用户名: 密码: 验证码:
油松挥发性化合物的分析及油松毛虫雌蛾对油松挥发物电生理反应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用动态顶空采集法对油松挥发性化学物质进行了分析鉴定,总共鉴定出40种化合物,发现油松挥发物主要有萜烯类化合物及其含氧化合物组成,其中单萜烯类化合物占总量的52.64%,酯类挥发物占总量的35.13%。
     油松挥发物昼夜节律变化结果表明:挥发物中大多数挥发物的释放遵循昼夜节律的变化,大部分化合物白天的释放速率高于夜间,这与害虫天敌的活动规律相吻合,体现了植物、植食性昆虫和天敌三者间的协同进化。
     分析了轻度机械损伤和重度机械损伤诱导的油松挥发物在油松受害96h内的变化,结果表明:不同程度机械损伤后挥发物成分中没有新的化合物出现,只是受害后释放高峰时间及释放量有所差异。轻度机械损伤后,除α-蒎烯大部分化合物的相对百分含量较对照有所上升,而重度机械损伤后,β-月桂烯释放量降低,其他单萜的释放量高于对照。
     采用触角电位(EAG)技术分析了油松毛虫雌蛾对(-)-α-蒎烯、(+)-α-蒎烯、(-)-β-蒎烯、(+)-β-蒎烯、(-)-柠檬烯、(+)-柠檬烯、α-蒎烯、β-蒎烯和柠檬烯的触角电位反应。剂量反应测试结果表明,油松毛虫雌蛾对(-)-α-蒎烯的饱和剂量是1600μl,对(+)-α-蒎烯、(-)-β-蒎烯、(+)-β-蒎烯的饱和剂量是800μ1,而(-)-柠檬烯和(+)-柠檬烯的饱和剂量则是50μl。
     油松毛虫雌蛾对3对手性化合物及其消旋体的反应表明,油松毛虫可能用同一个受体细胞来接受(-)-α-蒎烯与(+)-α-蒎烯,β-蒎烯的试验结果与α-蒎烯相似,其对映异构体可能同样被同一个受体细胞来接受。
     从油松毛虫雌蛾对寄主植物和非寄主植物的试验结果可以看出,油松挥发性化合物引起的油松毛虫雌蛾的触角电位值显著高于非寄主植物挥发物引起的触角电位值。
In this paper, volatile organic compounds from Pinus tabulaeformis were collected using dynamic headspace collection methods and identified by gas chromatography/mass spectrometry(GC-MS). The forty compounds of healthy needles of needles of Pinus tabulaeformis were identified. The results indicated that terpenes and oxygenated volatile organic compounds were the dominant volatiles release from P. tabulaeformis. The relative amounts of monopene in the volatiles of the needles of Pinus tabulaeformis are 52.64%, and relative amounts of the oxygen containing compounds in the volatiles are 35.13%.
     The emission of major volatile organic compounds followed a diurnal cycle with release rates increased during the light period and decreased during the dark period. This inosculates with the pest activity disciplinarian of the natural enemy activity and shows the coordination evolution between the plant the phytophagy insect and the natural enemy.
     The result of volatile organic compounds from P. tabulaeformis indicated that different degrees damage considerably influenced the changes of induced volatile products from leaves. The relative percentages of most volatiles were higher than the healthy control Pinus besidesα- pinene in slightly artificially-damaged leaves; on the other hand, in serious artificially-damaged leaves, the relative percentage ofβ-myrcene was lower than the control, and others were higher than the healthy trees. In damaged P. massioniana, the induced-volatile organic compounds' changes only occurred on the variation of relative contents no new induced compounds were found so far.
