用户名: 密码: 验证码:
提高变频涡旋压缩机压缩性能的方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
涡旋压缩机具有结构简单、体积小、重量轻、振动小、噪声低、吸排气平稳、调节流量方便等优点,已广泛应用于制冷、空调、燃气机组等领域,并由定转速涡旋压缩机向变频涡旋压缩机领域发展。但实践表明,变频涡旋压缩机在低转速下的压缩性能较差。本课题针对这一问题进行了一些研究。
     首先,从理论上分析了转速对变频涡旋压缩机单位曲柄转角下的排气量、压缩终了内压力、单位质量有效气体获得的多变压缩能量头及多变效率等表示压缩性能的参数的影响规律,并利用实验测试得出了单位曲柄转角下的排气量和转速的关系曲线、压缩终了内压力和转速的关系曲线、单位质量有效气体获得的多变压缩能量头和转速的关系曲线及多变效率和转速的关系曲线。研究表明,由转速降低引起的泄漏的增大是导致变频涡旋压缩机压缩性能降低的主要原因。然后,针对变频涡旋压缩机的泄漏问题进行了三个方面的研究工作
     通过分析涡旋压缩机动静涡旋齿间的切向密封机理,探寻了变频涡旋压缩机动静涡旋齿间切向泄漏的根源,提出了一种新型切向密封机构(弹力衬套机构)。该机构既能保证变频涡旋压缩机在低转速下具有良好的切向密封性能,又能实现动涡旋盘的径向退让,可避免动涡旋盘发生阻转现象,同时可降低动静涡旋盘及与其相配合的零件的加工、装配精度。
     为进一步提高变频涡旋压缩机的切向密封性能,提出并设计了迷宫式切向密封结构。分析了该结构的迷宫综合效应,根据切向泄漏的流动特点,推导得出了无迷宫切向密封结构和迷宫式切向密封结构泄漏量的计算式,计算了两种切向密封结构的泄漏量。设计并建立了测定切向密封结构泄漏量的实验台,测定了无迷宫切向密封结构和迷宫式切向密封结构的切向泄漏量。通过对比两种切向密封结构泄漏量的实测值和理论计算值表明,理论推导得出的计算无迷宫切向密封结构和迷宫式切向密封结构泄漏量的算法正确,两种切向密封结构的泄漏量均随相邻压缩腔压差的增大而增大,迷宫式切向密封结构的泄漏量占无迷宫切向密封结构泄漏量的比例基本恒定,本研究的算例中,该比例为58.9%,说明迷宫式切向密封结构的密封性能明显优于无迷宫切向密封结构的密封性能。
     为提高涡旋压缩机的径向密封性能,提出并设计了迷宫式径向密封结构。分析了该结构的迷宫综合效应,根据径向泄漏的特点,推导得出了无迷宫径向密封结构和迷宫式径向密封结构泄漏量的计算式,计算了两种径向密封结构的泄漏量。设计并建立了测定径向密封结构泄漏量的实验台,测定了无迷宫径向密封结构和迷宫式径向密封结构的径向泄漏量。对比两种径向密封结构泄漏量的实测值和理论计算值表明,理论推导得出的计算无迷宫径向密封结构和迷宫式径向密封结构的泄漏量的算法正确,两种径向密封结构的泄漏量均随相邻压缩腔压差的增大而增大迷宫式径向密封结构的泄漏量占无迷宫径向密封结构泄漏量的比例基本恒定,本算例中该比例为79%,说明迷宫式径向密封结构的密封性能优于无迷宫径向密封结构的密封性能。
     本研究的主要成果及创新在于,通过理论分析和实验测试得出,导致变频涡旋压缩机在低转速下压缩性能变差的主要原因是低转速下泄漏的增大,提出了减小泄漏、提高变频涡旋压缩机压缩性能的三种方法,即弹力衬套机构、迷宫式切向密封结构和迷宫式径向密封结构,通过理论计算和实验测试证明了这三种方法可减小泄漏,从而可提高变频涡旋压缩机的压缩性能,并可拓宽变频涡旋压缩机的频率适用范围。
Scroll compressor have advantages of simple structure, small volume, light weight, small vibration, low noise, smoothly suction and exhausting, and flow adjusting convenience etc, it has been widely used in refrigeration, air conditioning, gas units and other fields, and developed from the constant speed scroll compressor into inverter scroll compressor. But the practice showed that the compression performance of inverter scroll compressor at low revolution is poor. The research is based on this question.
