用户名: 密码: 验证码:
石墨烯的制备与功能化及其在复合材料中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨烯是碳原子以sp2杂化轨道组成正六边形呈蜂巢状晶格的二维无机纳米片层材料。由于其独特的二维片层结构及优异的力学,热学,电学及光学的等性能,石墨烯在物理、化学、材料以及生物学等领域显示了重要的研究价值和广阔的应用前景。近几年来,石墨烯本征极高的机械强度,出色的导电和导热性能使其成为理想的纳米填料用于聚合物复合材料性能的增强和扩展。对于石墨烯材料的制备与改性,改善石墨烯在聚合物基体中的分散以及提高石墨烯与聚合物基体间界面相互作用一直是石墨烯/聚合物复合材料重要课题和研究热点。本学位论文主要围绕这些问题展开工作,创新性的运用多种方法实现石墨烯材料的制备以及功能化,拓展石墨烯在聚合物材料中的复合应用,具体研究内容及结果如下:
     (1)通过改性的Hummers法对石墨进行氧化得到氧化石墨,继而通过超声剥离制备了氧化石墨烯(Grapheneoxide,GO)。利用溶液共混和原位聚合法,首次将GO引入到海藻酸钠(Sodium alginate,SA)/聚丙烯酰胺(Polyacrylamide, PAM)双网络交联水凝胶中,得到GO/SA/PAM (GSP)的复合水凝胶。通过拉伸和压缩性能测试证明,GO的引入进一步显著提高了SA/PAM双网络交联水凝胶的机械性能。随着GO添加含量的增加,GSP的复合水凝胶的机械性能不断得到提高。GSP复合水凝胶不仅具有很高的机械性能,而且具有很好的弹性和韧性,在一定范围内压缩和拉伸后可以迅速恢复。同时,GO的引入使得GSP复合水凝胶也显示了很好的染料吸附性能。
     (2)以多壁碳纳米管(Multiwalled carbon nanotubes, MWNTs)为原料,通过高锰酸钾(KMnO4)和浓硫酸(H2SO4)纵向氧化切割MWNTs的内外壁,并结合超声剥离制备了氧化石墨烯纳米带(Unzipped Multiwalled Carbon Nanotubes Oxides, UMCNOs)。通过溶液共混流延成膜的方法将UMCNOs引入到壳聚糖(Chitosan, CS)基体中得到了UMCNOs/CS的复合材料。拉伸性能测试表明UMCNOs可以作为高效的纳米增强填料用于CS的机械性能增强。在UMCNOs添加含量仅为0.2wt%时,UMCNOs/CS复合膜的最大拉伸强度和杨氏模量分别达到了~142.7MPa,~6.9GPa。相比纯的CS膜,提高了约105.9%和165%。
     (3) UMCNOs作为纳米增强填料用于聚合物材料增强时,UMCNOs在相对较低填充含量下显示优越的增强效果,但是随着在聚合物基体中填充含量增加,UMCNOs在聚合物基体中非常容易产生团聚,限制了UMCNOs/聚合物复合材料机械性能的进一步提高。为了解决UMCNOs在复合材料增强中,相对低填充含量下易团聚的现象。我们有趣的发现,通过π-π共轭非共价作用将UMCNOs与MWNTs复合得到新颖的UMCNOs/MWNT(U/Ms)杂化材料,可以有效的改善UMCNOs在低填充含量下易团聚的现象。利用聚乙烯醇(Poly(vinyl alcohol),PVA)作为模型聚合物,对比MWNTs-PVA,UMCNOs-PVA以及U/Ms-PVA复合膜在相同填料填充含量下的机械性能发现U/Ms-PVA复合膜的机械性能更加优异。在0.7wt%填充含量下,U/Ms-PVA的屈服强度和杨氏模量达到了145.8MPa和6.9GPa,大大高于MWNTs-PVA,UMCNOs-PVA的复合膜的机械性能。
     (4)利用二甲基亚砜(DMSO)和氢氧化钾(KOH)体系,通过去质子化的过程将宏观的凯夫拉纱线撕扯成宽度为30nm左右的对位芳纶纳米纤维(Aramidnanofiber,ANF)。通过π–π共轭作用,将ANF修饰固定到二维的石墨烯片层表面得到了ANF表面功能化的石墨烯杂化材料(ANF-functionalized graphene nanosheets, ANFGS)用于聚合物复合材料机械性能的增强填料。通过溶液共混流延成膜的方法将ANFGS与聚甲基丙烯酸甲酯(PMMA)复合制备得到了ANFGS/PMMA复合膜。ANF的引入改善了石墨烯在聚合基体中的分散效果,并大大提高了石墨烯与聚合物基体间界面作用力。拉伸测试结果发现在ANFGS填充含量仅为0.1wt%时,ANFGS/PMMA复合膜的拉伸强度达到了46.5MPa,相比纯的PMMA膜的拉伸强度提高了近35.9%。ANFGS/PMMA复合膜的拉伸强度和杨氏模量随着ANFGS填充含量的增大而增大,在0.7wt%时,ANFGS/PMMA复合膜的拉伸强度和杨氏模量达到最大,为63.1MPa和3.4GPa。另外,由于ANF的紫外吸收性能,ANFGS/PMMA复合膜展现了一定紫外光屏蔽效果。
     (5)基于液相直接剥离石墨制备石墨烯的方法,利用阿拉伯胶(Gum arabic, GA)开辟了一种新颖绿色简单的方法制备银纳米粒子/石墨烯杂化材料。通过将原始的石墨粉加入到GA水溶液中超声剥离石墨后得到了GA表面改性的石墨烯片层(GA-functionalizedgraphene nanosheets, GA-G)。当石墨粉和GA初始浓度在140和100mg/mL时,通过8小时的超声,石墨烯的浓度最大可以达到0.69mg/mL。对得到的GA-G片层进行统计分析,得出GA-G片层面积和厚度主要集中在0.5-2μm2和2-6nm。很巧妙的是,GA-G表面吸附的GA可以被用来原位还原固定银纳米粒子,于此制备得到了表面银纳米粒子均一,规整的Ag/GA-G二维片层杂化材料。通过GA直接剥离和还原制备的Ag/GA-G的杂化材料可以作为一种高效的表面增强拉曼光谱(Surface-enhanced Raman spectroscopy, SERS)的底物,在液相环境中对4-氨基苯硫酚(4-aminothiophenol,4-ATP)探针分子的检测效果可以达到10-6M。
     (6)利用甲基丙烯酸缩水甘油酯(Glycidyl methacrylate, GMA)对GA进行化学改性,通过环氧开环以及酯交换两个过程得到GMA改性的GA(GMA-GA)。GMA-GA同样可以用于石墨的液相剥离和分散,相比于原来的GA来说,剥离效率明显提高。同时GMA-GA结构中带有乙烯基双键的分子链段,利用GMA-GA直接液相剥离分散的方法得到了GMA-GA功能化的石墨烯片层(GMGS)。通过原位聚合的方法将GMGS作为水凝胶的机械增强填料引入到聚丙烯酸(PAA)水凝胶结构中,大大改善了PAA水凝胶的机械性能。
Graphene is a single layer graphite sheet that consisting of sp2carbonatoms covalently bonded in honeycomb crystal lattice. Due to itsfascinating properties such as giant electron mobility, high thermalconductivity and high thermal stability, graphene has aroused considerableresearch interest and exhibited broad application prospect in physics,chemistry, materials and biology, etc. Recently, owing to its intrinsicexcellent mechanical strength, large surface area, electric and thermalconductivities, graphene nanosheets are widely used as ideal nanofillers forenhancing and extending the properties in polymer composites. However,for graphene-based composite materials, there are some main problemsstill waiting for resolve in its application of academia and industry, e.g.,preparation and functionalization of graphene, improving the dispersibilityof graphene and its derivative in polymer matrices, and enhancing interfaceinteraction between graphene nanosheets and polymer matrix. Therefore,we carried the research works around these above problems. In thisdissertation, we innovative utilized various implementation methods forpreparation and functionalization of graphene and further realized andexpanded the composite applications of graphene in composite materials.The details of research works are as follows:
     (1) Using a modified Hummers method, graphite oxide was obtained byoxidation of graphite. It can be exfoliated into graphene oxide (GO)nanosheets and formed uniform and stable GO aqueous dispersion with sonication. Through free-radical polymerization of acrylamide (AAm) andSA in the presence of GO in aqueous system followed with ionicallycrosslinking of calcium ions, a novel graphene oxide (GO)/sodium alginate(SA)/polyacrylamide (PAM)(GSP) ternary nanocomposite hydrogel withexcellent mechanical performance have been fabricated. As-preparedGO/SA/PAM (weight ratio SA/AAm=1/2) ternary nanocompositehydrogel with5wt%of GO displays a compressive stress as high as1.543MPa at the compressive deformation of70%. The tensile strength andmodulus of the hydrogel achieved~201.7and~30.8kPa, respectively.Meantime, the GSP nanocomposite hydrogels can recover a largeproportion of elongation at break and exhibit the good elasticity.Additionally, the GSP ternary nanocomposite hydrogel exhibitedgood adsorption properties for water-soluble dyes.
     (2) Multiwalled carbon nanotubes (MWNTs) have been widely used asnanofillers for polymer reinforcement. However, it has been restricted bythe limited available interface area of MWNTs in the polymer matrices.Oxidation unzipping of MWNTs is an effective way to solve this problem.Unzipped multiwalled carbon nanotube oxides (UMCNOs) obtained byoxidation unzipping MWNTs were used as novel nanofillers formechanical reinforcement of chitosan (CS) matrix. The UMCNOs/CSnanocomposite films with different amounts of UMCNOs were fabricatedby solution-casting the mixtures of UMCNOs and CS acetic acid aqueousdispersions. The structures and mechanical properties of thenanocomposite films were characterized by XRD, FT-IR, SEM, and tensiletests. The results demonstrated that Compared to neat chitosan, theUMCNOs/CS nanocomposite films showed~105.9%increase in tensilestrength from69.3to142.7MPa, and~165.3%increase in Young’s modulus from2.6to6.9GPa with incorporation of only0.2wt%ofUMCNOs into the chitosan matrix.
     (3) The unzipped multiwalled carbon nanotube oxides (UMCNOs)exhibit excellent enhancement effect with low weight fractions, butagglomeration of UMCNOs at a relatively higher loading still hamperedthe mechanical reinforcement of polymer composites. We interestinglyfound that the dispersion of UMCNOs in polymer matrices can besignificantly improved with the combination of pristine MWNTs. Thehybrids of MWNTs and UMCNOs (U/Ms) can be easily obtained byadding the pristine MWNTs into the UMCNOs aqueous dispersionfollowed with sonication. With π-stacking interaction, the UMCNOs wereattached onto outwalls of MWNTs. The mechanical testing of the resultantpoly (vinyl alcohol)-based composites demonstrated that the U/Ms can beused as ideal reinforcing fillers. Compared to poly (vinyl alcohol)(PVA),the yield strength and Young’s modulus of U/Ms-PVA composites with aloading of0.7wt%of the U/Ms approached~145.8MPa and6.9GPa,which are increases of~107.4%and~122.5%, respectively. Thereinforcement effect of U/Ms is superior to the individual UMCNOs andMWNTs due to the synergistic interaction of UMCNOs and MWNTs.