     Electroantennograms were recorded from female Dendrolimus punctafus tabulaeformis Tsai et Liu to serial stimulus doses(50μl, 100μl, 400μl, 800μl, 1600μl、3200μl)offour monoterpene hydrocarbons ((+) -α-pinene、(-) -α- pinene、(-) -β- pinene、(+) -β- pinene) and the threshold were tested. Dose-response curves constructed from EAGsrevealed that the threshold of(-)-α- pinene was 1 600μl and the threshold of the other three chemicals were 800μl. The relative size of the electroantennogram response was higher for (+) -α-pinene compared to (-) -α-pinene ,indicating that greater affinity to receptor molecules for (+) -α-pinene at the level of the dendrites; On the contrary, response of the insects to the (-) form of theβ-pinene was higher than that to the (+) form, showing (+) -β- pinene does not bind as efficiently with the receptor molecules in many of the sensilla. Electroantennogram recording using mixtures of the enantiomers at saturating dose levels showed that the response to the mixture ofα- pinene was between the two forms ofα- pinene .It is showed that the two forms ofα-pinene were detected by the same receptor neurons, and the same to theβ- pinene. Discrimination between enantiomers by plant olfactory receptor neurons in the insects suggested that the enantiomeric ratios of volatile compounds may be important in host location by the D. punetafus tabulaeformis Tsai et Liu.
     The results of female D. punetafus tabulaeformis Tsai et Liu to the volatiles from the host plant and the non-host plant indicate that the response of the insects to the volatiles of P. tabulaeformis is higher than the response to the non-host plant volatiles.
引文
[1] 侯陶谦.中国松毛虫[M].北京:科学出版社,1987:53.
    [2] 阎凤鸣.化学生态学[M].北京:科学出版社,2003:55.
    [3] 杜永军,严福顺.植物挥发性次生物质在植食性昆虫、寄主植物和昆虫天敌关系中的作用机理[J].昆虫学报,1994,37:233~250.
    [4] 张学祖.植物、植食性昆虫及捕食者种间化学信息物质[J].昆虫知识,1994,31(1):52~55.
    [5] 高泽正,吴伟坚,崔志新.硫代葡萄糖背对黄曲跳甲寄主选择性的影响[J].华南农业大学学报,2001,22(4):40~42.
    [6] Van Den Boom C.E.M., Van Beek, T.A., Posthumus, M.A., et al. Qualitative and quantitative variation among volatile profiles induced by Tetranychus urticae feeding on plants from various families[J]. J. Chem. Ecol., 2004, 30: 69~89.
    [7] Dicke M. Are herbivore-induced plant volatiles reliable indicators of indicators of herbivore identity to foraging carnivorous arthropods[J]. Entomol. Expermen. Appli., 1999, 91: 131~142.
    [8] Turlings T C, Tumlinson J H, Lewis W J. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps[J]. Science., 1990, 250: 1251~1253.
    [9] 任琴,李镇宇,胡永健,等.受害马尾松、湿地松挥发性化学物质的释放[J].生态学报 2005 25(11):2928~2932.
    [10] Hatanaka A. The biogeneratloa of green odour by green leaves Phytochemistry[J]. 1993, 34(5): 1201~1218.
    [11] Agelopoulos N G,Chamberlain K, and Pickett J A. Factors affecting volatile emissions of intact potato plants, Solanum tuberosum: variability of quantities and stability of ratios[J]. J.Chem Ecol., 2000, 26(2): 497~511.
    [12] Hedin P A. seasonal variation in the emission of volatilea by cotton plants growing in the field[J]. Environ Entomol., 1976, 5: 1234~1238.
    [13] Werner R A. Aggregation behavior of the beetle Ips grandicollis in response to host-produced attractants[J]. J. Insects. Physiol., 1972, 18: 427~437.
    [14] Zhang Q H, Birgerron G, Zhu J W, et al. Leaf volatiles from nonhost deciduous trees: Variation bu tree species, season and temperature, and electrophysiological activity in Ips typogrphus[J]. J Chem Ecol.,1999,25: 1923~1943.
    [15] 金幼菊,吴京科,孙福,等.油松针叶精油萜烯组成的研究(1)--油松针叶的萜烯组成及其与其它两针松的比较[J].北京林业大学学报,1994,16(3):39~46.
    [16] 金幼菊,柳维波,吴京科,等.油松针叶精油萜烯组成的研究(Ⅱ)—萜烯含量与季节、叶龄及朝向的关系[J].北京林业大学学报,1995,17(4):50-55.
    [17] Loughrin J H, Potter D A. Diurnal emission of volatile compounds by Japanese beetles- damaged grape leaves[J]. Phytochemistry., 1997, 45(5): 919~928.