     Firstly, theoretically analyses on the influence of revolution to discharge capacity under one angle, eventual compression, polytropic energy head gained by the effective gas and polytropic efficiency is made. Relation curves of discharge capacity-revolution, eventual compression-revolution, polytropic energy head-revolution and polytropic efficiency-revolution are gained by experimental tests. The study showed that increase of leakage with reducing of revolution was the main factor that made the compression performance poor. So it is very necessary to reduce leakage to improve compression performance. Then, three aspects of the research work based on the leakage problem of inverter scroll compressor were made.
     Tangential sealing mechanism of the scroll compressor between fixed scroll teeth and orbiting scroll teeth was analyzed in this paper, the root of the tangential leakage of inverter scroll compressor is explored, and a new kind of tangential sealing mechanism is put forward, it is called elastic bushing, this mechanism guarantee that inverter scroll compressor has good sealing performance at low revolution, and also could make the orbiting scroll plate move toward the centre of fixed scroll, so orbiting scroll plate could not be hold up, meanwhile, it could reduce processing and assembling accuracy of orbiting scroll plate and parts combined with the orbiting scroll plate.
     To enhance the tangential seal performance of scroll compressor, the labyrinth tangential seal structure are put forward and designed. The comprehensive effect of the labyrinth structure is analyzed, according to the flow characteristics of the tangential leakage, calculation formula for tangential leakage of the labyrinth tangential seal structure and that of the structure without labyrinth were given, and the leakages of these two tangential seal structures are calculated. The test bench to determine the leakage of tangential seal structure is designed and built, and tangential leakages of the labyrinth tangential seal structure and that of the structure without labyrinth were determined. By comparing the leakages of these two kinds of tangential seal structure, which were got by theoretical calculation and experimental determination, showed that the algorithms for tangential leakage of the tangential labyrinth seal and that of the structure without labyrinth were accurate, leakages of the two tangential seal structure were increasing with the increasing of the adjoining compression chambers' pressure difference, the ratios of the leakages of labyrinth tangential seal accounted for those of the structure without labyrinth are fundamentally constant, only58.9%. This showed that the sealing ability of the tangential labyrinth seal is greater than that of the sealing structure without labyrinth.
     To improve the radial seal performance of scroll compressor, the labyrinth radial seal structure is put forward and designed. The comprehensive effect of the labyrinth structure is analyzed, according to the flow characteristics of the radial leakage, calculation formula for radial leakage of the labyrinth radial seal structure and that of the structure without labyrinth were given, and the leakages of these two radial sealing structure are calculated. The test bench to determine the leakage of radial seal structure are designed and built, and radial leakages of the labyrinth radial seal structure and that of the structure without labyrinth were determined. By comparing the leakages of these two kinds of radial seal structure, which were got by theoretical calculation and experimental determination, showed that the algorithms for radial leakage of the radial labyrinth seal and that of the structure without labyrinth were accurate, leakages of the two radial seal structures were increasing with the increasing of the adjoining compression chambers'pressure difference, the ratios of the leakages of labyrinth radial seal accounted for those of the structure without labyrinth are fundamentally constant, only79%. This showed that the sealing ability of the radial labyrinth seal is greater than that of the sealing structure without labyrinth.
     The main findings and innovations of this study are as follows, the main root that made the compression performance poor is the increasing of leakage at low revolution. Three methods to improve the compression performance of inverter scroll compressor were put forward. They are elastic bushing institutions, labyrinth tangential seal structure and labyrinth radial seal structure. These innovations have superiority for improving the compression performance, and opened up a vast range of prospects.
引文
[1]L. Creux. Rotary Engine. U. S. Patent. No.801,182[P],1905.
    [2]L. Nordi. Improvements in or Relating to Fluid Pumps and the Like. U. K. Patent. Specification 220,296 [P],1925-1-8.