     (4) The bulk aramid macroscale fibers can be effectively split intoaramid nanofibers (ANFs) in dissolution of dimethylsulfoxide (DMSO)with the presence of potassium hydroxide (KOH). We first introduced theANFs into the structure of graphene nanosheets through noncovalentfunctionalization with π-π stacking interaction. Aramid nanofibersfunctionalized graphene sheets (ANFGS) were successfully obtained byadding the graphene oxide (GO)/DMSO dispersion into the ANFs/DMSOsolution followed with the reduction of hydrazine hydrate. Combining the two ultra-strong materials, ANFs and graphene nanosheets (GS), theANFGS can be acted as novel nanofillers for polymer reinforcement.ANFGS can be used as ideal nanofillers for reinforcing the mechanicalproperties of poly (methyl methacrylate)(PMMA). With loading of0.7wt%of ANFGS, the tensile strength and Young’s modulus of ANFGS/PMMAcomposite film approached63.2MPa and3.42GPa, increased by~84.5%and~70.6%respectively. The thermal stabilities of ANFGS/PMMAcomposite films were improved with addition of ANFGS. Additionally, thetransparencies of ANFGS/PMMA composite films have a certain degreeof UV-shielding effect due to the ultraviolet light absorption of ANFs inANFGS.
     (5) Based on the method of direct liquid-phase graphene exfoliation,we present a green and facile way for preparing graphene–Ag nanohybridsassisted with gum arabic (GA). GA functionalized graphene sheets (GA-G) were prepared by directly exfoliating graphite flakes in the gum arabic(GA) aqueous solution with sonication. After sonication for8h, the CGScan run up to0.69mg mL-1with the initial graphite concentration of140mg/mL and GA concentration of100mg mL-1. The distributions of thelateral dimensions and thickness for graphene flakes were mainlyconcentrated at the range of0.5-2μm2and2-6nm, respectively. The silverions can be directly reduced and immobilized on the surface of GA-Gnanosheets by GA. The Ag/GA-G hybrid materials can be used as suitablesubstrates of surface-enhanced Raman spectroscopy (SERS) for detectionof4-aminothiophenol (4-ATP) at detectable level of concentration of10-6M in aqueous environment.
     (6) Glycidyl methacrylate-modified gum arabic (GMA-GA) wasobtained by chemically modification of gum arabic (GA) with glycidyl methacrylate (GMA). Through two different pathway reactions, epoxyring-opening and transesterification, the vinyl groups of C=C coming fromGMA were coupled onto the polysaccharide structure of GA. Aftermodification, the GMA-GA can still be used for liquid-phase directexfoliation of graphite. With assist of GMA-GA, the maximumconcentration of graphene flakes can reach~1.12mg/mL. Using thistechnique, GMGS can be easily obtained by centrifugal separation aftersonication. The functionalized graphene flakes, coupled with vinyl groupscoming from the GMA-GA were introduced into poly (acrylic acid)(PAA)hydrogel through in situ polymerization for enhancing the mechanicalproperty of hydrogels. Compared to PAA hydrogel, the compressivestrength and elastic modulus of GMGS/PAA composite hydrogel with5wt%of functionalized graphene flakes reach~49.2and~66.9kPa, increasedby~846.1%and~243.7%, respectively.
引文
[1] Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E., C60:buckminsterfullerene. Nature1985,318,(6042),162-163.
    [2] Iijima, S., Helical microtubules of graphitic carbon. Nature1991,354,(6348),56-58.
    [3] Geim, A. K., Graphene: Status and Prospects. Science2009,324,(5934),1530-1534.
    [4] Novoselov, K. S.; Geim, A. K.; Morozov, S.; Jiang, D.; Zhang, Y.; Dubonos, S.; Grigorieva,I.; Firsov, A., Electric field effect in atomically thin carbon films. Science2004,306,(5696),666-669.
    [5] Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Potts, J. R.; Ruoff, R. S., Graphene andGraphene Oxide: Synthesis, Properties, and Applications. Adv Mater2010,22,(35),3906-3924.
    [6] Fasolino, A.; Los, J. H.; Katsnelson, M. I., Intrinsic ripples in graphene. Nat Mater2007,6,(11),858-861.
    [7] Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S., Thestructure of suspended graphene sheets. Nature2007,446,(7131),60-63.
    [8] Stolyarova, E.; Rim, K. T.; Ryu, S.; Maultzsch, J.; Kim, P.; Brus, L. E.; Heinz, T. F.; Hybertsen,M. S.; Flynn, G. W., High-resolution scanning tunneling microscopy imaging of mesoscopicgraphene sheets on an insulating surface. Proc Natl Acad Sci2007,104,(22),9209-9212.
    [9] Deshpande, A.; Bao, W.; Miao, F.; Lau, C. N.; LeRoy, B. J., Spatially resolved spectroscopyof monolayer graphene on SiO2. Phys Rev B2009,79,(20),205411.
