用户名: 密码: 验证码:
密肋复合墙结构两阶段简化计算模型及结构随机地震响应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
密肋复合墙结构是一种生态轻质、施工快捷、节能抗震的建筑结构新体系,具有广阔的发展前景。目前,该结构体系在多层以及中高层建筑中的理论研究与工程应用均取得了较好的阶段性成果。然而,作为一种新型装配整体式结构体系,由于其结构的复杂性和独特的受力特点使其在确定结构简化计算模型方面存在着一定的困难。本文在总结和分析已有研究成果的基础上,围绕密肋复合墙结构的两阶段简化计算模型展开研究工作,采用试验研究和数值分析的方法,着重对密肋复合墙结构的静力弹塑性、随机地震响应以及结构抗震性能评估方法等方面进行研究与分析,主要研究内容及成果概括如下:
     1.在基于分灾模式的抗震思想指导下,提出密肋复合墙结构体系为双重抗震结构体系,结合其结构的构造及受力特点,将结构分解为分灾元件和主体结构,分灾元件是密肋复合墙板,作为结构的第一道防线;隐型外框架(包括:外框柱、连接柱、暗梁以及现浇楼板构成的整体)为结构的主体,作为结构的第二道防线。
     2.结合课题组前期密肋复合墙体的试验数据,从各部分功能关系的角度对比分析复合墙体中空框格墙板、复合墙板及组合墙板、带外框的单榀密肋复合墙体、联肢复合墙体的破坏过程和受力特点,从宏观角度探讨了密肋复合墙结构的协同工作机理,以及实现多道抗震防线的内在因素,为建立密肋复合墙结构的计算模型提供重要依据,并提出了适用于本结构的两阶段抗震设计方法。
     3.在试验研究与分析的基础上,提出了密肋复合墙结构在弹性阶段的刚架-等效弹性板简化计算模型,可用于结构的弹性内力及变形计算,以解决密肋复合墙结构第一阶段的设计计算问题。通过前期的复合墙体试验以及1/10比例10层密肋复合墙结构振动台试验,对试验模型进行了有限元模拟和分析,计算结果表明该计算模型具有一定的精度,能够较为真实地反映结构的受力特性。同时利用该力学模型,对已建成的密肋复合墙结构工程进行了弹性阶段的时程分析以及变形验算。
     4.根据试验分析,提出了密肋复合墙结构在弹塑性阶段的刚架-等效斜撑计算模型,可用于结构的弹塑性计算分析,以解决密肋复合墙结构第二阶段设计的弹塑性变形验算、弹塑性时程分析以及抗震性能的评估等问题。将密肋复合墙板等效为斜向设置的支撑,确立了等效斜撑单元的宽度以及等效斜撑中塑性铰的设置。采用刚架-等效斜撑模型计算分析了模型结构并与振动台试验结果进行了对比分析,结果表明二者在各层加速度和位移的反应值吻合较好,监测点的侧向位移最大值也较为接近,说明刚架-等效斜撑模型能较好地模拟真实结构的动力特性及弹塑性变形情况,可用于密肋复合墙结构的弹塑性时程反应分析及弹塑性变形验算。
     5.对美国规范FEMA-273目标位移法和ATC-40能力谱方法进行了评析,在对前期复合墙体试验模型进行Pushover分析的基础上,探讨了侧向力分布模式对密肋复合墙结构的适应性。将ATC-40能力谱方法应用于密肋复合墙结构的抗震性能评估中,并通过实例分析,结合我国规范给出了具体的实施步骤和过程,并在该方法的基础上,探讨了一种直接利用我国规范设计反应谱对结构进行抗震性能评估的简化方法。
     6.对多维地震动的平动与转动分量和多维地震动模型及相关性的研究方面予以总结和讨论,并选用Clough-Penzien谱作为地震动平动分量,采用李宏男等提出的转动功率谱数学模型作为地震动转动分量对密肋复合墙结构进行了随机响应分析,对比分析了单维以及多维地震动作用下密肋复合墙结构的随机响应特征。
     本文的创新之处在于:
     1.在基于分灾模式抗震设计思想的基础上提出了密肋复合墙结构两阶段的抗震设计方法。
     将密肋复合墙结构分解为主体结构和分灾元件,提出在二者不同受力阶段采用不同的计算模型,用于结构两阶段的抗震设计,并给出了两阶段抗震设计方法的主要流程。
     2.提出了密肋复合墙结构的刚架-等效弹性板及带塑性铰的刚架-等效斜撑计算模型。
     在试验研究的基础上提出了适用于密肋复合墙结构弹性阶段的刚架-等效弹性板计算模型,解决了结构的弹性内力计算、变形验算以及设计问题;将密肋复合墙板等效为带塑性铰的斜撑,确定了等效斜撑的宽度以及塑性铰的设置,解决了结构的非线性内力及变形验算问题。
     3.采用刚架-等效斜撑模型,探讨了ATC-40能力谱方法应用于密肋复合墙结构抗震性能评估的简化方法。
     将ATC-40能力谱方法应用于密肋复合墙结构的抗震性能评估中,并在该方法基础上,建议了一种采用我国规范设计反应谱代替需求谱,采用结构的α-Teff谱代替能力谱对结构进行抗震性能评估的简化方法。
     4.研究了密肋复合墙结构在单维以及多维地震动作用下的随机响应特征。
     采用Clough-Penzien谱作为地震动平动分量,采用李宏男等提出的转动功率谱数学模型作为地震动转动分量对密肋复合墙结构进行了随机响应分析,对单向、双向水平地震动输入、扭转地震动输入以及双向和扭转地震动输入共同作用下,对称以及非对称结构的随机响应特征进行了探讨。
As a new structural system with a bright development prospect, multi-ribbed composite wall structure (MRCWS) has the advantages of ecological materials, lightweight, fast construction, energy conservation and seismic performance. Today, in multi-storied and moderate-high storied structure, both the theoretical research and the engineering application of MRCWS all gained stage achievements. However, being a new assembled monolithic structural system, its complex force-bearing characteristics and unique construction details result in great difficulties in its simplified calculation model. Based on previous studies, this dissertation, through experimental studies and numerical analysis, is devoted to two-stage simplified calculation model of the structure and focuses on nonlinear static procedure, aseismic capability assessment and random earthquake response analysis of MRCWS. The main research work and results are as follows:
     1.Under guidance of damage-reduction seismic design, MRCWS is defined as dual seismic structural system. With its force-bearing characteristics and construction details, the MRCWS is decomposed into damage-reduction component and main body structure. And that means damage-reduction component is the multi-ribbed composite slab that is regarded as the first defending line of the structure; while concealed frame (including end frame columns, connecting columns, concealed beams and cast-in-place floor) is the main body structure, which is regarded as the second defending line of the structure.
