用户名: 密码: 验证码:
(类)金刚石薄膜的微细加工、表征及其在ICF靶制备中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金刚石薄膜具有高熔点、高热导率、高硬度、绝缘性好、抗腐蚀性强、介电常数小、宽带隙、抗辐射、化学稳定性好等一系列无与伦比的优异性能,是一种应用潜力巨大的新型功能材料。除了在军事、航天、电子信息、医学、工业和核物理等领域有着广阔的应用前景外,在激光惯性约束聚变靶的制备中也有广泛的应用。正是由于这些优异的力学、光学、电学、热学等性能和诱人的应用前景,成为当今材料、物理、化学等学科的研究热点课题之一。
     本论文以中国工程物理研究院重大基金项目“超硬纳米非晶碳膜的制备、结构、性能及应用研究(批准号:2005Z0805)”为依托,完成了金刚石薄膜的制备、微细加工、表征及其在激光惯性约束聚变(ICF)靶制备中的应用等研究工作。
     1、金刚石薄膜的热丝化学气相沉积法(HF-CVD)制备及其拉曼光谱(Raman)表征。
     金刚石薄膜的制备方法很多,从目前的研究情况来看,要制备出质量较好的金刚石薄膜,主要以化学气相沉积法为主,如微波等离子体化学气相沉积法(MP-CVD)和热丝化学气相沉积法(HF-CVD)。本文采用热丝化学气相沉积技术在硅片(P型(100)硅片)上沉积金刚石薄膜。通过拉曼光谱分析测试,在1333cm~(-1)处出现CVD金刚石薄膜的一阶拉曼散射峰,表明所制备的薄膜为金刚石薄膜。同时在1480cm~(-1)和1560cm~(-1)附近也有大的“波包状”拉曼散射峰出现,表明薄膜中除金刚石相外,还有非金刚石相的产物生成,如非晶碳、石墨等,且拉曼散射谱的噪声背景较高(背景噪声为荧光干扰,如果用紫外光作为拉曼谱的激发光源,噪声背景可能会降低,本文测试中所用的激光波长为514nm、532nm)。在CVD金刚石薄膜的表面沉积了不同厚度的Au、Ag薄膜后,对其进行表面增强拉曼散射谱(SERS)测试,但结果并没有得到很大的增强效果(如相关报道中的几个数量级),增强因子只有2~3。
     2、金刚石薄膜的反应离子刻蚀法(RIE)微细加工技术研究。
     金刚石薄膜具有优异的电学性能,但要将其应用在电子器件中,就必须解决金刚石薄膜的图形化问题。由于金刚石薄膜的化学惰性极强,不与一般的腐蚀剂发生反应,难以用常规的半导体工艺实现高精度图形化,所以要使得金刚石膜在微电子领域得到广泛应用,就必须采用特殊的加工工艺及方法。目前广泛采用的是金刚石薄膜的选择性生长、反应离子刻蚀和激光束刻蚀等图形化技术。考虑到与其他微细加工工艺的兼容性,采用在微电子领域广泛应用的反应离子刻蚀技术对金刚石薄膜进行图形化技术研究。在自建的电子回旋共振微波等离子体反应离子刻蚀装置上,以频率2.45GHz的微波为等离子体激发电源,以金属铝薄膜(厚度150nm)为掩膜,经紫外光刻(UV Lithography)完成设计图形的转移后,再以氧气、氩气的混合气体为气源进行CVD金刚石薄膜的反应离子刻蚀微细加工技术研究。通过实验研究发现,在反应气体的流量比为O_2/Ar=4/1、反应气体的压力为0.25Pa、微波源阳极电流为100mA、衬底偏压—80V的条件对金刚石薄膜进行氧反应离子刻蚀法加工的速率约为4.2μm/h。需要特别指出的是,上述结果是在非标实验装置上得到的结果,会因具体实验条件的变化而发生变化。造成这种结果的原因是与实验过程中激励电源的阻抗匹配状态、反应腔的几何尺寸、气体流速等实验参数有密切的关系。
     3、干法刻蚀(Dry Etching)和湿法腐蚀(Wet Etching)相结合制备金刚石“自支撑”和“自悬浮”微结构的研究。
     金刚石薄膜因集优良的物理、化学特性于一身,使其成为一种引人注目的电子材料和结构材料,被认为是一种“理想”的微机械电子系统(MEMS)结构材料。当金刚石薄膜应用于微电子、微机械器件时,除其图形化工艺技术外,制备可独立运动的微机械元件也是一项十分关键的技术。有研究者用选择生长的方法在牺牲层上(如SiO_2等)制备所需的独立部件,通过刻蚀牺牲层而获得独立的可运动部件。在本论文中,采用干法刻蚀技术和湿法化学腐蚀相结合的办法制备“自支撑”金刚石微结构部件和“自悬浮”金刚石微结构部件。先采用氧反应离子刻蚀法在硅基底上制备出所设计的金刚石薄膜微结构;再用稀释的氢氟酸(HF)溶液去除掉硅基底表面的二氧化硅(SiO_2)薄层;最后在制备金刚石薄膜“自支撑”结构时,采用硅的各向同性湿法腐蚀技术,将处于硅片上的微结构置于腐蚀液中(一般为氢氟酸和硝酸的混合溶液),微结构下面的硅被腐蚀掉,微结构从基底上剥离下来,清洗后就得到了“自支撑”的金刚石薄膜微结构;在制备金刚石薄膜“自悬浮”结构(类似于常见的硅的微悬臂梁结构)时,采用硅的各向异性湿法腐蚀技术,将制备在硅片上的微结构置于腐蚀液中(一般为氢氧化钾溶液),由于硅片的各个晶面在氢氧化钾溶液中的腐蚀速率差别很大(容易形成底切),微结构下面的硅只被部分腐蚀掉,还有部分未被腐蚀掉,微结构就被这些未被腐蚀掉的硅材料支撑起来,清洗后可得“自悬浮”的金刚石薄膜微结构。利用这种技术制备出了“自支撑”的微齿轮和“自悬浮”的微梳齿等金刚石薄膜微细结构。扫描电子显微镜和白光干涉仪测试结果表明,利用这种技术制备的金刚石微结构边沿清晰,侧壁陡直,无底切现象。硅基底的腐蚀深度可控,腐蚀的速率与腐蚀液的浓度和温度有关,对于45%的氢氧化钾溶液,在室温下,对硅(100)面的腐蚀速率约为1.5μm/h。
     4、(类)金刚石薄膜和反应离子刻蚀技术(RIE)在激光惯性约束聚变(ICF)微靶制备中的应用。
     金刚石薄膜、类金刚石薄膜、非晶碳氢薄膜和反应离子刻蚀技术在激光惯性约束聚变靶制备中有着广泛的应用。在本论文中,以激光惯性约束聚变物理实验研究中所用的埋点靶、多层靶和类金刚石空心微球的制备及应用为例,论述了类金刚石薄膜、非晶碳氢薄膜和反应离子刻蚀技术在激光惯性约束聚变靶制备中的应用。如CH/Al/CH结构的铝埋点靶,采用低压等离子体化学气相沉积法(LPP-CVD)制备非晶碳氢薄膜,采用氧反应离子刻蚀技术来进行非晶碳氢薄膜的微加工成型。与过去的制备工艺相比,有以下几个优点:一次可以加工多个,可以小批量制备;采用化学掩膜技术,抛弃物理掩膜方法,埋点材料的尺寸更接近物理实验设计要求,避免物理掩膜法制备过程中埋点材料中间厚、边缘薄的“馒头形”缺点,避免了埋点材料在掩膜下的少量扩散沉积;同心度好,避免了采用物理掩膜模具进行对准时尺寸偏差较大的问题;采用反应离子刻蚀技术和化学腐蚀的方法进行有机薄膜和埋点材料的加工成型,避免了以前采用掩膜模具成型时易发生粘连现象而影响成品率的问题。在激光惯性约束聚变物理实验研究中,还有一种由几种不同的材料组成的多层结构,如CH/Au/Ni多层靶。在制备过程中主要结合镍的电铸、金的湿法腐蚀和非晶碳氢薄膜的沉积和氧反应离子刻蚀技术。经过三次紫外光刻,一次电铸镍,一次金膜溅射,一次金膜湿法腐蚀和碳氢薄膜的沉积和反应离子刻蚀微加工,初步制备出了多层微细结构CH/Au/Ni。近年来有关“点火靶”的设计与制备技术成为激光惯性约束聚变研究领域中的研究热点,其中基于(类)金刚石薄膜的空心微球就是其中之一。本文利用铜微球为芯轴,通过直流磁控溅射技术先在芯轴上沉积类金刚石薄膜,再经过打孔、腐蚀芯轴来制备类金刚石空心微球。初步探索了类金刚石空心微球的制备工艺,为以后进一步研究奠定了基础。