    [3]J. Ekelbf. Rotary Pump or Compressor. U. S. Patent. No.1,906,142[P],1933.
    [4]J. S. Bennett. Rotary Fluid Pump or Motor with Intermeshed Spiral Walls. U. S. Patent. No.3,817,664[P],1974.
    [5]J. E. Mccullough. Positive Fluid Displacement Apparatus. U. S. Patent, No.3,924, 977[P],1975.
    [6]N. O. Young. Positive Displacement Scroll Apparatus with Axially Radially Compliant Scroll Member. U. S. Patent. No.3,874,827 [P],1975-4-1.
    [7]N. O. Young and J. E. McCullough. Scroll-Type Positive Fluid Displacement Apparatus. U. S. Patent. No.3,884,599[P],1975-5-20.
    [8]J. E. McCulloug. Positive Fluid Displacement Apparatus. U. S. Patent. No.3,924, 977[P],1975-11-9.
    [9]J. E. McCulloug. Fluid-Cooled, Scrool-Type, Positive Fluid Displacement Apparatus. U. S. Patent. No.3,986,799[P],1976-10-19.
    [10]R. W. Shaffer. Scroll Apparatus with Pressurized Fluid Chamber for Axial Scroll Biass. U. S. Patent. No.3,994,633[P], Noverber 30,1976-11-30.
    [11]J. E. McCulloug. Scroll Member and Scroll-Type Apparatus Incorporating the Same. U. S. Patent. No.3,994,635[P],1976-11-30.
    [12]J. E. McCulloug and R. W. Shaffer. Axial Compliance Means with Radial Sealing for Scroll-Type Apparatus. U. S. Patent. No.3,994,636[P],1976-11-30.
    [13]Noriaki Ishii, Kenichi Bird, Kiyoshi Sano, et al. Refrigerant leakage flow evaluation for scroll compressors[C]. International Compressor Engineering Conference at Purdue University, West Lafayette, Indiana,USA:1996:633-638.
    [14]Lorentzen.G.The use of natural refrigerants:a complete solution to the CFC/HCFC predicament[J].International Journal of Refrigeration.1995,18(3):190-197.
    [15]petter neksa, et al. CO2-heat pump water heater,characteristics,system design and experimental results[J]. International Journal of Refrigeration.1998,21(3):172-179.
    [16]马一太,刘圣春,曾宪阳.C02涡旋压缩机泄漏分析[J].压缩机技术,2005.,3:36-39.
    [17]Cko Namkyu, Yang Young,Lee Byung Chul,et al.The characteristics of tangential leakage in scroll compressors for air conditioners[C].Proceedings of the International Compressor Engineering Conference at Purdue University.2000, Volume I:807-814.
    [18]黄允东.涡旋压缩机型线与列车空调制冷系统数学模型模拟及优化[D].西安交通大学,1998.
    [19]Jame W B. Dimensinal optimization of scroll compressor[C].Proceedings of the International Compressor Engineering Conference at Purdue University.1996,30-34.
    [20]李力,张占收,边红卿.涡旋压缩机径向间隙的泄漏[J].河北工业科技,1999,16(55):173-23.
    [21]樊灵,屈宗长,司玉宝.涡旋压缩机动静盘加工精度与泄漏模型的理论研究[J].制冷学报,1999,3:12-15.
    [22]杨骅,屈宗长.涡旋压缩机泄漏研究综述[J].流体机械,2003,31(11):23-26.
    [23]陈荣,王文.微型涡旋压缩机泄漏的理论计算[J].流体机械,2008,36(6):14-18.
    [24]李文华,褚红艳.涡旋压缩机泄露模型的建立与分析[J].压缩机技术,2007,6:8-10.
    [25]Yuan Xiuling, Chen Zhiming, Fan Zhen. Calculating model and experimental investigation of gas leeakage[C].Proceedings of the International Compressor Engineering Conference at Purdue University.1992,1249-1255.
    [26]陈志明.气体通过微小间隙二元泄漏流动的数学模型及实验研究[D].西安交通大学,1991.
    [27]Itoh Takahide et al. Leakage characteristics of scroll compressor by two phase flow model in consideration of wall oil film thickness[J].Transactions of the Japan Society of Mechanical Engineers, Part B,2002,68:671.