     2. Based on previous experimental results, the failure process and stress characteristics of the specimen including composite slab without filled blocks, single multi-ribbed composite slab, multi-ribbed composite coupled slab, single multi-ribbed composite wall, and the multi-ribbed composite coupled wall are comparatively analyzed. In macroscopic perspective, the collaborative work mechanism and internal factors of several aseismic defending lines of multi-ribbed composite wall are discussed, the results of which provide important basis for the modeling of the structure. And the two-stage seismic design method for MRCWS is established.
     3. On the basis of experimental studies, a mechanical model called rigid frames-elastic composite panel model which can be used to solve the design and calculation problems of MRCWS is put forward to calculate the internal force and deformation of MRCWS during the elastic stage. By using this model, previous experiments of multi-ribbed composite walls and a 1/10-scaled model shaking table test of 10 stories multi-ribbed slab structure are simulated. The result shows that the model has high calculation accuracy and the simulation can reflect the load-bearing characteristic of the structure. Meanwhile, with the application of the rigid frames-elastic composite panel model, the elastic deformation checking and the time history analysis of a completed MRCWS are presented.
     4. According to the previous experiments and analyses, the multi-ribbed composite slab is equivalent to a whole diagonal brace. Then, the rigid frame-equivalent brace model of multi-ribbed slab structure is put forward to calculate the elastic-plastic calculation and analysis of MRCWS, which can be used to solve the problems of elastic-plastic deformation calculation, elastic-plastic time history analysis and aseismic capability assessment of the structure. The main parameters such as the width and the plastic hinge settings of the diagonal brace are established on the previous tests'results. By using this model, a shaking table model of MRCWS is simulated. The calculating results tally well with the experimental results in acceleration and displacement time history and the max displacement of monitoring points. The results indicate that the rigid frame-equivalent brace model can better reflect the dynamic characteristics and elastic-plastic deformation situation of the prototype structure. Thus this model can be applied to elastic-plastic time-history analysis and nonlinear deformation checking of MRCWS.
     5. Target displacement method and capacity spectrum method that are accepted by FEMA-273 and ATC-40 are introduced. On the pushover analysis of multi-ribbed composite walls of previous experiments, the adaptability of later load patterns to the walls is discussed. At the same time, the capacity spectrum method is used to aseismic capability assessment of MRCWS and according to China code, the process is presented by giving an example analysis. And a simplified method of aseismic capability assessment is established, in which the design response spectrum of China can be applied.
     6. The translational components and rotational components of multiple seismic ground motions model and its relativity are summarized and discussed. The multiple random earthquake response analysis of MRCWS is presented by using Clough-Penzien spectrum as translational components and rotational power spectrum proposed by Li Hongnan etc. And the reaction characteristics of MRCWS with multiple seismic ground motions input and that with single seismic ground motions input are comparative analyzed.
     The originalities of this dissertation lie in:
     1. Under guidance of damage-reduction seismic design, the two-stage seismic design method for MRCWS is established.
     MRCWS is decomposed to the damage-reduction component and the main body structure. Different models are suggested to be adopted in different load-bearing stages which can be used into the two-stage seismic design method of MRCWS. And the working procedure of the two-stage seismic design method is put forward.
     2. The rigid frames-elastic composite panel model and the rigid frame-equivalent brace model of MRCWS are established.
     Based on pervious experimental studies, the rigid frames-elastic composite panel model is established to solve the problems of the structure in elastic stage, such as internal force calculating, deformation checking and the designing in first stage. And the rigid frame-equivalent brace model is put forward to solve the problems in plastic stage, such as nonlinear internal force, deformation calculating and the design of the structure in second stage.
     3. A simplified ATC-40 capacity spectrum method is suggested in the aseismic capability assessment of MRCWS through the usage of the rigid frame-equivalent brace model.
     The ATC-40 capacity spectrum method is introduced into the aseismic capability assessment of MRCWS. And based on this method, a simplified ATC-40 capacity spectrum method in the aseismic capability assessment of MRCWS is suggested, in which the design response spectrum of China is applied as demand spectrum andα-Teff spectrum is applied as the capacity spectrum of the structure.
     4. The reaction characteristics of MRCWS with multiple seismic ground motions input and that with single seismic ground motions input are comparatively analyzed.
     By using Clough-Penzien spectrum as translational component and rotational power spectrum proposed by Li Hongnan etc. as rotational component of ground motions input, the random earthquake response analysis of MRCWS is presented. And the reaction characteristics of symmetric and asymmetric MRCWS with multiple seismic ground motions input and that with single seismic ground motions input are comparatively analyzed.