    [18] Zeringue H J J R. Changes in cotton leaf chemistry induced by volatile elicitors[J]. Phytochemistry., 1987, 26(5): 1357~1360.
    [19] Loughrin J H. Manukian A R R, Turlings T C J and Tumlinson J H. Diurnal cycle of emission of induced volatile terpenoids by herbivore-injured cotton plants[J]. Plant Biology., 1994, 91, 11836~11840.
    [20] Turlings T C J, Loughrin J H, McCall P J, et al. How caterpillar-damaged plants protect themselves by attracting parasitic wasps[J]. Proc. Nutl. Acad. Sci. USA., 1995, 92: 4169~4174.
    [21] Dicke M, Takabayashi J, Posthumus M A, et al. Plant phytoseiid interactions mediated by herbivore induced plant volatiles: variation in production of cues and in responses of predatory mites[J]. Exp Appl Acarol., 1998, 22: 311~333.
    [22] Maeda T, Takabayashi J, Yano S, et al. Effects of light on the tritrophic interaction between kidney bean plants, two spotted spider mites and predatory mites, Amblyseius womersleyi(Acari Phytoseiidae)[J]. Exp Appl Acarol., 2000, 24: 415~425.
    [23] Baldwin I T,Schultz J C C. Rapid changes in tree leaf chemistry induced by damage: evidence for communication between plants[J]. Science., 221: 277~279.
    [24] Rhoades D F. Responses of alder and willow to attact by tent caterpillars and webworms[J]. In: P A Hedin, ed. Plant resistance to insects. AM. Chem. Soc., 1983, 55~68.
    [25] Rhoades D F. Pheromonal communication between plants[J]. In: G A Cooper-Driver, T Swain, E C Conn, eds. Chemically Mediated Interactions between plants and Other Organisms. Recent Advances in Phytochemistry, 1985, 19: 195~218.
    [26] Arimura, G., Ozawa, R., Shimoda, T., et al. Herbivory-induced volatiles elicit defence genes in lima bean leaves[J]. Nature.,2000, 406: 512~515.
    [27] Visser J H. Host odor perception in phytophagous insects[J]. Annu.Rev.Entomol.,1986, 31: 121-144.
    [28] Landolt, P. J. Effects of host plant leaf damage on cabbage looper moth attraction and oviposition[J]. Entomol. Exp. Appl. 1993, 67: 79~85.
    [29] Bernasconi, M. L., T. C. J. Turlings, L. Ambrosetti, P., et al. Herbivore-induced emissions of maize volatiles repel the corn-leaf aphid, Rhopalosiphum maidis[J]. Entomol. Exp. Appl., 1998, 87: 133~142.
    [30] Bolter, C. J., Dicke, M., van Loon, J. J. A., et al. Attraction of Colorado potato beetle to herbivore damaged plants during herbivory and after its termination[J]. J. Chem. Ecol. 1997. 23: 1003-1023
    [31] Loughrin, J. H., D. A. Potter and T. R. Hamilton-Kemp. Volatile compounds induced by herbivory act as aggregation kairomones for the Japanese beetle (Popilia japonica Newman)[J]. J. Chem. Ecol., 1995, 21: 1457-1467
    [32] Turlings T C J, Wackers F L. Recuitment of predators and parasitoids by herbivore-injured plants[J]. In: R T Carde, J G Millar eds. Advances in Insect Chemical Ecology. Cambridge University Press, UK, 2004, 21~75.
    [33] Landolt, P. J. Effects of host plant leaf damage on cabbage looper moth attraction and oviposition[J]. Entomol. Exp. Appl., 1993,67:79~85.
    [34] Bernasconi, M. L., T. C. J. Turlings, L. Ambrosetti, P. Bassetti, & S. Dorn. Herbivore-induced emissions of maize volatiles repel the corn-leaf aphid, Rhopalosiphum maidis[J]. Entomol. Exp. Appl., 1998,87: 133~142.
    [35] Loughrin J H, Potter D A, Hamilton-Kemp T R. Volatile compounds induced by herbivory act as aggregation kairomones for the Japanese beetle(Popilia japonica Newman)[J]. J.Chem. Ecol., 1995, 21: 1457~1467.