    [28]屈宗长,李元鹤,王开宁,等。转速对涡旋压缩机性能的影响[J]陕西工学院学报,1997,13(4):32-37.
    [29]马贞俊,孙嗣英。涡旋式制冷压缩机的输气量调节[J].制冷与空调,2004,4(1):55-57.
    [30]纪民举,杨麒,崔鹏程.低压比大排气量涡旋压缩机的设计[J].化工装备技术,2010,31(3):29-31.
    [31]屈宗长,阎毓,王迪生.涡旋油泵转速的优化[J].压缩机技术1997,5:30-33.
    [32]Morishita E. Scroll compressor analytical model[C]. Proceedings of International Compressor Engineering Conference at Purdue University.1984:487-495.
    [33]Bush J W. Derivation of a general relation governing the conjugacy of scroll profiles[C].Proceedings of International Compressor Engineering Conference at Purdue University.1992:1079-1087.
    [34]Bush J W. Co-orbiting scroll design and operational characteristics [C].Proceedings of International Compressor Engineering Conference at Purdue University.1994:187-192.
    [35]Liu Z. The conjugacy analysis of modified part of scroll profiles[C].Proceedings of International Compressor Engineering Conference at Purdue University.1994:479-484.
    [36]樊灵,耿森林,靳春梅.涡旋压缩机构统一模型的研究[J].机械科学与技术,2000,19(5):755-757.
    [37]Liu zhenquan, et al. New mechanical model for the scroll mechanism and its mechanical analysis [C].Proceeding of International Compressor engineering Conference at Purdue university.1998:507-512.
    [38]Hiroshi Hasegawa, et al. Dynamic analysis of a corotating scroll compressor[C]. Proceedings of International Compressor Engineering Conference at Purdue University.1998:6443-648.
    [39]Morishita E, et al. Scroll compressor dynamics (2nd report, the compliant crank and the vibration model)[C].Bulletin of JSME.1986,29(248):483-488.
    [40]Nieter J J, et al. Dynamics of compliance mechanisms in scroll compressor, Part Ⅱ: Radial compliance[C].Proceedings of International compressor Engineering Conference at Purdue University,1990:317-326.
    [41]刘振全,柳泽正。涡旋机械的机构模型及理论分析[J].甘肃工业大学学报,1996,22(2):36-42.
    [42]刘振全,杜桂荣。涡旋压缩机理论机构模型[J].机械工程学报,1999,35(2):38-41.
    [43]杜桂荣,刘振全.涡旋压缩机机构模型及径向随变调节原理[J].制冷学报,1997,(2):1-7.
    [44]李超,赵荣珍,刘振全.涡旋压缩机径向随变机构动力学模型研究[J].压缩机技术,2004,(3):7-22.
    [45]刘涛,杜桂荣,邬再新.涡旋压缩机的径向柔性密封机构[J].机械工程师,1999,11:6-7.
    [46]刘涛,邬再新.一种涡旋压缩机径向随变机构的设计[J].流体机械,2001,29(7):17-19.
    [47]H.Kohsokable,et al.Study on scroll profile based on algebraic spiral for scroll fluid machines[C].Transactions of the JAR,1994,11:NO.3:337-347.
    [48]刘兴旺,马小礼,刘振全,等.涡旋压缩机型线几何参数的优化设计方法研究[J].流体机械,2005,33(11):53-56.
    [49]刘兴旺,马小礼,刘振全.涡旋压缩机型线几何参数对其摩擦损失功率的影响研究[J].化工机械,2005,32(6):367-380.
    [50]刘兴旺,刘振全,李超,等.涡旋压缩机摩擦损耗和泄漏损耗研究[J].压缩机技术, 2006,3:1-12.
    [51]梁高林,刘振全.无油润滑双涡圈涡旋空压机的泄漏研究[J].压缩机技术,2007,(1):12-15.
    [52]刘四虎,万迪晖,熊则男,等.涡旋压缩机涡旋盘的关键几何精度指标[J].压缩机技术,1996,(2):3-5.