引文
[1-1]《中华人民共和国2004年国民经济和社会发展统计公报》中华人民共和国国家统计局,2005.2
    [1-2]建设部办公厅关于印发《建设部建筑节能“九五”计划和2010年规划》的通知.[建办科(1995)80号]
    [1-3]建设部关于发布行业标准《民用建筑节能设计标准(采暖居住部分)》的通知,[建标(1995)708号]
    [1-4]建设部关于印发《建设部建筑节能座谈会纪要》的通知,[(95)建科推字第111号]
    [1-5]西安建筑科技大学建筑工程新技术研究所.密肋复合墙轻型框架结构理论与应用研究,科学技术研究报告冈.2000
    [1-6]周小真、姚谦峰.格构板式轻型墙板抗震性能研究[J].西安冶金建筑学院学报,1993,25(1)
    [1-7]赵冬.密肋墙板轻框结构受力性能分析及计算方法研究[D].西安建筑科技大学博士学位论文,2001.6
    [1-8]袁泉.高层轻板框架振动台试验研究[D].西安建筑科技大学博士学位论文,2003
    [1-9]姚谦峰,袁泉.小高层密肋复合墙轻框结构模型振动台试验研究[J].建筑结构学报,2003.02:59-63
    [1-10]孟海.密肋复合墙板试验研究及刚度分析[D].西安建筑科技大学硕士学位论文,2004.5
    [1-11]张杰.密肋复合墙板受力性能及斜截面承载力实用设计计算方法研究[D].西安建筑科技大学硕士学位论文,2004.3
    [1-12]岳亚峰.新型高性能密肋复合墙板受力性能试验研究[D].西安建筑科技大学硕士学位论文,2004.3
    [1-13]陈平,赵冬,姚谦峰.密肋复合墙板抗剪承载力计算研究[J].西安建筑科技大学学报,2002,34(1):26-29
    [1-14]赵冬,陈平,姚谦峰.密肋复合墙轻框结构有限元分析[J].西安建筑科技大学学报,2002,34(1):1-4
    [1-15]丁永刚.框支密肋复合墙结构墙梁受力性能及设计计算方法研究[D].西安建筑科技大学博士学位论文,2006.3
    [1-16]贾英杰,姚谦峰.密肋复合墙轻框结构性能及设计方法研究[J].工业建筑,2003.01:20-22
    [1-17]贾英杰.高层密肋复合墙结构计算理论及设计方法研究[D].西安建筑科技大学博士学位论文,2004
    [1-18]黄炜.密肋复合墙体抗震性能及设计理论研究[D].西安建筑科技大学博士学位论文.2004
    [1-19]姚谦峰,黄炜等.密肋复合墙体受力机理及抗震性能试验研究[J].建筑结构学报.2004,06:67-74
    [1-20]黄炜,姚谦峰等.新型复合墙体的有限元建模技术研究[J].工业建筑.2005,11:43-46
    [1-21]黄炜,姚谦峰等.密肋复合墙体抗震性能及设计理论研究[J].西安建筑科技大学学报.2005,(01):29-34
    [1-22]王爱民.中高层密肋复合墙结构密肋复合墙体受力性能及设计方法研究[D].西安建筑科技大学博士学位论文,2006.3
    [1-23]王爱民,姚谦峰,吴敏哲.中高层密肋复合墙结构弯剪受力性能有限元分析[J].工业建筑,2005,(10):20-22
    [1-24]喻磊.密肋复合墙板框格单元的受力机理及弹塑性损伤模型研究[D].西安建筑科技大学博士学位论文,2006.6
    [1-25]常鹏.密肋复合墙结构数值计算分析及基于性能的抗震设计方法研究[D].北京交通大学博士学位论文.2006.6
    [1-26]田洁.框支密肋复合墙结构非线性地震反应分析及基于损伤性能的抗震能力评估方法研究[D].西安建筑科技大学博士学位论文,2007.11
    [1-27]何明胜.型钢混凝土边框柱密肋复合墙体试验分析及抗震设计方法研究[D].西安建筑科技大学博士学位论文,2008.11
    [1-28]熊耀清.密肋复合墙体损伤演化规律及损伤模型研究[D].北京交通大学博士学位论文.2008.6
    [1-29]张旭峰.密肋复合墙-剪力墙混合结构协同工作计算分析与实用设计方法研究[D].西安建筑科技大学博士学位论文,2008.11
    [1-30]王凤武.线性结构体系复合随机振动分析及其工程应用[D].同济大学博士学位论文,2004.07
    [1-31]D.E.纽兰(著),方同等(译),随机振动与谱分析概论[M],北京:机械工业出版社,1980
    [1-32]星谷胜(著),常宝琦(译),王松樵(校),随机振动分析[M],北京:地展出版社,1977
    [1-33]朱位秋,随机振动[M],北京:科学出版社,1992
    [1-34]Crandall S. H. ed. Random Vibration[M], Vol. I Cambridge, Mass:M.I. T. Press,1958
    [1-35]Crandall S. H. ed. Random Vibration[M], Vol. II Cambridge, Mass:M. I. T. Press,1958
    [1-36]Crandall S. H. Mark W. D. Random Vibration in Mechanical System[M]. Academic Press, New York,1963
    [1-37]Cooley J. W., T ukey J. W. An algorithm for the machine calculation of complex Fourier series[J]. Math. Comp.1965, Vol.19,297-301
    [1-38]Cooley J. W., Lewis P. A., Welch P. D. The Fast Fourier Transform and Its Applications[J]. Trans. IEEEI(E12),1969:27-34
    [1-39]Robson J. D. An Introduction to Random Vibration[M]. Edinburgh University Press,1963
    [1-40]Lin Y. K. Probabilistic Theory of Structural Dynamics[M]. McGraw-Hill,1967
    [1-41]Yang C. Y. Random Vibration of Struetures[M]. Johnwiley & Sons,1986
    [1-42]庄表中.非线性随机振动理论及应用[M].浙江大学出版社,1985.