    [10] Zhang, Y.; Brar, V. W.; Girit, C.; Zettl, A.; Crommie, M. F., Origin of spatial chargeinhomogeneity in graphene. Nat Phys2009,5,(10),722-726.
    [11] Inagaki, M.; Kim, Y. A.; Endo, M., Graphene: preparation and structural perfection. J MaterChem2011,21,(10),3280-3294.
    [12] Allen, M. J.; Tung, V. C.; Kaner, R. B., Honeycomb carbon: a review of graphene. Chem Rev2009,110,(1),132-145.
    [13] Hashimoto, A.; Suenaga, K.; Gloter, A.; Urita, K.; Iijima, S., Direct evidence for atomic defectsin graphene layers. Nature2004,430,(7002),870-873.
    [14] Bolotin, K. I.; Sikes, K.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H.,Ultrahigh electron mobility in suspended graphene. Solid State Commun2008,146,(9),351-355.
    [15] Nair, R.; Blake, P.; Grigorenko, A.; Novoselov, K.; Booth, T.; Stauber, T.; Peres, N.; Geim,A., Fine structure constant defines visual transparency of graphene. Science2008,320,(5881),1308-1308.
    [16] Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J.-H.; Kim, P.; Choi,J.-Y.; Hong, B. H., Large-scale pattern growth of graphene films for stretchable transparentelectrodes. Nature2009,457,(7230),706-710.
    [17] Huang, X.; Yin, Z.; Wu, S.; Qi, X.; He, Q.; Zhang, Q.; Yan, Q.; Boey, F.; Zhang, H., Graphene-Based Materials: Synthesis, Characterization, Properties, and Applications. Small2011,7,(14),1876-1902.
    [18] Geim, A. K.; Novoselov, K. S., The rise of graphene. Nat Mater2007,6,(3),183-191.
    [19] Novoselov, K.; Jiang, D.; Schedin, F.; Booth, T.; Khotkevich, V.; Morozov, S.; Geim, A., Two-dimensional atomic crystals. Proc Natl Acad Sci2005,102,(30),10451-10453.
    [20] Novoselov, K. S.; Jiang, Z.; Zhang, Y.; Morozov, S.; Stormer, H.; Zeitler, U.; Maan, J.;Boebinger, G.; Kim, P.; Geim, A., Room-temperature quantum Hall effect in graphene. Science2007,315,(5817),1379-1379.
    [21] Zhang, Y.; Tan, Y.-W.; Stormer, H. L.; Kim, P., Experimental observation of the quantum Halleffect and Berry's phase in graphene. Nature2005,438,(7065),201-204.
    [22] Hwang, E.; Adam, S.; Sarma, S. D., Carrier transport in two-dimensional graphene layers. PhysRev Lett2007,98,(18),186806.
    [23] Nomura, K.; MacDonald, A. H., Quantum Hall ferromagnetism in graphene. Phys Rev Lett2006,96,(25),256602.
    [24] Chen, J.-H.; Jang, C.; Xiao, S.; Ishigami, M.; Fuhrer, M. S., Intrinsic and extrinsic performancelimits of graphene devices on SiO2. Nat Nanotechnol2008,3,(4),206-209.
    [25] Meyer, J. C.; Geim, A.; Katsnelson, M.; Novoselov, K.; Booth, T.; Roth, S., The structure ofsuspended graphene sheets. Nature2007,446,(7131),60-63.
    [26] Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.;Song, Y. I.; Kim, Y.-J.; Kim, K. S.; Ozyilmaz, B.; Ahn, J.-H.; Hong, B. H.; Iijima, S., Roll-to-roll production of30-inch graphene films for transparent electrodes. Nat Nano2010,5,(8),574-578.
    [27] Kravets, V.; Grigorenko, A.; Nair, R.; Blake, P.; Anissimova, S.; Novoselov, K.; Geim, A.,Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption.Phys Rev B2010,81,(15),155413.
    [28] Wang, F.; Zhang, Y.; Tian, C.; Girit, C.; Zettl, A.; Crommie, M.; Shen, Y. R., Gate-variableoptical transitions in graphene. Science2008,320,(5873),206-209.
    [29] Li, Z.; Henriksen, E. A.; Jiang, Z.; Hao, Z.; Martin, M. C.; Kim, P.; Stormer, H.; Basov, D. N.,Dirac charge dynamics in graphene by infrared spectroscopy. Nat Phys2008,4,(7),532-535.
    [30] Xia, F.; Mueller, T.; Golizadeh-Mojarad, R.; Freitag, M.; Lin, Y. M.; Tsang, J.; Perebeinos, V.;Avouris, P., Photocurrent imaging and efficient photon detection in a graphene transistor. NanoLett2009,9,(3),1039-1044.
    [31] Rana, F.; George, P. A.; Strait, J. H.; Dawlaty, J.; Shivaraman, S.; Chandrashekhar, M.;Spencer, M. G., Carrier recombination and generation rates for intravalley and intervalleyphonon scattering in graphene. Phys Rev B2009,79,(11),115447.
    [32] Mueller, T.; Xia, F.; Freitag, M.; Tsang, J.; Avouris, P., Role of contacts in graphene transistors:A scanning photocurrent study. Phys Rev B2009,79,(24),245430.
    [33] Lee, E. J.; Balasubramanian, K.; Weitz, R. T.; Burghard, M.; Kern, K., Contact and edge effectsin graphene devices. Nat Nanotechnol2008,3,(8),486-490.
