]. Biochemistry,2002,41: 14076-14084.
    [119]Lampi K J, Amyx K K, Ahmann P, et al. Deamidation in human lens betaB2-crystallin destabilizes the dimer [J]. Biochemistry,2006,45:3146-3153.
    [120]Udupa E G, Sharma K K. Effect of oxidized betaB3-crystallin peptide on lens betaL-crystallin:interaction with betaB2-crystallin [J]. Investigative ophthalmology & visual science,2005,46:2514-2521.
    [121]Udupa P E, Sharma K K. Effect of oxidized betaB3-crystallin peptide (152-166) on thermal aggregation of bovine lens gamma-crystallins:identification of peptide interacting sites [J]. Experimental eye research,2005,80:185-196.
    [122]Santhoshkumar P, Raju M, Sharma K. K. alphaA-crystallin peptide SDRDKFVIFLDVKHF accumulating in aging lens impairs the function of alpha-crystallin and induces lens protein aggregation [J]. PloS one,2011,6:e19291.
    [123]Santhoshkumar P, Udupa P, Murugesan R, et al. Significance of interactions of low molecular weight crystallin fragments in lens aging and cataract formation [J]. J Biol Chem, 2008,283:8477-8485.
    [124]Benedek G B. Cataract as a protein condensation disease:the Proctor Lecture [J]. Investigative ophthalmology & visual science,1997,38:1911-1921.
    [125]Evans P, Wyatt K, Wistow G J, et al. The P23T cataract mutation causes loss of solubility of folded gammaD-crystallin [J]. Journal of molecular biology,2004,343:435-444.
    [126]Jaenicke R, Seckler R. Protein misassembly in vitro [J]. Advances in protein chemistry, 1997,50:1-59.
    [127]Moreno-Gonzalez 1, Soto C. Misfolded protein aggregates:mechanisms, structures and potential for disease transmission [J]. Seminars in cell & developmental biology,2011,22: 482-487.
    [128]Colon W, Kelly J W. Partial denaturation of transthyretin is sufficient for amyloid fibril formation in vitro [J]. Biochemistry,1992,31:8654-8660.
    [129]Lomas D A, Evans D L, Finch J T, et al. The mechanism of Z alpha 1-antitrypsin accumulation in the liver [J]. Nature,1992,357:605-607.
    [130]Bayro M J, Maly T, Birkett N R, et al. High-resolution MAS NMR analysis of PI3-SH3 amyloid fibrils:backbone conformation and implications for protofilament assembly and structure [J]. Biochemistry,2010,49:7474-7484.
    [131]Nelson R, Eisenberg D. Recent atomic models of amyloid fibril structure [J]. Current opinion in structural biology,2006,16:260-265.
    [132]Petty S A, Decatur S M. Intersheet rearrangement of polypeptides during nucleation of {beta}-sheet aggregates [J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102:14272-14277.
    [133]Bennett M J, Sawaya M R, Eisenberg D. Deposition diseases and 3D domain swapping [J]. Structure,2006,14:811-824.
    [134]Metlapally S, Costello M J, Gilliland K O, et al. Analysis of nuclear fiber cell cytoplasmic texture in advanced cataractous lenses from Indian subjects using Debye-Bueche theory [J]. Experimental eye research,2008,86:434-444.
    [135]Marsili S, Chelli R, Schettino V, et al. Thermodynamics of stacking interactions in proteins [J]. Phys Chem Chem Phys,2008,10:2673-2685.
    [136]Acosta-Sampson L, King J. Partially folded aggregation intermediates of human gammaD-, gammaC-, and gammaS-crystallin are recognized and bound by human alphaB-crystallin chaperone [J]. Journal of molecular biology.2010,401:134-152.
    [137]Wang S, Leng X Y, Yan Y B. The benefits of being beta-crystallin heteromers: betaBl-crystallin protects betaA3-crystallin against aggregation during co-refolding [J]. Biochemistry,2011,50:10451-10461.