    [36] Kalberer N M, Turlings T C J, Rahier M. Attraction of a leaf beetle(Oraina cacaliae) to damaged host plants[J]. J. Chem. Ecol., 2001, 27: 647~661.
    [37] 李铁纯,侯冬岩,回瑞华.油松松笔头萜烯成分的研究[J].鞍山师范学院学报,2003,5(6):62-64.
    [38] 李镇宇,陈华盛,袁小环,等.油松对赤松毛虫的诱导化学防御[J].林业科学,1998,34(2):43-49.
    [39] Mihaliak C. A, Lincoln D E. Plant biomass and chemical defence: response to defoliage and nitrate limitation[J]. Oecologia., 1989, 80: 122-126.
    [40] 陈雄.松树针叶萜烯类含量与马尾松毛虫生长发育关系的研究[D].中国科学院动物研究所,1991.
    [41] Vet, L.E.M. and Dicke, M. Ecology of info chemical use by natural enemies in a tritrophic context[J]. Annu. Rev. Entomol., 1992, 37: 141~172.
    [42] Jaenike, J., D. R. Papaj. Behavioral plasticity and patterns of host use by insects[J]. In: Roitberg, B. D., Isman, M. B. (eds). Chemical Ecology of Insects: an Evolutionary Approach. Chapman and Hall. New York, pp. 1992, 245~264.
    [43] Lewis, W. J., K. Takasu. Use of learned odours by a parasitic wasp in accordance with host and food needs[J]. Nature., 1990,348: 635~636.
    [44] Mattiacci L., M. Dicke, M. A. Posthumus. β-glucosidase: an elivitor of herbivore-induced plant odor that attracts host-searching parasitic wasps[J]. Proc. Natl. Acad. Sci. USA, 1995, 92: 2036~2040.
    [45] Papaj, D. R., H. Snellen, K. Swaans et al. Vet. Unrewarding experiences and their effect on foraging in the parasitic wasp Leptopilina heterotoma (Hymenoptera: Eucoilidae)[J]. Journal of Insect Behavior., 1994,7: 465~481.
    [46] Turlings, T. C. J., F. L. Wckers, L. E. M. Vet et al. Learning of host-finding cues by Hymenopterous parasitoids[J]. In: D. R. Papaj&A. C. Lewis (eds). Insect Learning. Chapman& Hall. New York, pp. 1993a, 51~78.
    [47] Vet, L. E. M., W. J. Lewis, R. T. Cards. Parasitoid foraging and learning. In: R. T. Card&W. J. Bell (eds)[J]. Chemical Ecology of Insects Vol.2. Chapman & Hall. New York. pp. 1995, 65~101.
    [48] De Moraes, C.M., Lewis, W.J., Paré, P.W., et al. Herbivore-infested plants selectively attract parasitoids[J]. Nature., 1998. 393: 570~573.
    [49] Dicke M,Sabehs M W, Takabayashi J, et al. Plant strategies of manipulating predator-prey interactions through alleochemicals: Prospects for application in pest control[J]. J. Chem. Ecol., 1990, 16(11): 3091~3118.
    [50] Turlings T C J.,Tumlinson J H., Heath R R, et al, Isolation and identification of allelochemicals that attract the larval parasitoid, Cotesia marginiventris (Cresson). to the microhabitat of one of its hosts[J]. J. Chem.Ecol., 1991. 17(1Ⅰ), 2235~2251.
    [51] Du, Y., Poppy, G.M., Powell, W., Pickett, J. A., Wadhams, L.J. and Woodcock, C.M. Identification of semiochemicals released during aphid feeding that attract parasitoid Aphidius ervi.[J]. J. Chem. Ecol., 1998, 24: 1355~1368.
    [51] Ngi-Song, A.J., Njagi, P.G.N., Torto, B. and Overholt, W.A. Identification of behaviourally active components from maize volatiles for the stemborer parasitoid Cotesia flavipes Cameron (Hymenoptera: Braconidae)[J]. Insect Sci. Appl., 2000, 64 20: 181~189.
    [53] Birkett, M.A., Chamberlain, K., Guerrieri, E., Pickett, J.A., Wadhams, L.J. and Yasuda, T. Volatiles from whitefly-infested plants elicit a host-locating response in the parasitoid[J]. Encarsia formosa. J. Chem. Ecol., 2003, 29: 1589~1600.