    [34] Elias, D.; Nair, R.; Mohiuddin, T.; Morozov, S.; Blake, P.; Halsall, M.; Ferrari, A.; Boukhvalov,D.; Katsnelson, M.; Geim, A., Control of graphene's properties by reversible hydrogenation:evidence for graphane. Science2009,323,(5914),610-613.
    [35] Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A., Graphene photonics and optoelectronics. NatPhotonics2010,4,(9),611-622.
    [36] Gokus, T.; Nair, R.; Bonetti, A.; Bohmler, M.; Lombardo, A.; Novoselov, K.; Geim, A.; Ferrari,A.; Hartschuh, A., Making graphene luminescent by oxygen plasma treatment. ACS Nano2009,3,(12),3963-3968.
    [37] Sheats, J. R.; Antoniadis, H.; Hueschen, M.; Leonard, W.; Miller, J.; Moon, R.; Roitman, D.;Stocking, A., Organic electroluminescent devices. Science1996,273,(5277),884-888.
    [38] Rothberg, L. J.; Lovinger, A. J., Status of and prospects for organic electroluminescence. J.Mater Res1996,11,(12),3174-3187.
    [39] Eda, G.; Lin, Y. Y.; Mattevi, C.; Yamaguchi, H.; Chen, H. A.; Chen, I.; Chen, C. W.;Chhowalla, M., Blue photoluminescence from chemically derived graphene oxide. Adv Mater2010,22,(4),505-509.
    [40] Gusynin, V.; Sharapov, S., Unconventional integer quantum Hall effect in graphene. Phys RevLett2005,95,(14),146801.
    [41] Bolotin, K. I.; Ghahari, F.; Shulman, M. D.; Stormer, H. L.; Kim, P., Observation of thefractional quantum Hall effect in graphene. Nature2009,462,(7270),196-199.
    [42] Williams, J.; Dicarlo, L.; Marcus, C., Quantum Hall effect in a gate-controlled pn junction ofgraphene. Science2007,317,(5838),638-641.
    [43] Du, X.; Skachko, I.; Duerr, F.; Luican, A.; Andrei, E. Y., Fractional quantum Hall effect andinsulating phase of Dirac electrons in graphene. Nature2009,462,(7270),192-195.
    [44] Hytch, M.; Houdellier, F.; Hue, F.; Snoeck, E., Nanoscale holographic interferometry for strainmeasurements in electronic devices. Nature2008,453,(7198),1086-1089.
    [45] Schwierz, F., Graphene transistors. Nat Nano2010,5,(7),487-496.
    [46] Lee, C.; Wei, X.; Kysar, J. W.; Hone, J., Measurement of the elastic properties and intrinsicstrength of monolayer graphene. Science2008,321,(5887),385-388.
    [47] Tsoukleri, G.; Parthenios, J.; Papagelis, K.; Jalil, R.; Ferrari, A. C.; Geim, A. K.; Novoselov,K. S.; Galiotis, C., Subjecting a graphene monolayer to tension and compression. Small2009,5,(21),2397-2402.
    [48] Lee, C.; Wei, X.; Li, Q.; Carpick, R.; Kysar, J. W.; Hone, J., Elastic and frictional propertiesof graphene. Physica status solidi (b)2009,246,(11‐12),2562-2567.
    [49] Yu, T.; Ni, Z.; Du, C.; You, Y.; Wang, Y.; Shen, Z., Raman mapping investigation of grapheneon transparent flexible substrate: The strain effect. J Phys Chem C2008,112,(33),12602-12605.
    [50] Ni, Z.; Chen, W.; Fan, X.; Kuo, J.; Yu, T.; Wee, A.; Shen, Z., Raman spectroscopy of epitaxialgraphene on a SiC substrate. Phys Rev B2008,77,(11),115416.
    [51] Ni, Z. H.; Wang, H. M.; Ma, Y.; Kasim, J.; Wu, Y. H.; Shen, Z. X., Tunable stress andcontrolled thickness modification in graphene by annealing. ACS Nano2008,2,(5),1033-1039.
    [52] Ni, Z. H.; Yu, T.; Lu, Y. H.; Wang, Y. Y.; Feng, Y. P.; Shen, Z. X., Uniaxial strain on graphene:Raman spectroscopy study and band-gap opening. ACS Nano2008,2,(11),2301-2305.
    [53] Mohiuddin, T.; Lombardo, A.; Nair, R.; Bonetti, A.; Savini, G.; Jalil, R.; Bonini, N.; Basko,D.; Galiotis, C.; Marzari, N., Uniaxial strain in graphene by Raman spectroscopy: G peaksplitting, Grüneisen parameters, and sample orientation. Phy Rev B2009,79,(20),205433.
    [54] Ghosh, S.; Calizo, I.; Teweldebrhan, D.; Pokatilov, E.; Nika, D.; Balandin, A.; Bao, W.; Miao,F.; Lau, C. N., Extremely high thermal conductivity of graphene: Prospects for thermalmanagement applications in nanoelectronic circuits. Appl Phys Lett2008,92,151911.
    [55] Kim, P.; Shi, L.; Majumdar, A.; McEuen, P., Thermal transport measurements of individualmultiwalled nanotubes. Phys Rev Lett2001,87,(21),215502.
    [56] Pop, E.; Mann, D.; Wang, Q.; Goodson, K.; Dai, H., Thermal conductance of an individualsingle-wall carbon nanotube above room temperature. Nano Lett2006,6,(1),96-100.