    [138]Takata T, Woodbury L G, Lampi K J. Deamidation alters interactions of beta-crystallins in hetero-oligomers [J]. Molecular vision,2009,15:241-249.
    [139]Das P, King J A, Zhou R. Aggregation of gamma-crystallins associated with human cataracts via domain swapping at the C-terminal beta-strands [J]. Proceedings of the National Academy of Sciences of the United States of America,2011,108:10514-10519.
    [140]Papanikolopoulou K, Mills-Henry I, Thol S L, et al. Formation of amyloid fibrils in vitro by human gammaD-crystallin and its isolated domains [J]. Molecular vision,2008,14:81-89.
    [141]Moran S D, Woys A M, Buchanan L E, et al. Two-dimensional 1R spectroscopy and segmental 13C labeling reveals the domain structure of human gammaD-crystallin amyloid fibrils [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012,109:3329-3334.
    [142]Meehan S, Berry Y, Luisi B, et al. Amyloid fibril formation by lens crystallin proteins and its implications for cataract formation [J]. The Journal of biological chemistry,2004,279: 3413-3419.
    [143]Sandilands A, Hutcheson A M, Long H A, et al. Altered aggregation properties of mutant gamma-crystallins cause inherited cataract [J]. The EMBO journal,2002,21:6005-6014.
    [144]Taylor H R. Cataract:how much surgery do we have to do? [J]. British Journal of Ophthalmology,2000,84:1-2.
    [145]Vibin M, Siva Priya S G, B N R, et al. Broccoli regulates protein alterations and cataractogenesis in selenite models [J]. Current eye research,2010,35:99-107.
    [146]Javadzadeh A, Ghorbanihaghjo A, Bonyadi S, et al. Preventive effect of onion juice on selenite-induced experimental cataract [J]. Indian journal of ophthalmology,2009,57: 185-189.
    [147]Manikandan R, Thiagarajan R, Beulaja S, et al. Effect of curcumin on selenite-induced cataractogenesis in Wistar rat pups [J]. Current eye research,2010,35:122-129.
    [148]Stefek M. Natural flavonoids as potential multifunctional agents in prevention of diabetic cataract [J]. Interdisciplinary toxicology,2011,4:69-11.
    [149]Harding J J. Can drugs or micronutrients prevent cataract? [J]. Drugs & aging,2001,18: 473-486.
    [150]Babizhayev M A, Deyev A I, Yermakova V N, et al. Efficacy of N-acetylcarnosine in the treatment of cataracts [J]. Drugs in R&D,2002,3:87-103.
    [151]Ha J W, Schwahn A B, Downard K M. Ability of N-acetylcarnosine to protect lens crystallins from oxidation and oxidative damage by radical probe mass spectrometry (RP-MS) [J]. Rapid Commun Mass Spectrom,2010,24:2900-2908.
    [152]Varma S D, Hegde K R, Kovtun S. Inhibition of selenite-induced cataract by caffeine [J]. Acta ophthalmologica,2010,88:e245-249.
    [153]Varma S D, Hegde K R, Kovtun S. UV-B-induced damage to the lens in vitro:prevention by caffeine [J]. Journal of ocular pharmacology and therapeutics:the official journal of the Association for Ocular Pharmacology and Therapeutics,2008.24:439-444.
    [154]Randazzo J, Zhang P, Makita J, et al. Orally active multi-functional antioxidants delay cataract formation in streptozotocin (type 1) diabetic and gamma-irradiated rats [J]. PloS one, 2011,6:e18980.
    [155]Ferreira N, Saraiva M J, Almeida M R. Natural polyphenols inhibit different steps of the process of transthyretin (TTR) amyloid fibril formation [J]. FEBS letters,2011,585: 2424-2430.
    [156]Meng F, Abedini A, Plesner A, et al. The flavanol (-)-epigallocatechin 3-gallate inhibits amyloid formation by islet amyloid polypeptide, disaggregates amyloid fibrils, and protects cultured cells against 1APP-induced toxicity [J]. Biochemistry,2010,49:8127-8133.