    [53]刘振全,戚智勇.涡旋压缩机动涡旋盘应力及应变的研究[J].流体机械,1995,23(10):23-26.
    [54]张立群,刘振全.涡旋压缩机静涡旋盘实际工况下的变形分析[J].流体机械,2000,28(2):18-20.
    [55]杜桂荣,刘涛.涡旋式压缩机动涡旋有限元分析方法[J].甘肃工业大学,1998,24(1):56-60.
    [56]Kazutaka Suefuji, Maso Shiibayshi. Deformation analysis of scroll members in hermetic scroll compressor for air conditioners[C]. Proceedings of the International Compressor Engineering Conference at Purdue University,1998:583-590.
    [57]朱杰,屈宗长.涡旋压缩机涡旋盘的应变分析[J].压缩机技术,1998(2):9-11.
    [58]殷民,张元冲.涡旋压缩机涡旋盘变形的有限元分析[J].制冷空调技术,1996(4):31-35.
    [59]赵树峰,陈旭,田涛.涡旋压缩机动涡旋盘的应力及变形分析[J].化工机械,2003,30(1):17-20.
    [60]金丹,陈旭,田涛.非均匀温度场下涡旋压缩机动涡旋盘的应力及变形分析,流体机械,2003,31(31):11-13.
    [61]金丹,陈旭,赵树峰.温度在气体力和温度载荷作用下的应力及变形分析,压缩机技术,2004,(5):7-14.
    [62]Qiang Jianguo. Analysis of failure model for scroll warp in scroll vacuum pump[C]. In: Proceedings of the 9th vacuum and Surface Engineering Conference. Beijing, 2009,401-406.
    [63]Qiang Jianguo, Ma Xiao, Liu Zhenquan. Load model for involute scroll teeth based on tooth root bending-faligue strength[J].Journal of Engineering for Thermal Energy and Power.2007,22(6):615-619.
    [64]Qiang Jianguo,Liu Zhenquan. Design of scroll wrap height for scroll vacuum pump based on stable temperature filed[C].In:Proceedings of the 8th Vacuum Metallurgy and Surface Engineering Conference. Beijing,2007,309-317.
    [65]Chiachin L, Yuchoung C, Kuny L, et al. Temperature and thermal deformation analysis on scrolls of scroll compressor.[J]. Applied Thermal Engineering,2005,25:1724-1739.
    [66]T.Inaba, et al. A scroll compressor with sealing means and low pressure side shell [C]. Proceedings of the International Compressor Engineering Conference at Purdue University, West Lafayette, Indiana,USA:1986,887-900.
    [67]J.M. Caillat, et al. scroll type machine with axially compliant mounting. U.S.Patent. No.4,767,293,[P],1988.
    [68]王焕然,周雷,金光熹,等.涡旋压缩机密封间隙的定量化研究[J].压缩机技术,1997(5):17-20.
    [69]江波,畅云峰,朱杰,等.涡旋压缩机内部泄漏的流态分析[J].压缩机技术,1998(2):21-23.
    [70]刘兴旺,田玉恒,刘振全,等.涡旋压缩机轴向间隙中流体在层流流态下的泄漏研究[J].流体机械,2004,32(7):9-11.
    [71]屈宗长,孙存慧,司玉宝,等.涡旋压缩机中气体泄漏的估算[J].压缩机技术,1998(2):35-37.
    [72]Jeef J. Nieter. Dynamic of compliance mechanisms in scroll compressors part I:Axial compliance[C]. Proceedings of International Compressor Engineering Conference. Indiana:Perdue University.West Lafayette, Indiana,USA:1990,173-182.
    [73]L.Joonhyun, k. Seonkyo, L. Seungkap, et al. Investigation of axial compliance mechanism in scroll compressor[C]. Proceedings of the International Compressor Engineering Conference at Purdue University. West Lafayette, Indiana, USA:1996, (2):459-464.
    [74]K. Tojo, et al. Scroll compressor for air conditioners[C]. Proceedings of the International Compressor at Purdue University. West Lafayette, Indiana,USA:1986: 871-886.
    [75]樊高定,等.涡旋式制冷压缩机的研制[J].流体工程,1992:20(8):45-48.
