用户名: 密码: 验证码:
可控膜液体静压密封流场数值分析及槽形参数优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可控膜液体静压密封作为经典的密封结构被应用于重要场合,例如核电站主泵密封。该密封结构是在密封端面上设计成特殊的几何形状,利用外部引入的清洁压力流体在密封面之间建立一层静压流体膜,静压流体膜能够对摩擦副提供充分的润滑和冷却,使密封能在相应的转速与压力下稳定运行。这种结构密封端面流体膜刚度大,工作性能稳定,在工程实际应用中有着十分重要的地位。但是少有文献报道关于这种密封流场特性的研究。
     为此,在综合国内外的大量文献资料的基础上,本文着重从计算流体力学CFD角度从完整的流体力学控制方程出发,基于有限体积法,采用正版著名流体软件fluent对可控膜液体静压密封的流场进行建模,划分网格,解决了微尺度和宏观尺度相结合而导致的网格划分的难点,并求解模拟得到了液膜的流场。使用实际工程中该密封结构所应用的几何参数与操作参数,进行模拟数值计算,得到反应流场特点的压力与速度矢量分布特点。从密封端面结构参数和操作参数入手,分析了参数变化对密封性能的影响,得到的结论能够指导设计。通过无量纲量分析得到了结构参数的最优取值范围。采用正交优化设计方法,对密封环端面几何参数进行优化设计,得到了密封端面不同几何参数间的最优组合,针对最优组合进行的数值模拟证实能够提升密封性能。分别使用正交法优化设计得到的几何参数和工程应用中的几何参数进行建模计算,在计算结果的比较中,证实使用正交方法对密封端面几何参数进行优化设计的合理性。
As one of the classical seals, controllable film liquid hydrostatic pressure seal is used in many important situations, such as in main pump seal of nuclear power station. This seal face is designed to special geometric shape. The clean pressure fluid flows into the structure, and forms one layer of hydrostatic liquid film. The hydrostatic liquid film can lubricate and cool the friction pair sufficiently, so that to keep the seal stable running. The liquid film between the seal face is high stiffness and the working performance is stable. It is very important in project application area. Furthermore, there are few papers reported the flow field of the fluid film.
     Therefore, on the basis of investigations of plenty of literatures about controllable film liquid hydrostatic pressure seals, the important task of this paper is on the basis of computational fluid dynamics and numerical, from the full governing equations of the fluid mechanism, founded on the finite volume method (FVM), used the famous software FLUENT, establishes the three-dimensional model, meshes the model, researches and simulates the fluid field of the controllable film liquid hydrostatic pressure seal, gains hydrostatic pressure distribution and velocity vector distribution, discusses the influences of parameters(the face geometric parameters and working parameters changes on the sealing Performance, gets some conclusions which can guide the project design. The parameters used in numerical simulation calculation comes from actually engineering project and also belongs to the range of optimal values,which this paper gets through dimensionless method. Meanwhile, Taguchi orthogonal experiment is designed to optimize the face parameters, and gets the optimal combination between different parameters. Using the optimal parameters combination, the result of the simulation verifies promoting the sealing performance. Through comparing the simulation results between optimal parameters and project parameters, it proves that Taguchi orthogonal experiment was reasonable
引文
[1]孙见君,魏龙,顾伯勤.机械密封的发展历程与研究动向[J].润滑与密封,2004,164(4):128-134
    [2]王美华.可控膜机械密封机理和特性研究[D].上海:上海交通大学,1990
    [3]郝平,石红,施钢.中低压机械密封设计及应用[J].一重技术,1996,70(4):55-57
    [4]李体轩,侯宝霞.液化石油气注射泵超高速高压机械密封开发[J].流体机械,1997,08:70-73
    [5]宋鹏云,陈匡民,董宗玉,吴旨玉.流体膜润滑机械密封的研究进展[J].中国矿业大学学报,1999,10:181-183
    [6]Martin Zehentener,Gottfride Schiffer.反应堆冷却剂泵的新型轴密封[J].国外核动力,2006,2:45-49
    [7]黄成铭.秦山核电二期工程主泵与大亚湾核电站主泵的差异及其影响[J].核动力工程.2003,24(2)177-180
    [8]苗文博.CFD软件在动边界问题和大型绗架结构中的应用[D].北京:北京大学,2004
    [9]蔡仁良,顾伯勤,宋鹏云过程装备密封技术[M],北京:化学工业出版社,2006
    [10]韩占忠,王敬,兰小平.流体工程仿真计算实力与应用[M],北京理工大学出版社,2004
    [11]王瑞金,张凯,王刚.Fluent技术基础与应用实例[M],北京:清华大学出版社,2007
    [12]王福军.计算流体动力学分析--CFD软件原理与应用[M],清华大学出版社,2004
    [13]彭旭东,杨慧霞,于恒聚.机械密封的新技术及其应用[J].石油化工设备技术,2001,22(1):62-66