    [157]Gong B, Zhang L Y, Lam D S, et al. Sodium 4-phenylbutyrate ameliorates the effects of cataract-causing mutant gammaD-crystallin in cultured cells [J]. Molecular vision,2010,16: 997-1003.
    [158]Goulet D R, Knee K M, King J A. Inhibition of unfolding and aggregation of lens protein human gamma D crystallin by sodium citrate [J]. Experimental eye research,2011,93: 371-381.
    [159]Knee K M, Goulet D R, Zhang J, et al. The group 11 chaperonin Mm-Cpn binds and refolds human gammaD crystallin [J]. Protein science:a publication of the Protein Society,2011,20: 30-41.
    [160]Mitchell P, Cumming R G, Attebo K, et al. Prevalence of cataract in Australia:the Blue Mountains eye study [J]. Ophthalmology,1997,104:581-588.
    [161]Sinha D, Esumi N, Jaworski C, et al. Cloning and mapping the mouse Crygs gene and non-lens expression of [gamma]S-crystallin [J]. Molecular vision,1998,4:8.
    [162]Everett C A, Glenister P H, Taylor D M, et al. Mapping of six dominant cataract genes in the mouse [J]. Genomics,1994,20:429-434.
    [163]Graw J, Neuhauser-Klaus A, Klopp N, et al. Genetic and allelic heterogeneity of Cryg mutations in eight distinct forms of dominant cataract in the mouse [J]. Investigative ophthalmology & visual science,2004,45:1202-1213.
    [164]Fu L, Liang J J. Conformational change and destabilization of cataract gammaC-crystallin T5P mutant [J]. FEBS letters,2002,513:213-216.
    [165]Mahler B, Doddapaneni K, Kleckner I, et al. Characterization of a transient unfolding intermediate in a core mutant of gammaS-crystallin [J]. Journal of molecular biology,2011, 405:840-850.
    [166]Chen J, Flaugh S L, Callis P R, et al. Mechanism of the highly efficient quenching of tryptophan fluorescence in human gammaD-crystallin [J]. Biochemistry,2006,45: 11552-11563.
    [167]Robman L, Taylor H. External factors in the development of cataract [J]. Eye,2005,19: 1074-1082.
    [168]Pflugrath J W. The finer things in X-ray diffraction data collection [J]. Acta crystallographica. Section D, Biological crystallography,1999,55:1718-1725.
    [169]McCoy A J. Solving structures of protein complexes by molecular replacement with Phaser [J]. Acta crystallographica. Section D, Biological crystallography,2007,63:32-41.
    [170]Emsley P, Cowtan K. Coot:model-building tools for molecular graphics [J]. Acta crystallographica. Section D, Biological crystallography,2004,60:2126-2132.
    [171]Murshudov G N, Vagin A A, Dodson E J. Refinement of macromolecular structures by the maximum-likelihood method [J]. Acta crystallographica. Section D, Biological crystallography,1997,53:240-255.
    [172]Davis I W, Leaver-Fay A, Chen V B, et al. MolProbity:all-atom contacts and structure validation for proteins and nucleic acids [J]. Nucleic acids research,2007,35:W375-383.
    [173]Delano W L, The PyMOL molecular graphics system, Available at:http://www.pymol.org., 2002.
    [174]Delaglio F, Grzesiek S, Vuister G W, et al. NMRPipe:a multidimensional spectral processing system based on UNIX pipes [J]. Journal of biomolecular NMR,1995,6:277-293.
    [175]Keller B, Christen M, Oostenbrink C, et al. On using oscillating time-dependent restraints in MD simulation [J]. Journal of biomolecular NMR,2007,37:1-14.
    [176]Goddard T D, Kneller D G, SPARKY 3, University of California, San Francisco,2004.
    [177]Wuthrich K, Wagner G. Nuclear magnetic resonance of labile protons in the basic pancreatic trypsin inhibitor [J]. Journal of molecular biology,1979,130:1-18.
    [178]Wang S S, Wen W S. Examining the influence of ultraviolet C irradiation on recombinant human gammaD-crystallin [J]. Molecular vision,2010,16:2777-2790.