Chemical Vapor Deposition(CVD) diamond films has a lot of distinguished properties,such as high hardness,high abrasiveness,good thermal conductivity,wide band gap,very low coefficient of fraction,high radiation tolerance,chemical inertness, and so on.These advantages,therefore,make it as an ideal functional materials for many applications,including the areas of national defence,spaceflight,electronics, medicine,materials of ICF(initial confinement fusion) targets,industry and agriculture,etc.It is one of the material research focuses in the field of materials, physics and chemical since 1980's.
     In this thesis,mainly discussed the diamond films deposition,characterization, micro-machining and its applications in Initial Confinement Fusion(ICF) targets fabrication,which supported by the China Academy of Engineering Physics(CAEP) foundation of "Studies on the fabrications,structure,properties and applications on supper hard nano-amorphous-carbon films",granted number:2005Z0805.The followings are the main contents of this thesis:
     1.Diamond films deposited by Hot Filament-Chemical Vapor Deposition technology and characterizationed by Raman spectrum.
     Various techniques,including hot filament-assisted CVD(HF-CVD),microwave plasma-assisted CVD(MP-CVD),radio-frequency plasma-assisted CVD(RF-PCVD), direct current plasma-assisted CVD(DC-PCVD),and combustion flame-assisted CVD,have been employed to deposition CVD diamond films.Since the deposited diamond films have high quality,HF-CVD and MP-CVD are often adopted for the fabrication of applied diamond films.In this paper,diamond films deposited on the Si(100) substrate.The roughness of the surface was 60nm~100nm when the thickness was 4μm~10μm.Diamond films deposited by HF-CVD with low concentration of graphite can be seen in Raman spectroscopy.The surface-enhanced Raman spectroscopy of diamond films coated Au and Ag with different thichness are also discussed in this chapter,but the enhanced coefficient number is only 2~3.
     2.Micromachining diamond films using Reactive Ion Etching(RIE) techniques.
     Although diamond films have very good electronic properties,the first challenge in really application encountered is the pattering techniques of diamond films.For its chemical inertness,often use techniques of patterned selective growth and reactive ion etching to pattern diamond films.Considering the compatible with other processes, Oxygen-RIE method is used for pattering diamond films.In experiment,microwave as plasma exciting power,oxygen as reactive gas and argon as assisted gas,negative bias(-80V) added on sample,gases flow ratio is O_2/Ar=4/1,working gas pressure is 0.25Pa,the etching rate is probably 4.21μm/h under above experiment conditions.The diamond film with line wide 20μm~40μm and depth 4μm fine pattern was obtained by oxygen reactive ion etching method in which a patterned aluminium film with thickness of 150nm as the protective mask layer,micro-star and micro-gear were also gained with same experiment conditions.