    [14]R F Salant.Numerical simulation of a mechanical seal with an engineered slip/noneslip face surface[A].17th International Symposiumon FLUID SEALING[C],York,United Kingdom,April,2003,6-7
    [15]Rivlin R S,Saunders D W.Large elastic deformations of isotropic materials.Strain Distribution around a hole in a sheet[J].Philosophy Transaction of Royal Society,1951,A243:289-298
    [16]George A F,Strozzi A Rich J.Stress fields in a compressed onstrained elastomeric 0-ring seal and a compression of computer prediction with experimental results[A].11th International Conference on Fluid Sealing CCI.Caunes,France,1987,117-137
    [17]Green I.Stresses and deformation of compressed elastomeric 0-ring sealing[A].14th International Conference on Fluid Sealing[C],Italy,1994,83-95
    [18]Fired I,Johonson A R.Nonlinear computation of axisymmetric solid rubber deformation[J].Computer Methods in Applied Mechanics and Engineering,1988,67:241-253
    [19]Whipple R T P.Herringbone--Pattern Thrust Bearings.T/M 29.Harwell,Berkshire,England:Automatic Energy Research Establishment,1951
    [20]Gardner J.F.,Combined Hydrostatic and Hydrodynamic Principles Applied to Noncontacting Face Seals,Proc.of Fourth Inter.Conf.on Fluid Sealing,1970,351-360
    [21]Gabriel R.P.,Fundamentals of Spiral Groove Nonconctacting Face Seals,Lubrication Engineering,1979,33,367-375
    [22]Gabriel R.P.,Fundamentals of Spiral Groove Nonconctacting Face Seals,Lubrication Engineering,1994,50,215-224
    [23]Buck GS,Volden D.Upstream Pumping:A New Concept in Mechanical Sealing Technology.Lubrication Engineering,1990,46(4):217
    [24]Gero L.R.,Ettles C.M.M.,An Evaluation of Finite Difference and Finite Element Methods for The Solution of The Reynolds Equation,ASLE Transactions,1986,29,166-172
    [25]Zuk J.,Renkel H.E.,Numerical Solutions for the Flow and Pressure Fields in an Idealized Spiral Grooved Pumping Seal,Proc.of Fourth International Conference on Fluid Sealing,1970,290-301
    [26]Walowit J.A.,Pinkus O.,Analysis of Face Seals With Shrouded Pockets,ASME Jour.of Lubr.Tech.,1982,104,262-230
    [27]Ikecuchi K.,Moil H.,Nishida T.A.,Face Seal with Circumferential Pumping Grooves and Rayleigh Steps,ASME Jour.of Tribology,1988,110,313-319
    [28]北京大学数学力学系数学专业概率统计组,正交设计--一种安排多因素试验的数学方法[M],第1版,北京,人民教育出版社,1976
    [29]胡国桢,石流,阎家宾.化工密封技术[M],北京:化学工业出版社,1990
    [30]姜继海,马文琦,张冬泉.旋转对称密封缝隙流场的有限元分析[J].中国机械工程,1999,10(5),506-508
    [31]李治国,张国渊,袁小阳.流体动静压端面密封的静动特性分析[J].中国机械工程,2006,17(3),457-460
    [32]彭旭东,杨慧霞,于恒聚.机械密封的新技术及其应用[J].石油化工设备技术,2001,22(1):62-66
    [33]韩萍,郝木明.径向直线槽气体密封端面流场和压力分布[J].石油化工设备,2006,1,35(1),44-47
    [34]刘良臣.中国工程机械密封技术的回顾与展望[J].液压气动与密封,2002,(2):42-43
    [35]刘后桂.密封技术[M].湖南科学技术出版社,1981,207-208
    [36]党建军,邱卫平,钱志博.有限元法在机械密封在机械密封设计中的应用研究[J],航空计算技术,2002,3,1,6-8
    [37]张宝忠,肖敏.内置式机械密封变形分析与计算[J],机械设计与制造,2003,2,62-63
    [38]廖和滨,张晓翔.机械密封环端面温度场的测试研究,2006,1(1),120-121
    [39]陈捷.巴基斯坦恰希玛核电站主泵轴密封[J].水泵技术,2003,1,40-44
    [40]顾永泉.流体动密封[M],中国石化出版社,1992,下册,124-133
    [41]钟汝琳,陈次昌,关剑峰.机械密封环温度场及密封腔内流场分析[J],四川工业学院学报,2004,23,185-187
    [42]朱学明.机械密封性能的数值分析及优化研究[D].武汉理工大学,2005
    [43]李建中.低速螺旋槽气体端面密封性能研究[D].北京化工大学,2003
    [44]顾永泉.机械密封实刚技术[M],机械工业出版社,2001
    [45]胡丹梅,低速气体端面密封参数优化及性能研究[J],石油大学硕士学位论文,1996
    [46]宋鹏云,端面开槽机械密封技术研究进展[J],化工机械,26(2),1999
    [47]北京大学数学力学系数学专业概率统计组,正交设计--一种安排多因素试验的数学方法[M],第1版,北京,人民教育出版社,1976
    [48]张艳芹,非结构网格差分求解方程和商用软件Fluent的应用[J],浙江大学,2003
    [49]王淑娟,张辉,高宏亮.基于正交试验设计的电子镇流器参数优化设计方法的研究[J].电子器件,2004,27(3),402-408
    [50]马希文,正交设计的数学理论[M].北京:人民教育出版社,1981,124-152

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700