    [54] D.Alessandro, M. and Turlings, T.C.J. In situ modification of herbivore-Induced plant odors: a novel approach to study the attractiveness of volatile organic compounds to parasitic wasps[J]. Chem. Senses., 2005, 30: 739~753.
    [55] Meiners, T., Wackers, F. and Lewis, W. J. Associative Learning of Complex Odours in Parasitoid Host Location[J]. Chem. Senses., 2003, 28: 231~236.
    [56] 朱国斌 鲁红军 食品风味原理与技术[M] 北京:北京大学出版社,1996.136~194.
    [57] 郑浩,杨长举,华红霞,等.与昆虫有关的植物挥发性次生物质的研究方法[J].昆虫知识 2002 39.(1)9-13.
    [58] 徐汉虹,赵善欢,周俊,等.猪毛篙精油杀虫的有效成分[J].昆虫学报,1994,37(4):411~416.
    [59] 任桂芳 苏云金杆菌防治双条杉天牛试验简报[J].山东林业科技,1991(2):61.
    [60] 阎凤鸣 化学生态学[M]北京:化学出版社,2003:161~168.
    [61] 杜家纬 昆虫信息素及其应用[M].北京:中国林业出版社.1998.
    [62] 周弘春,杜家伟.风洞技术在昆虫化学通讯研究中的应用[J].昆虫知识,2001,38(4):267~272.
    [63] 戈峰,李镇宇,谢映平,等.我国主要松树诱导抗虫性的一些规律比较[J].北京林业大学学报,2002,24(3):61-65.
    [64] Zhang QH, Schlyter F, Battisti A, Birgersson G. and Anderson P. Electrophysiological responses of Thaumetopoea Pityocampa temales to host volatiles: implications for host selection of active and inactive terpenes[J]. J. Pest Science., 2003, 76(4): 103-107.
    [65] Wibe A, Borg-Karlson AK, Persson M, et al. Enantiomerie composition of monoterpene hydrocarbons in some conifers and receptor neuron discrimi nation of mpinene and limonene enantiomers in the pine weevil, Hylobius abietis[J]. J. Chem. Ecol., 1998, 24(2): 273—287.
    [66] ConsueloM, DeMoraes, Mark C, et al. Caterpillar induced nocturnal plant volatiles repel conspecific females[J]. Nature., 2001, 410: 577-579.
    [67] 樊春燕,黄寿山.植物挥发性次生物质与昆虫诱导因子研究进展[J].广州农业科学,2003(4) 36-38
    [68] 胡永健,任琴,金幼菊,等.马尾松、湿地松挥发性化学物质的昼夜释放节律[J].生态学报,2007,27(2):565-570.
    [69] 殷海娣,黄翠虹,薛堃,等.昆虫唾液成分在昆虫与植物关系中的作用[J].昆虫学报,2006,49(5):843-849.
    [70] Alborn HT, Tun ings TCJ, Jones TH, et al. An elicitor of plant volatiles from beet armyworm oral secretion[J]. Science., 1997, 276:945-948.
    [71] 秦晓薇,戈峰,苏建伟,等.昆虫对植物源手性气味的立体选择性识别[J].植物保护,2006,32(3):93-96.
    [72] HULL C. D., CUNNINGHAM J. P., MOORE C. J., et al. Discrepancy between antennal and behavioral responses for enantiomers of α-pinene: eleetrophysiology and behavior of Helicoverpa armigera (Lepidoptera)[J]. J Chem Ecol., 2004, 30(10): 2071—2084.
    [73] Mozuraitis R.,Stranden M.,Ramirez M.I. Borg-Karlson A.-K.,Mustaparta H.. (-)-Germacrene D Increases Attraction and Oviposition by the Tobacco Budworm virrescens[J]. Chemical senses, 2002, 27(6): 505-509.
    [74] 雷宏,徐如梅.植食性刺吸式昆虫的取食行为[J].生物学通报,1992,(12):8-10.
    [75] Visser J H. Host odor perception in phytophagous insects[J]. Annu Rev Ent, 1986 31: 121-144.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700