     3.Fabrication of diamond micro free-standing structures and cantilever structures by dry etching and wet etching methods.
     Currently,most of the micro-electro-mechanical system(MEMS) devices are fabricated in silicon due to the present availability of the surface machining processing technology,such as lithography and etching,derived from Si micro-electronics.In many cases,silicon's higher friction and wear limited its applications.Diamond and diamond-like amorphous carbon films can offer excellent tribological properties, low-stiction(hydrophobic) surfaces.However,the main problem in achieving the above lie not only in preparing high performance low stress thick films,but also in establishing an efficient fabrication process,the problem solved through combination of diamond films dry etching and silicon substrate wet etching.First,microstructure made of diamond films are fabricated on the silicon substrate by Oxygen-RIE technology. Second,SiO_2 film coated on the Si surface during Oxygen-RIE process was etched by isotropic wet etching method in a solution mixture of HNO_3 and HF.At last, if the free-standing microstructure are wanted,using Si isotropic wet etching solution etched for a longer time,if the cantilever microstructure are wanted,using Si anisotropic wet etching solution(KOH solution) etched for a longer time,for the undercutting of the microstructure,cantilever structure can be obtained.Using methods mentioned above,free-standing micro-gear and micro-comb are fabricated.The results from SEM testing show that the microstructures have slide side-wall and perfect surface.The etching rate of the isotropic wet etching was much faster compared to the anisotropic wet etching,both of them have relationship with the concentration and the solution temperature.
     4.Application of Diamond Like Carbon films(DLC) and RIE in the process of ICF targets fabrication.
     DLC films and RIE technology are also widely used in ICF targets fabrication.In this paper,Al-dot embedded target,CH/Au/Ni multilayer target and DLC shells fabrication processes are described.The Al-dot embedded target is one of the most important targets in the ICF experiment,it consists of a hydrocarbon(CH) film with a Al dot embedded in the center.The target is fabricated through several steps:firstly, depositing the hydrocarbon film and aluminium film,then getting Al-dot by chemical etching,at last,removing residual CH film by Oxygen-RIE technology.Compared with traditional process,this technique can machine many targets in one times. CH/Au/Ni structure is a multilayer structures,Au and Ni patterned by wet etching and electroform technics,CH films deposited by CVD and structured by Oxygen-RIE. Diamond Like Carbon film has a unique physical properties for the ICF ablator application,such as appropriate optical properties,high atomic density,high yield strength,and high thermal conductivity,is one of the important ignition target(IT) materials.This paper presents a feasible process to fabricate DLC ablator shells.The fabrication of DLC hollow shells is a multi-step process,which involves DLC films deposition on copper mandrels by magnetron sputtering using graphite as target, followed by micro-fabrication of holes with laser,and removing of the Cu mandrel by wet etching process with HNO_3 solution.This work is just a elementary study,it is a base for future research on this project.
引文
1 陈光华,张阳,金刚石薄膜的制备与应用[M],北京:化学工业出版社,2004。
    2 姜志刚,高气压直流辉光放电及其等离子体化学气相沉积金刚石厚膜的生长特性与应用研究[D],吉林大学博士学位论文,2004,5。
    3 Bharat Bhushan,Chemical,mechanical and tribological characterization of ultra- thin and hard amorphous carbon coatings as thin as 3.5 nm:recent developments[J],Diamond and Related Materials,1999,8:1985-2015.
    4 K Vercammen,Haefke,Y.Gerbig,A comparative study of state-of-the-art diamond-like carbon films[J],Surface and Coatings Technology,2000,133-134:466-472.
    5 Alix Gicquel,Khaled Hassouni,CVD diamond films:from growth to applications[J],Current Applied Physics,2001,1:479-496.
    6 R.Bandorf,A.Wortmann,T.Staedler,Influence of substrate material and topography on the tribological behaviour of submicron coatings[J],Surface and Coatings Technology,2003,174-175:461-464.
    7 Alison Crossley,Colin Johnston,Gregory S Watson,Tribology of diamond-like carbon films from generic fabrication routes investigated by lateral force microscopy[J],J.Phys.D:Appl.Phys.,1998,31..1955-1962.
    8 谢扩军,刘盛纲,CVD金刚石膜在微波管中的应用[J],真空科学与技术,2003,第23卷,第1期:64-67。
    9 W.I.Milne,Electronic devices from diamond-like carbon[J],Semicond.Sci.Technol.,2003,18:S81-S85.
    10 王淦昌 袁之尚,惯性约束核聚变[M],合肥:安徽教育出版社,1996。
    11 J D Lindl,B A Hammel,B Grant Logan,The US inertial confinement fusion(ICF) ignition programme and the inertial fusion energy(IFE) programme[J],Plasma Phys.Control.Fusion,2003,45:A217-A234.
    12 PROJECT STAFF,INERTIAL CONFINEMENT FUSION TARGET COMPONENT FABRICATION AND TECHNOLOGY DEVELOPMENT SUPPORT[R],ANNUAL REPORT TO THE U.S.DEPARTMENT OF ENERGY GA-A24975,2004,9.
    13 Peter Amendt,C.Cerjan,A.Harnz,Assessing the prospects for achieving double- shell ignition on the National Ignition Facility using vacuum hohlraumsa[J],PHYS.PLAS.,2007,14:056312-10.