    [1-43]庄表中,梁以德.结构随机振动[M].国防工业出版社,1995
    [1-44]陈英俊,甘幼琛、于希哲.结构随机振动[M].人民交通出版社,1993
    [1-45]欧进萍,王光远,结构随机振动[M].高等教育出版社,1998
    [1-46]张景绘,王超.工程随机振动理论[M].西安交通大学出版社,1998.
    [1-47]徐昭鑫.随机振动[M].高等教育大学出版社,1990
    [1-48]方同.工程随机振动[M].国防工业出版社,1995
    [1-49]李桂青,曹宏等,结构动力可靠性理论及其应用[M].地震出版社,1993
    [1-50]曹万林,王光远,吴建有等.轻质填充墙异形柱框架结构层刚度及衰减过程的研究[J].建筑结构学报,1995,16(5):20-31
    [1-51]Thiruvengadam, V. On the Natural Frequencies of Infilled Frames[J]. Earthquake Engineering and Structural Dynamics,1985(13):401-409
    [1-52]Klingner, R. E. & Berte.ro, V. V..Infilled frames in earthquake-resistant construction[J]. Report EERC/76-32, Earthquake Engineering Research Center, University of California, Berkeley, CA, USA,1976
    [1-53]Holmes. Steel Frames with Brickwork and Concrete Infillings[J]. Proc, Instn. Civ. Engrs., 1961.19(8):473-478
    [1-54]Stafford Smith, B.. Behaviour of Square Infilled Frames. Proceedings of the American Society of Civil Engineering[J], Journal of Structural Division,1966, Vol.92, No. ST1:381-403
    [1-55]Stafford Smith B. Methods for Predicting the Lateral Stiffness and Strength of Multi-Storey Infilled Frames[J]. Building Science,1967, Vol.2:247-257
    [1-56]Stafford Smith B. & Carter C.. A Method of Analysis for Infilled Frames[J]. Proceedings of the Institution of Civil Engineers,1969, Vol.44:31-48
    [1-57]Dawe, Seah. Behavior of Masonry Infilled Steal Frames[J]. Can. J. Civ. Engrg., Ottawa,1998, Vol.16:865-876
    [1-58]Dawe, Seah. Masonry Infilled Steal Frames Subject to Dynamic Load[J]. Can. J. Civ. Engrg., Ottawa,1998, Vol.16:877-885
    [1-59]Zarmic, R.. Modelling of Response of Msonry Infilled Frames[J]. Proceedings of the Tenth European Conference on Earthquake Engineering, Vienna, Austria,1994, Vol.3:1481-1486
    [1-60]Zarnic, R.,& Tomazevic, M.. An Experimentally Obtained Method for Evaluation of the Behavior of Masonry Infilled R/C Frames[J]. Proceedings of the Ninth World Conference on Earthquake Engineering, Tokyo. Japan,1998, Vol. VI:163-168
    [1-61]Koing, G. The State of the Art in Earthquake Engineering Research[J]. Experimental and Numerical Methods in Earthquake Engineering, Edited by J. Donea and P. M. Jones,1991, Vol. 2:1-22
    [1-62]Chysostomou, C.Z.. Effects of Degrading Infill Walls on the Nonlinear Seismic Response of Two-Dimensional Steel Frames[D]. Cornell University,1991
    [1-63]Crisafulli, F. J. Seismic Behavior of Reinforced Concrete Structures with Masonry Infills[D]. Department of Civil Engineering, University of Canterbury,1997
    [1-64]Syrmakezis, C. A.& Vratsanou, V. Y.. Influence of Infill Walls to R. C. Frames Response[J]. Proceedings of the Eighth European Conference on Earthquake Engineering, Lisbon, Portugal, 1986, Vol.3:47-53
    [1-65]Saneinejad A, Hobbs B. Inelastic design of infilled frames[J]. J. Struct. Engrg, ASCE,1995, 121(4):634-650
    [1-66]Roger D. Flanagan, Richard M. Bennett. In-Plane Behavior of Structural Clay Tile Infilled Frames[J]. Journal of Structural Engineering,1999, Vol.6:590-599
    [1-67]Buonopane S G, White R N. Pseudodynamic Testing of Masonry InfilledReinforced Concrete Frame[J]. Journal of Structural Engineering,1999,125(6):578-589
    [1-68]Weal W. El-Dakhakhni, Mohamed Elgaaly and Ahmad A. Hamid. Three-Strut Model for Concrete Msaonry-Infilled Steel Frames[J]. Journal of Structural Engineering, February 2003, 129(2):177-185
    [1-69]刘建新.填充墙框架结构的一种新的计算模型[J].工程抗震,1994,Vol.1:1-7
    [1-70]Touraj Eimani. Analytical model for reinforced concrete shear wall structures:[D]. America: University of Southern California,1997
    [1-71]R. W. Clough, K. L. Benuska, E.L. Wilson. Inelastic Earthquake Response of Tall Building. Proc. Of 3rd WCEE,1965