    [57] Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N.,Superior thermal conductivity of single-layer graphene. Nano Lett2008,8,(3),902-907.
    [58] Klemens, P., Theory of thermal conduction in thin ceramic films. Int J Thermophys2001,22,(1),265-275.
    [59] Nika, D.; Pokatilov, E.; Askerov, A.; Balandin, A., Phonon thermal conduction in graphene:Role of Umklapp and edge roughness scattering. Phys Rev B2009,79,(15),155413.
    [60] Jiang, J.-W.; Lan, J.; Wang, J.-S.; Li, B., Isotopic effects on the thermal conductivity ofgraphene nanoribbons: Localization mechanism. J Appl Phys2010,107,(5),054314-054314-5.
    [61] Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S. I.; Seal, S., Graphene based materials:past, present and future. Prog Mater Sci2011,56,(8),1178-1271.
    [62] Seol, J. H.; Jo, I.; Moore, A. L.; Lindsay, L.; Aitken, Z. H.; Pettes, M. T.; Li, X.; Yao, Z.;Huang, R.; Broido, D., Two-dimensional phonon transport in supported graphene. Science2010,328,(5975),213-216.
    [63] Schwamb, T.; Burg, B. R.; Schirmer, N. C.; Poulikakos, D., An electrical method for themeasurement of the thermal and electrical conductivity of reduced graphene oxidenanostructures. Nanotechnology2009,20,(40),405704.
    [64] Varchon, F.; Feng, R.; Hass, J.; Li, X.; Nguyen, B. N.; Naud, C.; Mallet, P.; Veuillen, J.-Y.;Berger, C.; Conrad, E., Electronic structure of epitaxial graphene layers on SiC: effect of thesubstrate. Phys Rev Lett2007,99,(12),126805.
    [65] Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.;Nguyen, S. T.; Ruoff, R. S., Synthesis of graphene-based nanosheets via chemical reductionof exfoliated graphite oxide. Carbon2007,45,(7),1558-1565.
    [66] Kosynkin, D. V.; Higginbotham, A. L.; Sinitskii, A.; Lomeda, J. R.; Dimiev, A.; Price, B. K.;Tour, J. M., Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons.Nature2009,458,(7240),872-876.
    [67] Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z.; De, S.; McGovern, I.; Holland,B.; Byrne, M.; Gun'Ko, Y. K., High-yield production of graphene by liquid-phase exfoliationof graphite. Nat Nanotechnol2008,3,(9),563-568.
    [68] May, J. W., Platinum surface LEED rings. Surf Sci1969,17,(1),267-270.
    [69] Shelton, J.; Patil, H.; Blakely, J., Equilibrium segregation of carbon to a nickel (111) surface:A surface phase transition. Surf Sci1974,43,(2),493-520.
    [70] Eizenberg, M.; Blakely, J., Carbon monolayer phase condensation on Ni (111). Surf Sci1979,82,(1),228-236.
    [71] Somani, P. R.; Somani, S. P.; Umeno, M., Planer nano-graphenes from camphor by CVD.Chem Phys Lett2006,430,(1),56-59.
    [72] Cao, H.; Yu, Q.; Colby, R.; Pandey, D.; Park, C.; Lian, J.; Zemlyanov, D.; Childres, I.; Drachev,V.; Stach, E. A., Large-scale graphitic thin films synthesized on Ni and transferred to insulators:Structural and electronic properties. J Appl Phys2010,107,(4),044310-044310-7.
    [73] Bhaviripudi, S.; Jia, X.; Dresselhaus, M. S.; Kong, J., Role of kinetic factors in chemical vapordeposition synthesis of uniform large area graphene using copper catalyst. Nano Lett2010,10,(10),4128-4133.
    [74] Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc,E., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science2009,324,(5932),1312-1314.
    [75] Chae, S. J.; Güne, F.; Kim, K. K.; Kim, E. S.; Han, G. H.; Kim, S. M.; Shin, H. J.; Yoon, S.M.; Choi, J. Y.; Park, M. H., Synthesis of Large-Area Graphene Layers on Poly-NickelSubstrate by Chemical Vapor Deposition: Wrinkle Formation. Adv Mater2009,21,(22),2328-2333.
    [76] Lee, S.; Lee, K.; Zhong, Z., Wafer scale homogeneous bilayer graphene films by chemicalvapor deposition. Nano Lett2010,10,(11),4702-4707.
    [77] Lee, Y.; Bae, S.; Jang, H.; Jang, S.; Zhu, S.-E.; Sim, S. H.; Song, Y. I.; Hong, B. H.; Ahn, J.-H., Wafer-scale synthesis and transfer of graphene films. Nano Lett2010,10,(2),490-493.
    [78] Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J., Largearea, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett2008,9,(1),30-35.
    [79] Li, X.; Cai, W.; Colombo, L.; Ruoff, R. S., Evolution of graphene growth on Ni and Cu bycarbon isotope labeling. Nano Lett2009,9,(12),4268-4272.
    [80] Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.;Song, Y. I., Roll-to-roll production of30-inch graphene films for transparent electrodes. NatNanotechnol2010,5,(8),574-578.
    [81] Forbeaux, I.; Themlin, J.-M.; Debever, J.-M., Heteroepitaxial graphite on6H-SiC (0001):Interface formation through conduction-band electronic structure. Phys Rev B1998,58,(24),16396.
    [82] Hass, J.; De Heer, W.; Conrad, E., The growth and morphology of epitaxial multilayergraphene. J Phys: Condens Matter2008,20,(32),323202.
