用户名: 密码: 验证码:
Mn修饰TiO_2/ZSM-5光催化臭氧耦合降解甲(乙)醛的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
室内环境与人体健康一直都是公众瞩目的焦点,世界卫生组织研究调查表明,目前室内污染问题在世界各地比较普遍,在发展中国家尤为突出。甲醛和苯系物是室内空气中的主要挥发性有机污染物,严重危害人类的健康,研究甲醛和苯系物的去除对提升室内空气品质及保障人类健康显得尤为重要。
     本文采用臭氧与光催化相结合的手段,以“吸附/富集—光催化/臭氧耦合”的方法达到对目标污染物的高效降解,对具有独特择形吸附的分子筛H-ZSM-5进行改性,将Mn离子通过浸渍法和离子交换方式引入到分子筛中以改善催化耦合效果。本文研究了催化剂对有机物降解性能,并对所制备的催化剂结构、表面性质和催化活性进行了表征和评价。并且用不同的方式将H-ZSM-5和TiO_2(P25)催化剂负载在活性炭板上,在模拟室内环境的密封测试舱内考察了耦合条件下降解甲醛、甲苯的效果。研究结果表明:
     1.利用浸渍法制备出的TiO_2/MnOx-ZSM-5系列催化剂在降解乙醛实验中证明UV/O_3耦合作用大于单独UV作用与单独O3作用之和。催化剂中MnOx的存在有利于提高臭氧的利用率,为乙醛的深度降解提供了更多的O_2~-和·OH。
     2.通过离子交换法制备出的TiO_2/Mn-ZSM-5系列催化剂,光催化臭氧耦合降解乙醛的效率较高,这是由于Mn离子起了关键作用,臭氧和乙醛除了可以在分子筛上进行反应,还可以在分子筛孔道中和笼中的Mn离子上进行反应,使得有效反应面积增加,从而提高对臭氧的利用率。TiO_2/Mn-ZSM-5较高的催化活性表现出“吸附/浓缩—臭氧/光催化耦合”的协同效应。
     3.将催化剂负载于活性炭板,并在测试舱测试降解甲醛和甲苯混合气体的效果。结果表明:利用光催化臭氧耦合作用,密闭仓中高于环境标准5-10倍的甲醛、甲苯能持续快速降解,并在短时间内达到国家相关环境标准。
The relationship between the indoor environment and human health is paid great attention in the world. The research report from World Health Organization (WHO) suggested that indoor pollution had become a worldwide problem especially in developing countries. As we know, formaldehyde and benzene are two major indoor air volatile organic pollutants, which are seriously harmful to human health.
     The hybrid system of ozonization and photodegradation was studied in the present work. The synergism of‘adsorption/enrichment-photodegradation/ozonization’was used to efficiently degrade the target pollutants. H-ZSM-5 has a shape-selective adsorption structure. It was modified with Mn-ion by impregnation and ion-exchange in order to improve acetaldehyde degradation in UV-ozone atmosphere. The influence of catalyst structure and surface properties on catalytic activity were investigated. Meanwhile, various ways for loading TiO_2 (P25) to H-ZSM-5 and active carbon support have been employed. The degradation of formaldehyde and toluene was simulated in a sealed test chamber. Following conclusions have been drawn:
     TiO_2/MnO_2-ZSM-5 prepared by impregnation showed higher activities of acetaldehyde degradation in UV-ozone than the sum of UV and ozone used separately. MnOx introduced in catalysts increased the utilization rate of ozone because more O_2~- and·OH were produced for the acetaldehyde degradation.
     TiO_2/Mn-ZSM-5 prepared by ion-exchange showed higher activities of acetaldehyde degradation than TiO_2/ZSM-5 in UV-ozone. Mn as a promoter at the surface of the zeolite has a beneficial effect on the reaction rate of ozone and acetaldehyde. Mn mainly enhanced and stabilizes the BET surface area of zeolite. The high activity of TiO_2/Mn-ZSM-5 is due to the synergistic effect of‘adsorption/enrichment-photodegradation/ ozone’.
     All catalysts supported on the activated carbon were detected for the decomposition of formaldehyde and toluene in a test chamber. The results indicated that the degradation activity by ozone- photodegradation coupling was five to ten times higher than that by general method, and the pollutants could be quickly derogated and reached the relevant national environmental standards.
引文
[1]龚圣,黄肖容等.室内空气净化技术.环境污染治理技术与装备[J]2004.5(4):p. 56~59.
    [2]徐海云,杨庆平.室内空气净化技术.舰船防化[J]2008.1(1):p. 12~19.