    [179]Bryant F D, Santus R, Grossweiner L I. Laser Flash-Photolysis of Aqueous Tryptophan [J]. Journal of Physical Chemistry,1975,79:2711-2716.
    [180]Bent D V, Hayon E. Excited state chemistry of aromatic amino acids and related peptides. III. Tryptophan [J]. Journal of the American Chemical Society,1975,97:2612-2619.
    [181]Chiti F, Dobson C M. Protein misfolding, functional amyloid, and human disease [J]. Annual review of biochemistry,2006,75:333-366.
    [182]Dobson C M. Principles of protein folding, misfolding and aggregation [J]. Seminars in cell & developmental biology,2004,15:3-16.
    [183]Nicholson E M, Mo H. Prusiner S B, et al. Differences between the prion protein and its homolog Doppel:a partially structured state with implications for scrapie formation [J]. Journal of molecular biology,2002,316:807-815.
    [184]Mitraki A, King J. Protein Folding Intermediates and Inclusion Body Formation [J]. Bio-Technology,1989,7:690-697.
    [185]Basak A, Bateman O, Slingsby C, et al. High-resolution X-ray crystal structures of human gammaD crystallin (1.25 A) and the R58H mutant (1.15 A) associated with aculeiform cataract [J]. Journal of molecular biology,2003,328:1137-1147.
    [186]Tallmadge D H, Borkman R F. The rates of photolysis of the four individual tryptophan residues in UV exposed calf gamma-Ⅱ crystallin [J]. Photochemistry and photobiology,1990, 51:363-368.
    [187]Truscott R J, Augusteyn R C. Oxidative changes in human lens proteins during senile nuclear cataract formation [J]. Biochimica et biophysica acta,1977,492:43-52.
    [188]Truscott R J, Augusteyn R C. The state of sulphydryl groups in normal and cataractous human lenses [J]. Experimental eye research,1977,25:139-148.
    [189]Ma Z, Hanson S R, Lampi K J, et al. Age-related changes in human lens crystallins identified by HPLC and mass spectrometry [J]. Experimental eye research,1998,67:21-30.
    [190]Hanson S R, Smith D L, Smith J B. Deamidation and disulfide bonding in human lens gamma-crystallins [J]. Experimental eye research,1998,67:301-312.
    [191]Chiou S H, Chylack L T, Jr., Tung W H, et al. Nonenzymatic glycosylation of bovine lens crystallins. Effect of aging [J]. The Journal of biological chemistry,1981,256:5176-5180.
    [192]Takemoto L, Emmons T. Truncation of alpha A-crystallin from the human lens [J]. Experimental eye research,1991,53:811-813.
    [193]Ajaz M S, Ma Z, Smith D L, et al. Size of human lens beta-crystallin aggregates are distinguished by N-terminal truncation of betaBl [J]. The Journal of biological chemistry, 1997,272:11250-11255.
    [194]Shiels A, Bennett T M, Hejtmancik J F. Cat-Map:putting cataract on the map [J]. Molecular vision,2010,16:2007-2015.
    [195]Bron A J, Vrensen G F, Koretz J, et al. The ageing lens [J]. Ophthalmologica. Journal international d'ophtalmologie. international journal of ophthalmology. Zeitschrift fur Augenheilkunde,2000,214:86-104.
    [196]Frydman J. Folding of newly translated proteins in vivo:the role of molecular chaperones [J]. Annual review of biochemistry,2001,70:603-647.
    [197]Yam A Y, Xia Y, Lin H T, et al. Defining the TRiC/CCT interactome links chaperonin function to stabilization of newly made proteins with complex topologies [J]. Nature structural & molecular biology,2008,15:1255-1262.
    [198]Ruckert M, Otting G. Alignment of biological macromolecules in novel nonionic liquid crystalline media for NMR experiments [J]. Journal of the American Chemical Society,2000, 122:7793-7797.