    [76]赵兴艳,陈明义,刘振全.涡旋式压缩机涡旋盘端面密封性能的分析[J].甘肃工业大学学报,1996,22(2):48-53.
    [77]赵兴艳,刘振全.涡旋压缩机自调背压机构压力的优化分析[J].甘肃工业大学学报,1998,24(1):61-65.
    [78]赵兴艳,刘振全.具有双背压腔涡旋压缩机的研制[J].甘肃工业大学学报,1999,25(1):50-54.
    [79]李吉功,刘振全.背压机构涡旋压缩机的背压算法及其CAD开发[J].甘肃工业大学学报,2002,28(1):51-54.
    [80]邱凯,徐博,乔宗亮.涡旋压缩机背压腔的实验研究[J].流体机械,1997,25(9):7-9.
    [81]邱凯,徐博,乔宗亮.空调用涡旋压缩机背压腔变频特性的实验研究[J].压缩机技术,1997,4:3-5.
    [82]屈宗长,李心伟,李绍平.背压平衡涡旋压缩机的研究[J].西安交通大学学报,1999,32(7): 51-55.
    [83]M. Ikegawa. Scroll compressor with self adjusting back-pressure mechanism, Pro. of the JSME,1983,NO.830-12.
    [84]张志恒等.带自调背压机构的涡旋式压缩机的背压孔研究[J].流体机械,1991,19(9):5-8.
    [85]雷刚,刘四虎.涡旋压缩机背压设计的准则研究[J].压缩机技术,1998,1:3-5.
    [86]江波,王迪生.微型涡旋式空气压缩机背压机构研究[J].流体机械,1996,24(8):18-22.
    [87]高秀峰,郁永章.涡旋压缩机二次平衡及背压孔研究[J].流体机械,1997,27(7):15-19.
    [88]李元鹤,屈宗长,朱杰,等.涡旋压缩机静盘轴向补偿机构的理论模型[J].压缩机技术,1998,2:27-29.
    [89]李元鹤,朱杰,屈宗长,等.涡旋压缩机静盘轴向补偿机构的计算分析[J].压缩机技术,1998,2:30-32.
    [90]李元鹤,王迪生.涡旋压缩机静涡盘柔性机构的稳定性理论模型.压缩机技术,1999,4:6-9.
    [91]唐光德,王文彦,许修铭.涡旋式压缩机轴向柔性补偿机构设计.制冷与空调,2006,6(4):34-37.
    [92]刘振全,马小礼,刘兴旺,等.一种涡旋压缩机轴向随变机构的设计[J].兰州理工大学学报,2007,33(3):58-60.
    [93]李海生,刘振全,彭斌,等.无油润滑涡旋压缩机齿端面密封的研究.润滑与密封[J].2006,1:108-110.
    [94]党启柏,滑赵杰,刘振全,等.车用双涡圈涡旋增压器涡旋齿端面密封的研究[J].压缩机技术,2008,2:4-7.
    [95]李海生,彭斌,刘振全,等.无油润滑涡旋压缩机冷却系统的研究[J].兰州理工大学学报,2006,32(4):55-57.
    [96]E.Morishita. Geometrical theory of scroll compressor[J]. Turbomachine,1985,13(4):23-33.
    [97]Hayano Makoto, Nagatomo Shigemi, Sakato Hirotsugu,et al. Performance analysis of scroll compressor for air conditioner[C].Proceedings of the International Compressor Engineering Conference at Purdue University.1986,856-871.
    [98]Yoshii Yuji,Hirage Masaharu.Scroll type fluid displacement apparatus with offset wraps for reduced housing diameter.US Patent.4477239[P],1984-10-16.
    [99]Fukanuma Tetsuhiko,Izumi Yuji,Mori Tatsushi,et al.Scroll type compressor having the center displanced for compactness.US Patent5222883[P],1993-06-29.
    [100]王国梁,等.一种新型涡旋型线的几何理论研究[J].西安交通大学学报,2003,37(5):499-503.
    [101]Wang GuoLiang,Zhang Wei,LiLianSheng,et al.The geometrical theory of a new wrap profile of scroll compressor[C].Proceedings of the International Compressor Technique Conference at XiAn.2003,250-259.