    [3]倪涵松,曹坚.居室空气污染的防治与标准.上海标准化[J]2001.(5):p. 25~26.
    [4]完莉莉,汪玉庭.室内空气有机污染的研究现状.环境监测与技术[J]2001.13(2):p. 12~15.
    [5]姜安玺等.空气污染控制.北京:化学工业出版社.2003.
    [6]宋广生等.中国室内环境污染控制理论与实务.北京:化学工业出版社.2006.
    [7]周中平,赵寿堂等.室内污染检测与控制.北京:化学工业出版社.2002.
    [8]徐东群等.居住环境空气污染与健康.北京:化学工业出版社.2004.
    [9]赵厚银,邵龙义等.室内空气污染物的种类及控制措施.重庆环境科学[J]2003.25(7):3~6.
    [10]袭著革等.室内空气污染与健康.北京:化学工业出版社.2003.
    [11]白志鹏等.室内空气污染与防治.北京:化学工业出版社.2006.
    [12]梁宝生,田仁生.总挥发性有机物(TVOC)室内空气质量评价标准的制订.重庆环境科学[J]2003. 25(5): p. 1~3.
    [13]李辰,梁冰等.室内空气中挥发性有机化合物污染及检测方法.分析测试技术与仪器[J]2005. 11(1): p. 40~44.
    [14]王俊,张景义,陈双基.室内空气中总挥发性有机物(TVOC)的污染.环境科学与技术[J]2004. 27(1): p. 34~35.
    [15] Jones.A.P., Indoor air quality and health.[J]. Atmospheric Environment, 1999. 33(28): p. 4535~4564.
    [16]周秉明,万国江.居室内甲醛含量及其释放因子关系的研究.重庆环境科学[J]1996.18(4):p. 26~28.
    [17]宫菁,刘敏.甲醛污染对人体健康影响及控制.环境与健康[J]2001.18(6):p. 414-415.
    [18]奚丽荷,朱忠其等.室内空气中甲醛污染的治理技术.材料导报[J]2007.21(4):p. 92~95.
    [19]刘京等.室内环境控制与技术.哈尔滨:哈尔滨工业出版社.2007
    [20]段云海,王琨等.室内空气中甲醛和苯系物检测与净化.环境科学与管理[J]2007.32(6):p. 116~119.
    [21]吴耀国,赵晨晖等.臭氧化的负载型非均相催化剂制备及其作用机理.材料导报[J]2005 19(10):p. 8~11.
    [22]皮运正,吴迪等.CuO和Cu(Ⅱ)催化臭氧氧化的研究.环境化学[J]2005 24(2):p. 197~199.
    [23] Rong.H.Q., Ryu.Z.Y., Zheng.J.T., Effect of air oxidation of Rayon-base activated carbon fibers on the adsorption behaveior for formadehyde.[J]. Carbon,2002, 40(13): p. 2291~2300.
    [24] Rong.H.Q., Ryu.Z.Y., Zheng.J.T., Influence of heat treatment of rayon-based activated carbon fibers on the adsorption of formaldehyde.[J]. Colloid Interf. Sci., 2003, 261(2): p. 207~212.
    [25]荣海琴,郑经堂.改性PAN-ACFs对甲醛吸附性能的初步研究.新型炭材料[J]2001,16(1): p. 44~48.
    [26]俞珊,瞿爱莎等.室内空气净化材料研究进展.科技导报[J]2008,26(5): 89-92.
    [27]张国兰,耿世彬等.低温等离子体去除室内空气污染物研究现状.建筑热能通风空调[J]2004,23(1): p. 44~47.
    [28]唐恩凌,张静.治理室内空气污染的低温等离子体技术.节能与环保[J]2009,4(1): p. 32~35.
    [29]薛俊,刘刚.等离子体室内净化技术研究成果与探讨.清洁与空调技术[J]2006,3(1): p. 7~11.
    [30] Einaga.H., Takashiibusuki.S., Complete oxidation of benzene in gas phaseby platinized titania photocatalysts.[J]. Environ Sci Technol, 2001. 35: p. 1880~1884
    [31] Paul.C., Lao.P., David.Y., Ollis.F., Formaldehyde Removal from Air via Rotating Adsorbent Combined with a Photo- catalyst Reactor:Kinetic Modeling.[J]. Journal of Catalysis, 2006. 237(1): p. 29~37.
    [32]王琨,吕春梅,李宏伟,陈战利.通风、过氧乙酸和臭氧氧化降低室内空气微生物.环境工程, 2004. 22(5): p. 85~88.