    14 J.Biener,P.B.Mirkarimi,S.L.Baker,Diamond Ablators for Inertial Confmement Fusion[R],2005,UCRL-JRNL-213214.
    15 Bjorkman H,Rangstem P,Hjort K,Diamond microstructures for optical micro electromechanical systems[J],Sensors and actuators,1999,78:41-47.
    16 徐晟,陈希明,杨晓苹,金刚石声表面波器件的研制[J],天津理工大学学报,2006,Vol.22,No,1:6-8。
    17 W.P.Kang,J.L.Davidson,Y.M.Wong,Diamond vacuum field emission devices[J], Diamond and Related Materials,2004,13:975-981.
    18 A.V.Okotrub,L.G.Bulushev,A.V.Gusel,Field emission from products of nano diamond annealing[J],Carbon 2004,42:1099-1102.
    19 杨保和,孙伟,李燕,金刚石膜压力传感器的优化设计(Ⅰ)[J],光电子激光,2003,Vol.14,No.5:441——444。
    20 杨保和,孙伟,李燕,金刚石膜压力传感器的优化设计(Ⅱ)[J],光电子激光,2003,Vol.14,No.7:665-668。
    2l 李东辉,刘志凌,叶甜春,用于X射线光刻掩膜的纳米金刚石膜成核研究[J],无机材料学报,2004,Vol.19,No.4:887-894。
    22 B.V.Deryagin,V.a.Ryabov,D.V.Fedoseev,2~(nd) All-Union Symp.Procsses for Nucleation Growth of Crystals and Films of Semiconducting Compounds,Novosibirsk,USSR,1969.
    23 Angus J C,Will H A,Growth of diamond seed crystals by vapor deposition[J],J.Appl.Phys.,1968,39(6):2915-2922.
    24 R.Hatada,K.Baba,Preparation of hydrophobic diamond like carbon films by plasma source ion implantation[J],Nuclear Instruments and Methods in Physics Research B,1999,148:655-658.
    25 戴达煌,周克松,金刚石薄膜沉积制各工艺与应用[M],北京:冶金工业出版社,2001。
    26 S.G.Wang,Qing Zhang,S.F.Yoon,Optical properties of nano-crystalline diamond films deposited by MPECVD[J],Optical Materials,2003,24:509-514.
    27 H.A.Naseem,M.S.Haque,M.A.Khan,High pressure high power microwave plasma chemical vapor deposition of large area diamond films[J],Thin Solid Films,1997,308-309:141-146.
    28 W.S.Huang,D.T.Tran,J.Asmussen,Synthesis of thick,uniform,smooth ultra nanocrystalline diamond films by microwave plasma-assisted chemical vapor deposition[J],Diamond & Related Materials,2006,15:341-344.
    29 M.Kamo,Y.Sato,S.Matsumoto,N.Setaka,J.Cryst.Growth,1983,62:642.
    30 M.Fu" nera,P.Koidl,Simulation and development of optimized microwave plasma reactors for diamond deposition[J],Surface and Coatings Technology,1999,116-119:853-862.
    31 P.W.May,J.A.Smith,Deposition of NCD films using hot filament CVD and Ar/CH4/H2gas mixtures[J],Diamond & Related Materials,2006,(15):345-352.
    32 Matsumoto S,Sato Y,Growth of diamond particals from methane-hydrogen gas[J],J.Mater.Sci.,1982,17(11):3106-3112.
    33 Th.Dikonimos,L.Giorgi,R.Giorgi,DC plasma enhanced growth of oriented carbon nanowall films by HFCVD[J],Diamond & Related Materials,2007,(16):1240-1243.
    34 Suzuki K,Growth of diamond films by DC plasma chemical vapor deposition and characteristies of the plasma[J],Jpn.Appl.Phys.,1990,29(1):153-157.
    35 Samabe A,Growth of diamond thin films by electron assisted chemical vapor deposition[J],Appl.Phys.Lett.,1985,46(2):146-147.
    36 Matsumoto S,Synthesis of diamond films in a RF induction thermal plasma[J],Appl.Phys.Lett.,1987,51(10):737-739.
    37 Yarbrough W A,Stewart M A,Combustion synthesis of diamond[J],Surf.Coat.Tech.,1989,(39-40):241-252.
    38 Kitabatake M,Diamond films bu ion -assisted deposition at room temperature[J],JVST,1988,6(3):1793-1797.
    39 Mayazawa T,Preparation and structure of carbon films deposition by a mass-separated C+ion beam[J],J.Appl.Phys.,1984,55(1):188-193.
    40 王岩,磁控溅射法制备类金刚石薄膜的结构与性质研究[M],南京理工大学硕士学位论文,2006,6。
    41 戢明,宋全胜,曾晓雁,脉冲激光沉积(PLD)薄膜技术的研究现状与展望[J],真空科学与技术,2003,Vol.23,No.1:22-26。
    42 A.A.Voevodin,M.s.Donley,Preparation of amorphous diamond like carbon by pulsed laser deposition:a critical review[J],surface and coating technology,1996,82:199-213.
    43 欧阳钢,郭建,颜晓红,PLD法制备纳米类金刚石薄膜及衬底温度的影响[J],光电子激光,2004,Vol.15,No.12:1456-1459。
    44 卫中山,左敦稳,类金刚石膜的制备及应用[J],航空精密制造技术,2004,第40卷,第1期:20-23。
    45 Liou Y,Inspekyor A,Low tempersture diamond deposition by micriwave plasma enhanced chemical vapor deposition[J],Appl.Phys.Lett.,1989,55(7):631-633.
    46 Badzian A,Roy R,Crystallization of diamond crystals and films by microwave assisted CVD[J],Mater.Res.Bull.,1988,23(4):531-548.