    [1-72]M. F. Giberson. Two Nonlinear Beams with Definition of Ductility. Journal of the Structural Division, ASCE,1969,95(2):137-157
    [1-73]H.Takizawa. Notes on some Basic Problems in Inelastic Analysis of Plane RC Structures. In: Part I and part Ⅱ, Transaction of the Architectural Institute of Japan,1976
    [1-74]D.Soleimani. Reinforced Concrete Ductile Frame Under Earthquake Loading With Stiffness Degradation, Ph.D. Thesis, University of California, Berkeley,1978
    [1-75]汪梦甫,周锡元.钢筋混凝土剪力墙多垂直杆非线性单元模型的改进及其应用[J].建筑结构学报,2002,23(1):38-42
    [1-76]史密斯B S,库尔A.著,陈瑜,龚炳年等译.高层建筑结构分析与设计[M].北京:地震出版社,1993:242-248
    [1-77]Kabeyasawa, Shioara T.H. and Otani S. U.S. Japan Cooperative Researchon RC Full-scale Building Test-Part5:Discussion on Dynamic Response System. Procs.8th WCEE,1984, Vol.6: 627-634
    [1-78]Volcano A., BerteroV. and Colotti V. Analytical Modeling of RC Structural Walls[J]. Procs.9th WCEE,1988, VI:41-46
    [1-79]Linda P. and Bachmann H. Dynamic modeling and design of earthquake resistant walls[J]. EESD,1994,23:1331-1350
    [1-80]Milev J.I. Two Dimensional Analytical Model of Reinforced Concrete Shear Walls[J]. Proc.l lth WCEE,1996, Elsevier Science Ltd., Paper No.320
    [1-81]叶列平,陆新征等.混凝土结构抗震非线性分析模型、方法及算例[J].工程力学,2006,23(S2):173-183
    [1-82]缪志伟,陆新征等.分层壳单元在剪力墙结构有限元计算中的应用[J].建筑结构学报,2006,27(S2):932-935
    [1-83]林旭川,陆新征等.基于分层壳单元的RC核心筒结构有限元分析和工程应用[J].土木工程学报,2009.(42)63:49-54
    [2-1]西安建筑科技大学建筑工程新技术研究所.密肋复合墙轻型框架结构理论与应用研究,科学技术研究报告[R].2000
    [2-2]李国强.基于概率可靠度进行结构抗震设计的若干理论问题[J].建筑结构学报.2000.2 Vol.21:12-16.
    [2-3]林同炎,S.D.斯多台斯伯利著.高立人,方鄂华,钱稼如译.结构概念和体系(第二版)[M]北京:中国建筑工业出版社,1999.
    [2-4]罗福午 张惠英 杨军.建筑结构概念设计及案例[M].北京:清华大学出版社,2003
    [2-5]李刚,程耿东.基于性能的结构抗震设计——理论、方法与应用[M].北京:科学出版社,2004
    [2-6]程耿东,蔡文学.基于分灾模式的结构防灾减灾概念初探[J].自然灾害学报.1996,5(1):22-27
    [2-7]李刚,程耿东.基于分灾模式的结构防灾减灾设计概念的再思考[J].大连理工大学学报.1998,38(1):10-15
    [2-8]Li G, Cheng G D. Damage-reduction based structural optimum design for seismic high-rise strucres[J]. Structural and Multidisciplinary Optimization.2003,25(4):294-306
    [2-9]程耿东,李刚.可靠度、优化和现代结构抗震设计哲理[J].工程力学.2001,A01:210-217
    [2-10]叶列平,康胜,曾通.双重抗震结构体系[J].建筑结构.2000,30(4):58-60
    [2-11]经杰,叶列平,钱稼茹.双重抗震结构体系在高层建筑中的应用[J].建筑科学.2001,02,Vol.17:42-45
    [2-12]贾英杰.高层密肋复合墙结构计算理论及设计方法研究[D].西安建筑科技大学博士学位论文,2004
    [2-13]黄炜.密肋复合墙体抗震性能及设计理论研究[D].西安建筑科技大学博士学位论文.2004
    [2-14]王爱民.中高层密肋复合墙结构密肋复合墙体受力性能及设计方法研究[D].西安建筑科技大学博士学位论文,2006.3
    [2-15]中华人民共和国国家标准.建筑抗震设计规范(GB50011-2001)[S].北京:中国建筑工业出版社,2001
    [2-16]陕西省工程建设标准.密肋壁板结构技术规程(DBJ/T61-43-2006)[S].西安:陕西省建设厅.2006
    [3-1]田英侠,陈平等.密肋复合墙板等效弹性常数计算方法研究[J].工业建筑,2003,33(1):10-12
    [3-2]沈观林,胡更开.复合材料力学[M].清华大学出版社,2006
    [3-3]王震鸣.复合材料力学和复合材料结构力学[M],机械工业出版社,1991
    [3-4]北京金土木软件技术有限公司,中国建筑标准设计研究院.SAP2000中文版使用指南[M].人民交通出版社,2006
    [3-5]Computers & Structures,Inc.北京金土木软件技术有限公司.CSI分析参考手册[M].2006
    [3-6]田英侠.密肋复合墙板受力性能试验研究与理论分析[D].西安建筑科技大学硕士学位论文,2002
    [3-7]黄炜,姚谦峰,张旭峰等.新型复合墙体弹性抗侧刚度计算分析[J].工程抗震与加固改造,2005,04:1-7
    [3-8]北京金土木软件技术有限公司,中国建筑标准设计研究院.ETABS中文版使用指南[M].中国建筑工业出版社.2004
    [3-9]黄炜,姚谦峰等.加外框密肋复合墙板抗震性能研究[J].工业建筑,2003,33(1):6-9
    [3-10]张杰,姚谦峰等.密肋复合墙体斜截面承载力实用设计方法[J].北京交通大学学报,2007,08:75-78
    [3-11]张杰.密肋复合墙板受力性能及斜截面承载力实用设计计算方法研究[D].西安建筑科技大学硕士学位论文,2004
    [3-12]姚谦峰,袁泉.小高层密肋壁板轻框结构模型振动台试验研究[J].建筑结构学报,2003,02:59-63
    [3-13]袁泉.高层轻板框架振动台试验研究[D].西安建筑科技大学博士学位论文,2003
    [3-14]爱德华·L·威尔逊著,北京金土木软件技术有限公司,中国建筑标准设计研究院译.结构静力与动力分析(原著第四版).中国建筑工业出版社[M].2006
    [3-15]张奇.密肋复合墙结构参数识别及动力复合反演分析[D].西安建筑科技大学硕士学位论文,2006
    [3-16]中华人民共和国国家标准.建筑抗震设计规范(GB50011-2001)[S].北京:中国建筑工业出版社,2001
    [4-1]汪大绥,贺军利等.带有剪力墙(筒体)结构静力弹塑性分析方法与应用,建筑结构,2006.07:3-7
    [4-2]Thiruvengadam, V.. On the Natural Frequencies of Infilled Frames[J]. Earthquake Engineering and Structural Dynamics,1985(13):401-409.