    [33]黄春松,黄翔等.负离子材料的净化研究.洁净与空调技术[J] 2006. (2): p. 45~48.
    [34]张瑞杰,韩燕等.室内空气中有机污染物处理的研究进展.山西建筑[J]2008. 34(3): p. 353~356.
    [35] Fujishima A., Honda K., Electrochemical photolysis water at a semiconductor electrode. Nature, 1972, 238: p. 37~38.
    [36] Bard.A.J., Photoelectrochemistry. Science, 1980, 207: p. 139
    [37] Rosenberg.L., Brock.J.R., Heller.A., Collection optics hollow glass microbeads floating on oil slicks.[J]. Phys. of TiO2 photocatalyst on Chem., 1992, 96: p. 3423.
    [38] Chen.C.C., Lu.C.S., Mechanistic studies of the photocatalytic degradation of methyl green: An investigation of products of the decomposition processes.[J]. Environmental Science and Technology, 2007. 41(12): p. 4422~4427.
    [39] Hoffman.M.R., Martin.S.T., Environmental Applications of Semiconductor photocatalysis.[J]. Chem.Rev.,1995,95: p. 69~96
    [40] Bouzaza.A., Laplanche.A., Photocatalytic degradation of toluene in the gas phase: Comparative study of some TiO2 supports.[J]. Journal of Photochemistry and Photobiology A: Chemistry 2002. 150(1-3): p. 207~212.
    [41] Sonawane.R.S., Dongare.M.K., Sol-Gel synthesis of Au / TiO2 thin films for photocatalytic degradation of phenol in sunlight.[J]. Molecular CatalysisA:Chemical,2006,243(1):p. 68~76.
    [42] Chen.Lung.Chyuan., Chou.Tse.Chuan., Photodecolorization of Methy1 Orange Using Silver Ion Modified TiO2 as Photocatalyst.[J]. Industrial&Engineering Chemistry Research, 1994, 33(6): p. 1436~1443
    [43]赵德明,史惠祥等.复合纳米TiO2光催化氧化苯酚的动力学.中国给水排水[J],2004. 20(1): p. 48~49.
    [44] Liao.Dong., Xiao.Xin., Deng.Qin., Study on kinetics of formaldehyde photocatalyfic degradation of titanium Dioxide .[J]. Envionmental Protection of Chemical Industry,2003,(23):p. 191~194.
    [45]张彭义,梁夫艳,陈清等.低浓度甲苯的气相光催化降解研究[J].环境化学,2003,24(6):p. 54~58.
    [46]赵春禄,吕承凯,楚晓俊等.负载化纳米TiO2光催化降解气相甲苯.环境科学与技术[J]2009,32(3):p. 42~45.
    [47]曾志雄,徐玉党.纳米材料TiO2光催化技术在空气净化中的应用.制冷与空调[J]2003,3(4):p. 36~39.
    [48] Blanchard.C.L., Ozone process insights from field experiments - Part III: Extent of reaction and ozone formation.[J]. Atmospheric Environment, 2000. 34(12-14): p. 2035~2043.
    [49] Alvim.F. Preparation of activated carbon for air pollution control Fuel, 1988. 67(9): p. 1237~1241.
    [50] Weschler.C.J., Hodgson.A.T., Wooley.J.D., Indoor chemistry: Ozone, volatile organic compounds, and carpets.[J]. Environmental Science and Technology, 1992. 26(12): p. 2371~2377.
    [51] H.Einaga,S.Futamura,Catalytic oxidation of benzene with ozone overalumina-supported manganese oxides.[J]. Catal 2004 227(2): p. 304~312.
    [52] R.Radhakrishnan,S.T.Oyama,Ozone decomposition over manganese oxide supported on ZrO2 and TiO2:A kinetic study using in situ laser Raman spectroscopy.[J].Catal.2001 199(2): p. 282~290.
    [53] Helmig.D., Ozone removal techniques in the sampling of atmospheric volatile organic trace gases.[J]. Atmospheric Environment, 1997. 31(21): p. 3635~3651.
    [54] Naydenov.A., Mehandjiev.D., Complete oxidation of benzene on manganese dioxide by ozone.[J]. Applied Catalysis A, General 1993. 97(1): p. 17~22.
    [55] Khan.F.I., Ghoshal.A.K., Removal of Volatile Organic Compounds from polluted air. Loss.Prevent.Process Indust.[J]. 2000 13(6):p. 527~545.
    [56] Einaga.H., Futamura.S., Catalytic oxidation of benzene with ozone over alumina-supported manganese oxides.[J].Catal 2004 227(2): p. 304~312.