    47 满卫东,汪建华,马志斌,微波等离子体化学气相沉积—一种制备金刚石膜的理想方法[J],真空与低温,2003,Vol.9,No.1:50-56。
    48 程彬吉,杨国文,陈继平,热丝CVD法制备大面积高质量金刚石薄膜[J],矿冶工程,1999,Vol.19,No.2:63-65。
    49 孙心瑗,热丝化学气相沉积金刚石膜的研究[M],湖南大学硕士学位论文,2004。
    50 马国佳,应用于微机电系统上的类金刚石膜制备[M],大连理工大学硕士学位论文,2003。
    51 张进,金刚石薄膜制备工艺与电学、辐射响应性关系的研究[D],四川成都:四川大学学位论文,2005。
    52 蒋翔六,金刚石薄膜研究进展[M],北京:化学工艺出版社,1991。
    53 Angus J C,Wang Y X,Metastable growth of diamond and diamond -like phase[J],Annual Review of Material Science,1991,21:221-248.
    54 Spitsyn B V,Chemical crystallization of diamond from the activated vapor deposition[J],J.Cryst.Growth,190,99(1-4):1162-1167.
    55 Yarbrough W A,Thermodynamics of metastable diamond[J],Mater.Res.Soc.Symp.Proc.,1990,162:75-83.
    56 Sommer M,Mui K,Smith F W,Thermodynamic analysis of the chemical vapor deposition of diamond films[J],Solid State Commun.,1989,69(7):775-778.
    57 王季陶,张卫,刘志杰,金刚石低压气相生长的热力学耦合模型[M],北京:科学出版社,1998。
    58 殷吉昊,纳米晶金刚石薄膜场致发射特性研究[M],电子科技大学硕士学位论文。
    59 Harris S J,Mechanism for diamond growth from methyl radicals[J],Appl.Phys.Lett.,1990,56(23):2298-2300.
    60 Derjaguin B V,Fedoseev D B,The synthesis of diamond at low pressure[J],Sci.Am.,1975,133(5):102-109.
    61 Matsumoto S,Sato Y,Vapor deposition of diamond particals from methane[J],Jpn.Appl.Phys.,1982,21(4):183-185.
    62 Angus J C,Low pressure,metastable growth of diamond and "diamondlike" phase[J], Science,1988,241:913-921.
    63 Jubber M G,Wilson J I,Microwave plasma CVD of high purity diamond films[J],Diamond and related materials,1993,2:402-406.
    64 Kamo M,Sato Y,Diamond synthesis from gas phase in microwave plasma[J],J.Cryst.Growth,1983,62(3):642-644.
    65 Kobashi K,Nishimura K,Synthesis of diamond by use of microwave plasma chemical vapor deposition:morphology and growth of diamond films[J],Phys.Rev.B,1988,38(6):4067-4084.
    66 王祖光,微米、纳米金刚石膜的性能和应用[J],珠宝科技,2004,16(57):36-39。
    67 Yam B Y,Moustakes T D,Defect-induced stabilization of diamond films[J],Nature,1989,342(6251):786-787.
    68 Yarbrough W A,Current issures and problems in the chemical vapor deposition of diamond films[J],Science,1990,247:688-696.
    69 Lee S T,CVD diamond films:nuleation and growth[J],Materials Science and engineering,1999,25:123-154.
    70 李发宁,张鹤鸣,宽禁带半导体金刚石[J],电子科技,2004,(7):43-49。
    71 Bachmann P K,Leers H,Towards s general concept of diamond chemical vapor deposition[J],Diamond and related materials,1991,1(1):1-12.
    72 Kenji K.Hirakuria,Toshihiro Kobayashi,Influence of the methane concentration on HF-CVD diamond under atmospheric pressure[J],Vacuum,2001,63:449-454。
    73 Sommer M,Mui K,Smith F W,Activity of tungsten and rhrnium filaments in CH4/H2 and C2H2/H2 mixture:importance for diamond CVD[J],J.Mater.Res.,1990,5(11):2433-2440.
    74 吴谢瑜,热丝CVD金刚石涂层研究[J],硬质合金,2004,Vol.21,No.1:32-35。
    75 安德利亚著,谭平恒等译,碳材料的拉曼光谱—从纳米管到金刚石[M],北京:化学工业出版社,2007,6。
    76 匡同春,刘正义,激光拉曼光谱在CVD金刚石薄膜质量表征中的应用[J],理化检验—物理分册,1997,Vol.33,No.7:21-25.
    77 Craig A.T aylor,Mark F.Wayne,Residual stress measurement in thin carbon films by Raman spectroscopy and nanoindentation[J],Thin Solid Films,2003,429:190-200.
    78 邱宇,雷振坤,亢一澜,微拉曼光谱技术及其在微结构残余应力检测中的应用[J],机械强度,2004,26(4):389-392。
    79 Benrakkad M S,Benitez M A,Esteve J,Stress measurement by micro Raman spectroscopy of polycrystalline silicon structures[J],J Micromech Microeng,1995,5:132—135。
    80 Albrecht M G,Creighton J A.Anomalously intense raman spectra of pyridine at a silver electrode[J],J AmChemSoc,1977,99:5215-5218.
    81 Adrian F J.Charge transfer effects in surface-enhanced raman scattering[J],J ChemPhys,1982,77:5302-5504.
    82 Tian Z Q,Ren B,Wu D Y,Surface-enhanced Raman scattering:from noble to transition metals and from rough surfaces to ordered nanostructures[J],J.Phys.Chem.B,2002,106(37):9463-9483.