    [4-3]Holmes. Steel Frames with Brickwork and Concrete Infillings[J]. Proc., Instn. Civ. Engrs., 1961.19(8):473-478.
    [4-4]Dawe, Seah. Behavior of Masonry Infilled Steal Frames[J].Can. J. Civ. Engrg., Ottawa,1998, 16:865-876.
    [4-5]Dawe, Seah. Masonry Infilled Steal Frames Subject to Dynamic Load[J]. Can. J. Civ. Engrg., Ottawa,1998,16:877-885.
    [4-6]Zarmic, R.. Modelling of Response of Msonry Infilled Frames[J]. Proceedings of the Tenth European Conference on Earthquake Engineering, Vienna, Austria, Vol.3,1994, pp.1481-1486.
    [4-7]童岳生,钱国芳,梁兴文,郭滨华.砖填充墙钢筋混凝土框架的刚度及其应用[J].西安冶金建筑学院学报,1985,17(4):21-35
    [4-8]Armin B Mehrabi. Experimental Evaluation of Masonry-Infilled RC Frames[J]. Journal of Structural Engineering.1996,122(3):228-237
    [4-9]Roger D Flanagan and Richard M. Bennett. In-Plane Behavior of Structural Clay Tile Infilled Frames[J]. Journal of Structural Engineering,1999,125(6):590-599
    [4-10]Asteris P G. Later Stiffness of Brick Masonry Infilled Plane Frames[J]. Journal of Structural Engineering, ASCE,2003,129(8):1071-1079
    [4-11]Klingner, R. E.& Bertero, V. V.. Infilled frames in earthquake-resistant construction[J]. Report EERC/76-32, Earthquake Engineering Research Center, University of California, Berkeley, CA, USA,1976.
    [4-12]Stafford-Smith, B.. Behaviour of Square Infilled Frames[J]. Proceedings of the American Society of Civil Engineering. Journal of Structural Division, Vol.92, No. ST1,1966:381-403.
    [4-13]Stafford-Smith, B.& Carter, C.. A Method of Analysis for Infilled Frames[J]. Proceedings of the Institution of Civil Engineers, Vol.44,1969:31-48.
    [4-14]FEMA 356. The Seismic Rehabilitation of Buildings. Federal Emergency Management Agency. 2000:7.25-7.27
    [4-15]北京金土木软件技术有限公司.中国建筑标准设计研究院.SAP2000中文版使用指南.人民交通出版社.2006
    [4-16]Computers & Structures, Inc.北京金土木软件技术有限公司.CSl分析参考手册.2006
    [4-17]爱德华·L·威尔逊著,北京金土木软件技术有限公司,中国建筑标准设计研究院译.结构静力与动力分析(原著第四版).中国建筑工业出版社[M].2006
    [4-18]张杰,姚谦峰等.密肋复合墙体斜截面承载力实用设计方法.北京交通大学学报,2007.08:75-78
    [4-19]姚谦峰,黄炜.密肋复合墙体受力机理及抗震性能试验研究.建筑结构学报,2004(6):67-74.
    [4-20]贾英杰,姚谦峰.密肋复合墙轻框结构性能及设计方法研究[J].工业建筑,2003.01
    [4-21]贾英杰.高层密肋复合墙结构计算理论及设计方法研究[D].西安建筑科技大学博士学位论文,2004
    [5-1]Freeman S. A., J. P. Nicoletti, J. V. Tyrell. Evaluation of Existing Buildings for Seismic Risk-A Case Study of Puget Sound Naval Shipyard Bremerton, Washington, Proceedings of the US National Conference on Earthquake Engineering, EERI, Berkeley,1975:113-122
    [5-2]M. Saiidi, MA.Sozen. Simple Nonlinear Seismic Analysis of RC Structures, Journal of Structural Division (ASCE),1981,107,937-952
    [5-3]Peter Fajfar, Peter Gaspersic. The N2 Method for the Seismic Damage Analysis of RC Buildings, Earthquake Engineering and Structural Dynamics,1996, Vol.25,31-36
    [5-4]Miranda, E. Seismic evaluation and upgrading of existing buildings[D]. Ph.D. Dissertation, University of California. Berkeley, California.1991
    [5-5]R. S. Lawson, V. Vance, H. Krawinkler. Nonlinear Static Push-over Analysis-Why, When and How. Proc.5th U. S. Conference on Earthquake Engineering, Chicago,1994:Vol.1,283-292
    [5-6]Fajfar, P.,and Gaspersic P. The N2 method for the seismic damage analysis of RC buildings. Journal of Earthquake. Engineering and Structural Dynamics, Vol.25:31-46.