    [102]Chen Yu,Halm,Nils p.,et al.Mathematical modeling of scroll compressors-part I Compression process modeling [C].International journal of refrigerationg.2002,25(6): 731-750.
    [103]Chen Yu,Halm,Nils p.,et al. Mathematical modeling of scroll compressors-part II: overall scroll compressor modeling[J]. International Journal of Refrigerationg,2002,25(6):751-764.
    [104]J.W.Bush,et al.derivation of general relation governing yhe conjugate of scroll profile[C].Proceedings of the International Compressor Engineering Conference at Purdue Vniversity.1992,1079-1088.
    [105]J.W.Bush,et al.Miximizing scroll compressor displancement using generalizied wrap geometry[C].Proceedings of the International Compressor Engneering Conference at Purdue University.1994,205-210.
    [106]K.Tojo, et al.New wrap profile for scroll type machine[C].Proceedings of 19th International Congress of Refrigeration,Hague,the Netherlands,1995(3a):515-521.
    [107]S.Etemad,j.nieter.Design optimization of the scroll compresser[J]. International Journal of Refrigerationg,1989,12:146-150.
    [108]Noriaki Ishii,Shuichi Yamamoto,Shigeru Muramatsu.Optimum combination of parameters for high mechanical efficiency of a scroll compressor[C].Proceedings of the International Compressor Engineering Conference at Purdue Vniversity.1992,118a1-118a8.
    [109]Bob Flitney. The number of seal patents continues to increase[J]. Sealing Technology, 2009(4):6-10.
    [110]Vincent Lemort, Sylvain Quoilin, Cristian Cuevas, et al. Testing and modeling a scroll expander integrated into an Organic Rankine Cycle[J]. Applied Thermal Engineering, Volume 29, Issues 14-15, October 2009, Pages 3094-3102.
    [111]Zeyu Li, Liansheng Li, Yuanyang Zhao, et al. Theoretical and experimental study of dry scroll vacuum pump[J]. Vacuum,2009,84 (3):415-421.
    [112]Yu Su, Ta-i Sawada, Jun-ichi Takemoto, et al. Theoretical study on the pumping mechanism of a dry scroll vacuum pump[J]. Vacuum,1996,47 (6):815-818.
    [113]李连生.涡旋压缩机[M].北京:机械工业出版社,1998,129-141.
    [114]冯健美,屈宗长.涡旋压缩机的发展优势和关键技术[J].中国机械工程,2002,3(19):1706-1708.
    [115]刘振全.涡旋式流体机械与涡旋压缩机[M].北京:机械工业出版社,2009,150-152,163-166.
    [116]郁永章.容积式压缩机技术手册[M].北京:机械工业出版社,2009,748-751.
    [117]简弃飞,邓志红,肖恺.车用质子交换膜燃料电池发动机系统控制技术现状研究[J].应用能源技术,2007,(1):8-12.
    [118]劳星胜,诸葛伟林,张扬军等.新型燃料电池发动机空气增湿系统性能研究[J].汽车工程,2007,29(3):194-197.
    [119]周洁,曹广益.质子交换膜燃料电池稳态模型及仿真[J].计算机仿真,2007,24(8):229-232.
    [120]张金辉,裴普成.质子交换膜燃料电池欧姆阻抗的试验研究[J].清华大学学报:自然科学版,2007,47(2):228-231.
    [121]刘兴旺.涡旋压缩机涡旋型线几何参数优化设计研究.硕士学位论文,2005:36-43.
    [122]郁永章.容积式压缩机技术手册[M].北京:机械工业出版社,2009,769-772.
    [123]李连生.涡旋压缩机[M].北京:机械工业出版社,1998,27-31.
    [124]廖全平,王宝军,李红旗.涡旋变频压缩机.制冷,2002,21(2):60-63.
    [125]李超,赵荣珍,刘振全.涡旋压缩机机构误差对密封间隙的影响分析[J].润滑与密封,2007,32(7):66-68.
    [126]刘后桂.密封技术[M].长沙:湖南科学技术出版社,1981,447-464.
    [127]吴望一.流体力学[M].北京:北京大学出版社,2000,5:238-359.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700