    83 G.Fedosenko,A.Schwabedissen,D.Korzec,Diamond-like carbon film deposition by a 13.56 MHz hollow cathode RF-RF system using different precursor gases[J],Surface and Coatings Technologv,2001,142-144:693-697。
    84 王渭源,毛敏耀,杨艺榕,用作金刚石微电子和微机械器件的若干关键技术[J],科学 通报,1999年2月,第44卷,第4期。
    85 H.J.Booth,Recent applications of pulsed lasers in advanced materials processing[J],Thin Solid Films,2004,453-454:450-457。
    86 李艳宁,唐洁,饶志军,脉冲激光MEMS加工技术[J],微纳电子技术,2003,(7-8):159-163。
    87 Li J,A quality study on the excimer laser micromachining of electro-thermal-compliant micro devices[J],Micromech Microeng,2001,11:39-47.
    88 FLEGING W P,Laser micromachining for applications in thin film technology[J],Applied Surface Science,2000,154-155:633-639.
    89 陈雷明,李培刚,符秀丽,张海英,FIB快速加工纳米孔点阵的新方法[J],物理学报,2005,Vol.54,No.2:582-586。
    90 董桂芳,张克潜,汪健如,液态金属离子源聚焦离子束系统在微米、纳米技术中的应用[J],电子学报,1999,Vol.27,No.6:110-114。
    91 A.Stanishevsky,Focused ion beam patterning ofdiamondlike carbon films[J],Diamond and Related Materials,1999,(8):1246-1250。
    92 Christophe Cardinaud,Marie-Claude Peignon,Pierre-Yves Tessier,Plasma etching:principles,mechanisms,application to micro- and nano-technologies[J],Applied Surface Science,2000,164:72-83.
    93 C Viensang,L Ferlazzo-manin,Surface smoothing of diamond membranes by reactive ion etching process[J],Diamond and related materials,1996,5:840-844.
    94 许根慧,姜恩永,盛京等,等离子体技术与应用[M],北京:化学工艺出版社,2006,5。
    95 Gottlieb S.Oehrlein,Surface processes in low pressure plasmas[J],Surface Science,1997,386:222-230.
    96 S.Lerouge,M.R.Wertheimer,L'H.Yahia,Plasma Sterilization:A Review of Parameters,Mechanisms,and Limitations[J],Plasmas and Polymers,2001,Vol.6,No.3:175-188。
    97 宁兆元,程珊华,微波ECR等离子体技术及其在材料加工中的应用[J],微细加工技术,1995,No.1:38-44。
    98 胡海天,邬钦崇,微波电子回旋共振等离子体的阻抗特性分析[J],真空科学与技术,1997,Vol.17,No.3:194-197。
    99 A.Fichelscher,I.W.Rangelow,R.Kassing,Simulation of RIE-processes considering sheath dynamics[J],Mater.Sci.Eng.A,1991,139:412-417。
    100 Michael Zeuner,Frank Scholze,Horst Neumann,A unique ECR broad beam source for thin film processing[J],Surface and Coatings Technology,2001,142-144:11-20.
    101 W A Nositschka,O Voigt,P Manshanden,Texturisation of multicrystalline silicon solar cells by RIE and plasma etching[J],Solar Energy Materials & Solar Cells,2003,(80):227-237.
    102 S.Schaefer,R.L.udemann,Low damage reactive ion etching for photovoltaic applications[J],J.Vac.Sci.Technol.,1999,A17:749.
    103 L.Dreeskornfeld,R.Segler,G.Haindl,Reactive ion etching with end point detection of microstructured Mo/Si multilayers by optical emission spectroscopy[J],Microelectronic Engineering,2000,(54):303-314。
    104 L P Lee,S A Berger,D Liepmann,High aspect ratio polymer microstructures and cantilevers for bioMEMS using low energy ion beam and photolithography[J],Sensors and actuators A,1998,71:144-149.
    105 孙静,康琳,刘希,反应离子刻蚀与离子刻蚀方法的研究与比较[J],低温物理学报,2006,第28卷,第3期:224-227。
    106 I.W.Rangelow,P.Hudek,MEMS-fabrication by lithography and reactive ion etching(LIRIE)[J],Microelectron.Eng.,1995,27:471-474。
    107 J.Kretz,L.Dreeskornfeld,J.Hartwich,20nm electron beam lithography and reactive ion etching for the fabrication of double gate FinFET devices[J],Micro electronic Engineering,2003,(67-68):763-768.
    108 Congchun Zhang,Chunsheng Yang,Duifu Ding,Deep reactive ion etching of PMMA[J],Applied Surface Science,2004(227):139-143.
    109 J.Robertson,Diamond amorphous carbon[J],materials science and engineering,R37(2002):129-281.
    110 M.Bernard,A.Deneuville,L.Ortega,Electron cyclotron resonance oxygen plasma etching of diamond[J],Diamond and Related Materials,2004,(13):287-291。
    111 I.W.Rangelow,Reactive ion etching for high aspect ratio silicon micromachining[J],Surface and Coatings Technology,1997,97:140-150。
    112 Yoshiki Nishibayashi,Yutaka Ando,Anisotropic etching of a fine column on a single crystal diamond[J],Diamond and Related Materials,2001,10:1732-1735。
    113 I.Bello,M.K.Fung,W.J.Zhang,Effects at reactive ion etching of CVD diamond[J],Thin Solid Films,2000,368:222-226.
    114 A.P.Mousinho,R.D.Mansano,M.Massi,Micro-machine fabrication using diamond like carbon films[J],Diamond and Related Materials,2003,12:1041-1044。
    115 S Kiyohara,K Moil,Oxgen ion beam assisted etching of single crystal diamond chip using reactive oxgen gas[J],J.Materials Science:Materials in electronics,2001,12:477-481.