    [83] De Heer, W. A.; Berger, C.; Wu, X.; First, P. N.; Conrad, E. H.; Li, X.; Li, T.; Sprinkle, M.;Hass, J.; Sadowski, M. L., Epitaxial graphene. Solid State Commun2007,143,(1),92-100.
    [84] Penuelas, J.; Ouerghi, A.; Lucot, D.; David, C.; Gierak, J.; Estrade-Szwarckopf, H.;Andreazza-Vignolle, C., Surface morphology and characterization of thin graphene films onSiC vicinal substrate. Phys Rev B2009,79,(3),033408.
    [85] Tedesco, J. L.; Jernigan, G. G.; Culbertson, J. C.; Hite, J. K.; Yang, Y.; Daniels, K. M.; Myers-Ward, R. L.; Eddy, C.; Robinson, J. A.; Trumbull, K. A., Morphology characterization ofargon-mediated epitaxial graphene on C-face SiC. Appl Phys Lett2010,96,(22),222103-222103-3.
    [86] Emtsev, K. V.; Bostwick, A.; Horn, K.; Jobst, J.; Kellogg, G. L.; Ley, L.; McChesney, J. L.;Ohta, T.; Reshanov, S. A.; R hrl, J., Towards wafer-size graphene layers by atmosphericpressure graphitization of silicon carbide. Nat Mater2009,8,(3),203-207.
    [87] Stankovich, S.; Dikin, D. A.; Dommett, G. H.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.;Piner, R. D.; Nguyen, S. T.; Ruoff, R. S., Graphene-based composite materials. Nature2006,442,(7100),282-286.
    [88] AngeláRodriguez-Perez, M.; de Saja, J.; AngeláLopez-Manchado, M., Functionalizedgraphene sheet filled silicone foam nanocomposites. J Mater Chem2008,18,(19),2221-2226.
    [89] Schniepp, H. C.; Li, J.-L.; McAllister, M. J.; Sai, H.; Herrera-Alonso, M.; Adamson, D. H.;Prud'homme, R. K.; Car, R.; Saville, D. A.; Aksay, I. A., Functionalized single graphene sheetsderived from splitting graphite oxide. J Phys Chem B2006,110,(17),8535-8539.
    [90] Gilje, S.; Han, S.; Wang, M.; Wang, K. L.; Kaner, R. B., A chemical route to graphene fordevice applications. Nano Lett.2007,7,(11),3394-3398.
    [91] Gómez-Navarro, C.; Weitz, R. T.; Bittner, A. M.; Scolari, M.; Mews, A.; Burghard, M.; Kern,K., Electronic transport properties of individual chemically reduced graphene oxide sheets.Nano Lett.2007,7,(11),3499-3503.
    [92] Hummers Jr, W. S.; Offeman, R. E., Preparation of graphitic oxide. J Am Chem Soc1958,80,(6),1339-1339.
    [93] Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H.; Evmenenko, G.;Nguyen, S. T.; Ruoff, R. S., Preparation and characterization of graphene oxide paper. Nature2007,448,(7152),457-460.
    [94] Cai, W.; Piner, R. D.; Stadermann, F. J.; Park, S.; Shaibat, M. A.; Ishii, Y.; Yang, D.;Velamakanni, A.; An, S. J.; Stoller, M., Synthesis and solid-state NMR structuralcharacterization of13C-labeled graphite oxide. Science2008,321,(5897),1815-1817.
    [95] Gao, W.; Alemany, L. B.; Ci, L.; Ajayan, P. M., New insights into the structure and reductionof graphite oxide. Nat Chem2009,1,(5),403-408.
    [96] Moon, I. K.; Lee, J.; Ruoff, R. S.; Lee, H., Reduced graphene oxide by chemical graphitization.Nat commun2010,1,73.
    [97] Paredes, J.; Villar-Rodil, S.; Martinez-Alonso, A.; Tascon, J., Graphene oxide dispersions inorganic solvents. Langmuir2008,24,(19),10560-10564.
    [98] Li, D.; Mueller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G., Processable aqueous dispersionsof graphene nanosheets. Nat Nanotechnol2008,3,(2),101-105.
    [99] Li, W.; Tang, X.-Z.; Zhang, H.-B.; Jiang, Z.-G.; Yu, Z.-Z.; Du, X.-S.; Mai, Y.-W.,Simultaneous surface functionalization and reduction of graphene oxide with octadecylaminefor electrically conductive polystyrene composites. Carbon2011,49,(14),4724-4730.
    [100] Stankovich, S.; Piner, R. D.; Chen, X.; Wu, N.; Nguyen, S. T.; Ruoff, R. S., Stable aqueousdispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in thepresence of poly (sodium4-styrenesulfonate). J Mater Chem2006,16,(2),155-158.
    [101] Wang, H.; Robinson, J. T.; Li, X.; Dai, H., Solvothermal reduction of chemically exfoliatedgraphene sheets. J Am Chem Soc2009,131,(29),9910-9911.
    [102] Park, S.; Ruoff, R. S., Chemical methods for the production of graphenes. Nat Nanotechnol2009,4,(4),217-224.
    [103] Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.;Piner, R. D.; Nguyen, S. T.; Ruoff, R. S., Graphene-based composite materials. Nature2006,442,(7100),282-286.