    [5-7]Applied Technology Council (ATC):Seismic Evaluation and Retrofit of Concrete Buildings(ATC-40), Redwood City, California, Report No. SSC 96-01,1996
    [5-8]Federal Emergency Management Agency. Guidelines and Commentary for the Seismic Rehabilitation of Buildings. FEMA273&274,1998
    [5-9]Bracci. J.M., Kunnath S.K. and Reinhorn A.M..Seismic performance and retrofit evaluation of reinforced concrete structures. Journal of structural engineering.1997.123(1):3-10
    [5-10]Helmut Krawinkler, G. D. P. K. Senerviratna.Pros and Cons of a Pushover Analysis of Seismic Performance Evaluation[J]. Engineering Structures,1998,20(4):452-464.
    [5-11]Federal Emergency Management Agency(FEMA):Prestandard and Commentary for the Seismic Rehabilitation of Buildings (FEMA 356). Washington D.C.,2000
    [5-12]叶燎原,潘文.Pushover分析原理和计算实例[J].建筑结构学报,2000.21(1):37-43
    [5-13]钱稼茹,罗文斌.静力弹塑性分析-基于性能位移抗震设计的分析工具[J].建筑结构,2000.30(6):23-26
    [5-14]杨溥,李英民,王亚勇,赖明.结构静力弹塑性分析(Pushover)方法的改进[J].建筑结构学报,2000.21(1):44-50
    [5-15]欧进萍,侯钢领,吴斌.概率Pushover分析方法及其在结构体系抗震可靠度评估中的应用[J].建筑结构学报,2001,22(6):81-86
    [5-16]汪梦甫,周锡元.高层建筑结构抗震弹塑性简化方法的研究及其应用[J].计算力学学报,2002.19(4):482-487
    [5-17]魏巍,冯启民.几种pushover分析方法对比研究[J].地震工程与工程振动,2002,22(4):66-73
    [5-18]朱杰江,吕西林,容柏生.复杂体系高层结构的推覆分析方法和应用[J].地震工程与工程振动,2003.23(2):26-36
    [5-19]丁光莹,李杰.混凝土框架结构非线性静力分析的随机模拟[J].同济大学学报,2003.31(4):389-394
    [5-20]尹华伟,汪梦甫,周锡元.结构静力弹塑性分析方法的研究和改进[J].工程力学,2003.20(4):45-49
    [5-21]沈蒲生,龚胡广.多模态静力推覆分析及其在高层混合结构体系抗震评估中的应用[J].工程力学,2006.23(8):69-73
    [5-22]中华人民共和国国家标准.建筑抗震设计规范(GB50011-2001)[S].北京:中国建筑工业出版社,2001
    [5-23]EC8. Eurocode-Design of structures for earthquake resistance, May 2001 draft.
    [5-24]王爱民.中高层密肋复合墙结构密肋复合墙体受力性能及设计方法研究[D].西安建筑科技大学博士学位论文,2006.3
    [5-25]北京金土木软件技术有限公司.中国建筑标准设计研究院.SAP2000中文版使用指南.人民交通出版社.2006
    [6-1]Wilson E.L., Der Kiureghian A, Bayo E.P. A Replacement for the SRSS Method in Seismic Analysis[J]. Earthquake Engineering & Structural Dynamics,1981,9(2):187-192.
    [6-2]G.W. Housner. Characteristics of Strong Motion Earthquakes [J]. BSSA, Vol.37,1947:19-31.
    [6-3]Kanai K. Semi-empirical Formula for the Seismic Characteristics of the Ground[J]. Bulletin of the Earthquake Research Institute, University of Tokyo,35, Part 2, June,1957.
    [6-4]Kanai-K. An Empirical Formula for the Spectrum of Strong Earthquake Motions[J]. Bulletin of the Earthquake Research Institute, University of Tokyo,1961,39:85-95.
    [6-5]Tajimi H. A Statistical Method of Determining the Maximum Response of a Building Structure During an Earthquake [J]. Proc. of the 2nd World Conference on Earthquake Engineering,2, Tokyo, Japan, July,1960.
    [6-6]Hounser G.W., Jennings P.C. Generation of Artificial Earthquakes. ASCE, EM,1964,90(1):113-142
    [6-7]Lai S.S. Statistical Characterization of Strong Ground Motion Using Power Spectral Density Function. BSSA,1982,72(1):259-276
    [6-8]Sues R.H. et al. Stochastic Seismic Performance Evaluation of Buildings. Report UILU-ENG-83-2008, University of Illinois,1983
    [6-9]江近仁等,强震运动功率谱密度函数的统计特性.第二届全国地震工程会议论文集.武汉,1987
    [6-10]欧进萍,牛荻涛.地震地面运动随机过程模型的参数及其结构效应[J].哈尔滨建筑工程学院学报,1990,23(2):24 34.
    [6-11]欧进萍,牛荻涛.杜修力.设计用随机地震动的模型及其参数确定.地震工程与工程振动,1991,11(3):45-53.