    116 L.J.Yu,D.Sheej,B.K.Tay,Etching behaviour of pure and metal containing amorphous carbon films prepared using filtered cathodic vacuum arc technique[J],Applied Surface Science,2002,195:107-116。
    117 Harun H Solak,Nanolithography with coherent extreme ultraviolet light[J],J.Phys.D:Appl.Phys.,2006,39:R171-R188。
    118 王立鼎,罗怡,中国MEMS的研究与开发进程[J],仪表技术与传感器,2003,1:1-3。
    119 张国炳,郝一龙,田大宇,多晶硅薄膜应力特性研究[J],半导体学报,1999,20(6):263-467。
    120 Kohn E.,Gluche P.,Adamschik M.,Diamond MEMS—a new emerging technology[J],Diamond and Related Materials,1999,Vol.8,No.2:934-940。
    121 N.Rajan,C.A.Zorman,M.Mehregany,Effect of MEMS-compatible thin film hard coatings on the erosion resistance of silicon micromachined atomizers[J],Surface and Coatings Technology,1998,108-109:391-397.
    122 李新,唐祯安,徐军,DLC膜用于解决MEMS黏附问题研究[J],2006,Vol.46,No.3:442-445。
    123 R.Bandorf,H.Luthje,T.Staedler,Influencing factors on microtribology of DLC films for MEMS and microactuators[J].Diamond and Related Materials 2004,(13):1491-1493.
    124 A.R.Kraussa,O.Auciello,D.M.Gruen,Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices[J],Diamond and Related Materials 2001,(10):1952-1961.
    125 Ian S.Forbes,John I.B.Wilson,Diamond and hard carbon films for microelectromechanical systems(MEMS)—a nanotribological study[J].Thin Solid Films,2002,(420-421):508-514.
    126 郭江,CVD金刚石薄膜在微机电系统(MEMS)中的应用[J],功能材料,2003,Vol.34,No.3:349-351。
    127 D.M.Cao,T.Wang,B.Feng,Amorphous hydrocarbon based thin films for high-aspect-ratio MEMS applications[J],Thin Solid Films,2001,398-399:553-559。
    128 A.R.Krauss,O.Auciello,D.M.Gruen,Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices[J],Diamond and Related Materials,2001,10:1952—1961。
    129 A.Stanishevsky,Patterning of diamond and amorphous carbon films using focused ion beams[J],Thin Solid Films,2001,398-399:560-565。
    130 X.D.Wang,G.D.Hong,J.Zhang,Precise patterning of diamond films for MEMS application[J].Journal of Materials Processing Technology,2002,(127):230-233.
    131 V.Kh.Liechtenstein,T.M.Ivkova,E.D.Olshansk,Recent investigations and applications of thin diamond-like carbon(DLC) foils[J].Nuclear Instruments and Methods in Physics Research,2004,A(521):197-202.
    132 Ramesham R,Fabrication of diamond microstructures for microelectromechnical system by a surface micromachining process[J],Thin solid films,1999,340:1-6。
    133 李建国,刘实,李依依等,热丝法气相沉积金刚石薄膜的影响因素[J],金刚石与磨料磨具工程,20004,139(1):41-44.
    134 姚翔,沈荷生,丁桂甫等,金刚石薄膜的反应离子刻蚀[J],微细加工技术,2000年第3期,23-28。
    135 Y.Watanabe,M.Shiratani,H.Makino,Powder-free plasma chemical vapor deposition of hydrogenated amorphous silicon with high rf power density using modulated rf discharge[J].Appl.Phys.Lett.,1990,57(16):1616-1618.
    136 A.D.Romig,Jr,Michael T.Dugger,Paul J.McWhorter,Materials issues in MEMS devices:science,engineering,manufacturability and reliability[J],Acta Materialia,2003,51:5837-5866.
    137 K.Vercammen,H.Haefke,Y.Gerbig,A comparative study of state-of-the-art diamond-like carbon Films[J].Surface and Coatings Technology,2000,(133-134):466-472.
    138 李和委翻译,硅的湿法化学腐蚀机理[J],半导体情报,1997,Vol.34,No.2:28-33。
    139 温殿忠,庄玉光,邱成军,硅在KOH溶液中各向异性腐蚀机理的研究[J],黑龙江大学自然科学学报,1996,Vol.13,No.3:55-58。
    140 元光,金亿鑫,金长春,利用CVD方法制备金刚石冷阴极的研究[J],电子显微学报,1997,16(4):507-509。
    141 郝一龙,张立宪,李婷,硅基MEMS技术[J],机械强度,2001,23(4):523-526。
    142 王阳元,武国英,郝一龙,硅基MEMS加工技术及其标准工艺研究[J],电子学报,2002,Vol.30,No.11:1577-1584。
    143 Yirong Yang,Xiaodong Wang,Congxin Ren,Diamond surface micromachining technology[J],Diamond and Related Materials,1999(8):1834-1837。
    144 A.P.Mousinho,R.D.Mansano,M.Massi,Micro-machine fabrication using diamond-like carbon films[J],Diamond and Related Materials,2003(12):1041-1044.
    145 K.Suzuki,S.Okudaira,N.Sakudo,et al.,Microwave plasma etching[J].Jpn.J.Appl.Phys.,1977,16(11):1979-1984.
    146 E.Ghanbari,I.Trigor,T.Nguyen,A broad-beam ECR ion source for sputtering etching and deposition of material[J].J.Vac.Sci.Technol.,1989,A7(3):918-924.
    147 张志明,沈荷生,何贤昶等,大面积平坦金刚石薄膜的制备和图形化[J],微细加工技术,1999,No.4,33-37。
    148 D.Sheeja,B.K.Tay,L.J.Yu,Fabrication of amorphous carbon cantilever structures by isotropic and anisotropic wet etching methods[J],Diamond and Related Materials,2003,12:1495-1499.