    [57]中国科学院大连化学物理研究所分子筛组编著.沸石分子筛.北京:科学出版社,1978: p. 33~39.
    [58] Kucherov.A.V., Slinkin.A.A., Zeollites,6(1986)175.
    [59] Mo.J., Zhang.Y., Xu.Q., Lamson.J.J., Zhao.R., Photocatalytic purification of volatile organic compounds in indoor air: A literature review.[J]. Atmospheric Environment 2009. 43(14): p. 2229~2246.
    [60] Yoneyama.H., Torimoto.T., Titanium dioxide/adsorbent hybrid photocatalysts for photodestruction of organic substances of dilute concentrations.[J]. Catalysis Today, 2000. 58(2): p. 133~140.
    [61]郑楠,陈冰冰等.负载银催化剂光催化分解NO反应研究.全国太阳能光化学与光催化学术会议[J]2008,3(4):p. 36~39.
    [62] Cooper.C., Burch.R., Mesoporous materials for water treatment processes.[J]. Water Reseach 1999.33(180): p. 3689~3694.
    [63]郭秀芝,侯艳君等.臭氧/分子筛氧化降解水中微量的硝基苯.化学工程师[J]2004,110(11):p. 22~25.
    [64]孙剑峰,王智化等.臭氧/紫外联合降解甲醛的试验研究.环境工程学报[J]2009,3(3):p. 506~510.
    [65]梁夫艳,张彭义,余刚,陈清.气相中甲苯的臭氧-光催化降解.环境科学[J]2002. 23(6): p. 17~21.
    [66] Zhang.P., Liang.Fuyuan., Yu.Guang., Chen.Qing., Zhu.Wannpeng., A comparative study on decomposition of gaseous toluene by O3/UV, TiO2/UV and O3/TiO2/UV.[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2003. 156(1-3): p. 189~194.
    [67]蔡健,胡将军等.改性活性炭纤维对甲醛吸附性能的研究.环境科学与技术[J]2004,27(3):p. 16~19
    [68] Tao.W.H., Yang.T., Effect of moisture on the adsorption of volatile organic compounds by zeolite 13X.[J]. Environ. Eng.,2004, 130(10):1210-1216
    [69] Yen.S.H., Jeng.F.T., Tsai.J.H., Adsorption of methy-ethyl ketone vapor onto zeolites.[J]. Environ. Sci. Heal. A.,1997, 32 (8): p. 2087~2100
    [70] Kang.J., Rao.Y., Trudeau.M., Antonelli.D., Sulfated mesoporous tantalum oxides in the shape selective synthesis of linear alkyl benzene.[J]. Angewandte Chemie - International Edition 2008. 47(26): p. 4896~4899.
    [71] Tang.X., Zhou.H., Qian.W., Wang.D., Jin.Y., Wei.F., High selectivity production of propylene from n-butene: Thermodynamic and experimental study using a shape selective zeolite catalyst.[J]. Catalysis Letters 2008. 125(3-4): p. 280~285.
    [72] Liw.S.T., Mechanism of ozone decomposition on a manganese oxide catalyst.2 .Steady-state and transient kinetic studies.[J]. J Am Chem Soc,1998,120(35) : p. 9047~9052.
    [73] Naydenov.A., Stoyanova.R., Catalytic oxidation of VOCs and CO by ozone over alumina supported cobalt oxide.[J]. Appl Catal: A Gene, 2006, 298: p. 109~114.
    [74] Yoshika.S.,Oxidative decomposition of formaldehyde by metaloxides at room temperature.[J]. Atmospheric Environment.2002 36:5543~5547.12
    [75]杨俊鹏,史文晶等.MnO2/ZSM-5上臭氧协同催化去除甲醛的性能研究.分子催化[J]2009,23(4):p. 334~338
    [76] Annpo.M., Matsuoka.M., Shioya.Y., Yamashita.H., Giamello.E., Morterra.C., Che.M., patterson.H.H., Webber.S., Ouellette.S., Fox.M.A., J. Phys.Chem. 98(1994)5744.
    [77]蒋劼,卢冠忠等.不同制备方法对Co/HZSM-5分子筛上性能的影响.上海化工[J] 2003 , 28 : p. 20 ~ 22.
    [78] Jiu.Jinting., Wang.Fumin., Adachi.M., Preparation of highly photocatalytic active nano-scale TiO2 by mixed template method.[J]. Materials Letters, 58 (30), p. 3915~3919.
    [79]孙鸣,于占江等.P25光催化剂可见光催化改性研究.应用化工[J]2008 , 37(5) : p. 472 ~ 474.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700