    [6-12]孙景仁,江近仁.与规范反应谱对应的金井清谱的参数.世界地震工程,1990(1):42-48
    [6-13]张治勇,孙柏涛,宋天舒.新抗震规范地震动功率谱模型参数的研究[J].世界地震工程,2000,16(3):33-38
    [6-14]白国良,朱丽华.基于现行抗震规范的Kanai-Tajimi模型参数研究[J].世界地震工程,2004(3):114-118
    [6-15]白志强.消能减震结构的随机反应分析及减震可靠度评估[D].青岛理工大学,2006
    [6-16]兰海燕,唐光武.单自由度体系地震动输入功率谱的确定[J].世界地震工程,2008(1):143-147.
    [6-17]Clough R. W. and Penzien J(著),王光远等(译),结构动力学[M],北京:科学出版社,1983.
    [6-18]Clough R. W. Penzien J. Dynamics of Structures[J]. New York:Mc Graw-Hill, Inc,2nd edition,1993.
    [6-19]薛素铎,王雪生,曹资.基于新抗震规范的地震动随机模型参数研究[J].土木工程学报,2003,36(5):5-10
    [6-20]潘晓东,秦从律,钱磊.与建筑抗震设计规范相度应的地面地震动随机模型参数研究[J].地震研
    究,2005,28(1):82-85
    [6-21]胡聿贤,周锡元.弹性体系在平稳和非平稳化地震下的反应[J],地震工程研究报告集(第一集),北京:科学出版社,1962:33-50.
    [6-22]洪峰,江近仁,李玉亭.地震地面运动的功率谱模型及其参数的确定.地震工程与工程振动,1994,14(02):46-52
    [6-23]王君杰,江近仁.关于地震动平稳自功率谱模型的注记[J].世界地震工程,1997,13(2):37-40
    [6-24]丰硕,项贻强,谢旭.工程结构抗震分析的使用地震动功率谱模型[J].建筑结构,2005,35(5),28-30
    [6-25]欧进萍,王光远.结构随机振动[M].北京高等教育出版社,1995.
    [6-26]杜修力,胡晓等.强震地面运动随机过程模拟[J].地震学报,1995.17(1):103-109.
    [6-27]杜修力.水工建筑物抗震可靠度设计和分析用的随机地震输入模型[J],地震工程与工程振动,1998,18(4):76-81.
    [6-28]赖明,叶天义等.地震动的双重过滤白噪声模型[J].土木工程学报.1995,28(6):60-66.
    [6-29]洪峰,李玉亭.地震地面运动模型的研究[J].华北地震科学,1998,16(4):18-22
    [6-30]李宏男.结构多维抗震理论与设计方法[M].北京:科学出版社,1998.
    [6-31]李宏男,王苏岩.多维地震动作用下非对称结构扭转偶联随机反应分[J].建筑结构学报,1992,13(6):12-20.
    [6-32]Applied Technology Council. Tentative Provisions for the Development of Seismic Regulations for Buildings. ATC3-06, National Bureau of Standards, Special Publication 510, Washington D. C.,1978
    [6-33]Rosenblueth E. Comments on Torsion. Proc. of Convention of the Structural Engineers Association of South California,1957
    [6-34]Rosenblueth E, Elorduy J. Response of Linear Systems in Certain Transient Disturbances. Proc. of the 4th World Conference on Earthquake Engineering,1969, A-1
    [6-35]Shibata H. et al. On ground motion records for engineering purpose other than horizontal ground acceleration records. Proc. of Japan Conference on Earthquake Engineering,1978
    [6-36]Penzien J, Watabe M. Characteristics of 3-dimensional earthquake ground motions[J]. Earthquake Engineering and Structural Dynamics,1975,3(4):265-373.
    [6-37]Kubo T. Penzien J. Simulation of three-dimensional strong ground motion along principal axes, San Fernando earthquake[J]. Earthquake Engineering and Structural Dynamics,1979,7(3):279-294.
    [6-38]Singh M.P.Structural response under multicompont earthquakes, ASCE, EM5,1984
    [6-39]Lopez O.A., Hernandez J. J. Response spectra for two horizontal seismic components and application of the CQC3-rule[J]. Proceedings of the 7th U.S. National Conference on Earthquake Engineering, Boston,2002.
    [6-40]Chen C., Lee J.P. Correlation of artificially generated three component time-histories[J]. Proceedings of the Second International Conference on Structural Mechanics in Reactor Technology, Berlin, Germany,1973, Paper No.K1/8
    [6-41]Hadjian A.H. On the correlation of the components of strong ground motion-part2[J]. Bulletin of Seismological Society of America,1981,71(4):1323-1331.
    [6-42]黄玉平,刘季.双向水平地震动的空间相关性[J].哈尔滨建筑工程学院学报,1987,(3):10-14
    [6-43]Simos N., Philinpacopoulos A.J., Papandreou D. Power spectra based seismic Structural responses using cross correlated free-field earthquake motions[J]. Transactions of SMIRT16, Washington DC, USA, August 2001, Paper Number:1754.
    [644]薛素铎,曹资,王雪生,李明辉.多维地震作用下网壳结构的随机分析方法[J].空间结构,2002,8(1):44-51
    [6-45]Hemandez J.J., Lopez OA. Evaluation of combination rules for peak response calculation in three-component seismic analysis[J]. Earthquake Engineering and Structural Dynamics,2003,32: 1585-1602.
    [6-46]Bozorgnia Y., Campbell K.W., Niazi M. Observed spectral characteristics of vertical ground motion recorded during worldwide earthquakes from 1957 to 1995. Proceedings of the 12th World Conference on Earthquake Engineering, New Zealand,2000. Paper No.2671.
    [6-47]钟菊芳,胡晓,屈铁军.同一测点不同地震动分量空间相干性分析[J].地震研究,2005,28(4):378-382.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700