    149 丁桂甫,俞爱斌,赵小林,CVD金刚石薄膜RIE掩模技术研究[J],微细加工技术,2001,3:74-80。
    150 John P.Sullivan,Thomas A.Friedmann,Amorphous diamond MEMS and sensors[R],SAND REPORT,2002,SAND2002-1755.
    151 G.F.Ding,H.P.Mao,Y.L.Cai,Micromachining of CVD diamond by RIE for MEMS applications[J],Diamond & Related Materials,2005,14:1543-1548。
    152 D.S.Hwang,T.Saito,N.Fujimori,New etching process for device fabrication using diamond[J],Diamond & Related Materials,2004,13:2207-2210。
    153 张占文,吴卫东,许华等,埋点靶中CH薄膜的制备[J],强激光与粒子束,2001,13(1):68-71。
    154 张占文,许华,魏胜等,埋点靶制备工艺研究[J],原子能科学与技术,2002,36(4/5):313-315。
    155 A.K.Paul,A.K.Dimri,R.P.Bajpai,Plasma etch models based on different plasma chemistry for micro-electro-mechanical-systems application[J],Vacuum 2003(68):191-196.
    156 F.Scholze,H.Neumann,M.Zeuner,Scalable large volume ECR plasma generation for low pressure applications[J],Surface and Coatings Technology 1997(97):755-758.
    157 苑伟政,马炳和,微机械与微细加工技术[M],西安:西北工业大学出版社,2000,8。
    158 陈光焱,准LIGA工艺的关键技术研究[R],中国国防科学技术报告,2004,编号:GF-A0090696 G.
    159 高杨,陈勋,Sandia国家实验室的LIGA工艺研究[R],中国国防科学技术报告,2002,编号:GF-A-0059878G。
    160 H Yang,C-T Pan,M-C Chou,Ultra-fine machining tool/molds by LIGA technology[J],J.Micromech.Microeng.,2001,11:94-99。
    161 朱军,赵小林,丁桂甫,LIGA掩模板的制备与同步辐射X射线深度光刻的研究[J],微细加工技术,2000,3:44-48。
    162 余国彬,姚汉民,胡松,深紫外深度光刻蚀在LIGA工艺中的应用,微纳电子技术,2002,4:30-32。
    163 明平美,UV-LIGA—微细电火花加工组合制造技术基础研究[D],南京航空航天大学博士学位论文,2006,3。
    164 D.P.Adams,M.J.Vasile,T.M.Mayer,Focused ion beam milling of diamond:Effects of H2O on yield,surface morphology and microstructure[J],JVST,B,2003,21(6):23342343。
    165 Steve Reyntjens,Robert Puers,A review of focused ion beam applications in microsystem technology[J],J.Micromech.Microeng.2001,11:287-300。
    166 K.Bewilogua,R.Wittorf,H.Thomsen,DLC based coatings prepared by reactive d.c.magnetron sputtering[J],Thin Solid Films,2004,447 -448:142-147.
    167 张泰华,微/纳米力学测试技术及其应用[M],北京:机械工业出版社,2004年。
    168 何日晖,叶雄英,周兆英,微型机械材料的残余应力测量,机械工程材料,2001,Vol. 25,No.4:29-32。
    169 熊瑛,杨保和,吴小国,H2-O2混合气氛刻蚀制备金刚石纳米晶薄膜[J],光电子激光,2006,Vol.17,No.7:794-797。
    170 周宏,赖建军,赵悦,SF6/O2/CHF3混合气体对硅材料的反应离子刻蚀研究[J],半导体技术,2005,Vol.17,No.7:28-31。
    171 Guckel H,Randazzo T,Burns D W,A simple technique for the determination of mechanical strain in thin films with applications to polysilicon[J],J Appl Phys,1985,57:1671-1675。
    172 Mark G Allen,Mehran Mehregany,Roger T Howe,Microfabricated sturctures for the in situ measurement of residual stress,Young's Modulus,and ultimate strain of thin films[J],Appl.Phys.Lett.,1987,51:241-243。
    173 INERTIAL CONFINEMENT FUSION,Annual Report,2005,NO:GA-A25242,59-62。
    174 Cheng Tzu Kuo,Chii Ruey Lin,How Min Lien,Origins of the residual stress in CVD diamond films[J],Thin Solid Films,1996,290-291:254-259.
    175 L.A.Starman,J.A.Lott,M.S.Amer,Stress characterization of MEMS microbridges by micro-Raman spectroscopy[J],Sensors and Actuators A,2003,104:107-116.
    176 廖晓明,新型金刚石薄膜辐射剂量计的基础研究及设计[D],四川大学博士学位论文,2006,4。
    177 F Galluzzi,M Marinelli,L Masotti,CVD diamond films as photon detectors[J],Nuclear Instruments and Methods in Physics Research A,1998,409:423-425.
    178 Minglong Zhang,Beibei Gu,Linjun Wang,Yiben Xia,X-ray detectors based on (100)-textured CVD diamond films[J],Physics Letters A,2004,332:320-325。
    179 M.Jung,J.Morel,P.Siffert,Real-time high intensity X-ray dosimetry diamond monitors:Response simulations compared to silicon sensitivities[J],Nuclear Instruments and Methods in Physics Research A,2005,554:514-526。
    180 C.Manfredotti,A.Lo Giudice,C.Ricciardi,CVD diamond microdosimeters[J],Nuclear Instruments and Methods in Physics Research A,2001,458:360-364。
    181 R Ramesham,M F Rose,Polishing of polycrystalline diamond by hot nickel sueface[J],Thin solid films,1998,320:223-227。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700