    [199]McManus J J, Lomakin A, Ogun O, et al. Altered phase diagram due to a single point mutation in human gammaD-crystallin [J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104:16856-16861.
    [200]Banerjee P R, Pande A, Patrosz J, et al. Cataract-associated mutant E107A of human gammaD-crystallin shows increased attraction to alpha-crystallin and enhanced light scattering [J]. Proceedings of the National Academy of Sciences of the United States of America,2011, 108:574-579.
    [201]Forman-Kay J D, Clore G M, Stahl S J, et al.1H and 15N resonance assignments and secondary structure of the human thioredoxin C62A, C69A, C73A mutant [J]. Journal of biomolecular NMR,1992,2:431-445.
    [202]Baker N A, Sept D, Joseph S, et al. Electrostatics of nanosystems:application to microtubules and the ribosome [J]. Proceedings of the National Academy of Sciences of the United States of America,2001,98:10037-10041.
    [203]Delaye M, Gromiec A. Mutual diffusion of crystallin proteins at finite concentrations:a light-scattering study [J]. Biopolymers,1983,22:1203-1221.
    [204]Shiels A, Mackay D, Ionides A, et al. A missense mutation in the human connexin50 gene (GJA8) underlies autosomal dominant "zonular pulverulent" cataract, on chromosome 1q [J]. American journal of human genetics,1998,62:526-532.
    [205]Mackay D, Ionides A, Kibar Z, et al. Connexin46 mutations in autosomal dominant congenital cataract [J]. American journal of human genetics,1999,64:1357-1364.
    [206]Huang B, He W. Molecular characteristics of inherited congenital cataracts [J]. European journal of medical genetics,2010,53:347-357.
    [207]Vanita V, Singh D. A missense mutation in CRYGD linked with autosomal dominant congenital cataract of aculeiform type [J]. Molecular and cellular biochemistry,2012,368: 167-172.
    [208]Shentu X, Yao K, Xu W, et al. Special fasciculiform cataract caused by a mutation in the gammaD-crystallin gene [J]. Molecular vision,2004,10:233-239.
    [209]Pande A, Zhang J, Banerjee P R, et al. NMR study of the cataract-linked P23T mutant of human gammaD-crystallin shows minor changes in hydrophobic patches that reflect its retrograde solubility [J]. Biochemical and biophysical research communications,2009,382: 196-199.
    [210]Xu W Z, Zheng S, Xu S J, et al. Autosomal dominant coralliform cataract related to a missense mutation of the gammaD-crystallin gene [J]. Chin Med J (Engl),2004,117:727-732.
    [211]Khan A O, Aldahmesh M A, Ghadhfan F E, et al. Founder heterozygous P23T CRYGD mutation associated with cerulean (and coralliform) cataract in 2 Saudi families [J]. Mol Vis, 2009,15:1407-1411.
    [212]Yang G, Zhang G, Wu Q, et al. A novel mutation in the MIP gene is associated with autosomal dominant congenital nuclear cataract in a Chinese family [J]. Mol Vis,2011,17: 1320-1323.
    [213]Burdon K P, Wirth M G, Mackey D A, et al. A novel mutation in the Connexin 46 gene causes autosomal dominant congenital cataract with incomplete penetrance [J]. J Med Genet, 2004,41:e106.
    [214]Laurine E, Gregoire C, Fandrich M, et al. Lithostathine quadruple-helical filaments form proteinase K-resistant deposits in Creutzfeldt-Jakob disease [J]. J Biol Chem,2003,278: 51770-51778.
    [215]Bousset L, Thual C, Belrhali H, et al. Structure and assembly properties of the yeast prion Ure2p [J]. C R Biol,2002,325:3-8.
    [216]Eaton W A, Hofrichter J. Sickle cell hemoglobin polymerization [J]. Adv Protein Chem. 1990,40:63-279.
    [217]Ji F, Jung J, Koharudin L M, et al. The Human W42R gammaD-Crystallin Mutant Structure Provides a Link between Congenital and Age-related Cataracts [J]. J Biol Chem, 2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700