    [104] Shin, H. J.; Kim, K. K.; Benayad, A.; Yoon, S. M.; Park, H. K.; Jung, I. S.; Jin, M. H.; Jeong,H. K.; Kim, J. M.; Choi, J. Y., Efficient reduction of graphite oxide by sodium borohydrideand its effect on electrical conductance. Adv Funct Mater2009,19,(12),1987-1992.
    [105] Wang, G.; Yang, J.; Park, J.; Gou, X.; Wang, B.; Liu, H.; Yao, J., Facile Synthesis andCharacterization of Graphene Nanosheets. J Phys Chem C2008,112,(22),8192-8195.
    [106] Bourlinos, A. B.; Gournis, D.; Petridis, D.; Szabó, T.; Szeri, A.; Dékány, I., Graphite oxide:chemical reduction to graphite and surface modification with primary aliphatic amines andamino acids. Langmuir2003,19,(15),6050-6055.
    [107] Wang, S.; Chia, P. J.; Chua, L. L.; Zhao, L. H.; Png, R. Q.; Sivaramakrishnan, S.; Zhou, M.;Goh, R. G. S.; Friend, R. H.; Wee, A. T. S., Band-like Transport in Surface-FunctionalizedHighly Solution‐Processable Graphene Nanosheets. Adv Mater2008,20,(18),3440-3446.
    [108] Wu, Z.-S.; Ren, W.; Gao, L.; Liu, B.; Jiang, C.; Cheng, H.-M., Synthesis of high-qualitygraphene with a pre-determined number of layers. Carbon2009,47,(2),493-499.
    [109] Fan, X.; Peng, W.; Li, Y.; Li, X.; Wang, S.; Zhang, G.; Zhang, F., Deoxygenation of exfoliatedgraphite oxide under alkaline conditions: a green route to graphene preparation. Adv Mater2008,20,(23),4490-4493.
    [110] Liang, Y.; Wang, H.; Casalongue, H. S.; Chen, Z.; Dai, H., TiO2nanocrystals grown ongraphene as advanced photocatalytic hybrid materials. Nano Research2010,3,(10),701-705.
    [111] Dubin, S.; Gilje, S.; Wang, K.; Tung, V. C.; Cha, K.; Hall, A. S.; Farrar, J.; Varshneya, R.;Yang, Y.; Kaner, R. B., A one-step, solvothermal reduction method for producing reducedgraphene oxide dispersions in organic solvents. ACS Nano2010,4,(7),3845-3852.
    [112] Coleman, J. N.; Khan, U.; Blau, W. J.; Gun’ko, Y. K., Small but strong: a review of themechanical properties of carbon nanotube–polymer composites. Carbon2006,44,(9),1624-1652.
    [113] Li, X.; Wang, X.; Zhang, L.; Lee, S.; Dai, H., Chemically derived, ultrasmooth graphenenanoribbon semiconductors. Science2008,319,(5867),1229-1232.
    [114] Kosynkin, D. V.; Lu, W.; Sinitskii, A.; Pera, G.; Sun, Z.; Tour, J. M., Highly conductivegraphene nanoribbons by longitudinal splitting of carbon nanotubes using potassium vapor.ACS nano2011,5,(2),968-974.
    [115] Wang, H.; Robinson, J. T.; Diankov, G.; Dai, H., Nanocrystal growth on graphene with variousdegrees of oxidation. J Am Chem Soc2010,132,(10),3270-3271.
    [116] Yang, S.; Feng, X.; Ivanovici, S.; Müllen, K., Fabrication of Graphene‐Encapsulated OxideNanoparticles: Towards High-Performance Anode Materials for Lithium Storage. AngewChem Int Ed2010,49,(45),8408-8411.
    [117] Li, F.; Song, J.; Yang, H.; Gan, S.; Zhang, Q.; Han, D.; Ivaska, A.; Niu, L., One-step synthesisof graphene/SnO2nanocomposites and its application in electrochemical supercapacitors.Nanotechnology2009,20,(45),455602.
    [118] Xu, C.; Wang, X.; Zhu, J., Graphene metal particle nanocomposites. J Phys Chem C2008,112,(50),19841-19845.
    [119] Zhou, X.; Huang, X.; Qi, X.; Wu, S.; Xue, C.; Boey, F. Y.; Yan, Q.; Chen, P.; Zhang, H., Insitu synthesis of metal nanoparticles on single-layer graphene oxide and reduced grapheneoxide surfaces. J Phys Chem C2009,113,(25),10842-10846.
    [120] Wang, H.; Cui, L.-F.; Yang, Y.; Sanchez Casalongue, H.; Robinson, J. T.; Liang, Y.; Cui, Y.;Dai, H., Mn3O4graphene hybrid as a high-capacity anode material for lithium ion batteries.J Am Chem Soc2010,132,(40),13978-13980.
    [121] Chen, C.; Cai, W.; Long, M.; Zhou, B.; Wu, Y.; Wu, D.; Feng, Y., Synthesis of visible-lightresponsive graphene oxide/TiO2composites with p/n heterojunction. ACS Nano2010,4,(11),6425-6432.
    [122] Chang, H.; Lv, X.; Zhang, H.; Li, J., Quantum dots sensitized graphene: In situ growth andapplication in photoelectrochemical cells. Electrochem Commun2010,12,(3),483-487.
    [123] Pan, D.; Zhang, J.; Li, Z.; Wu, M., Hydrothermal Route for Cutting Graphene Sheets intoBlue‐Luminescent Graphene Quantum Dots. Adv Mater2010,22,(6),734-738.
    [124] Manga, K. K.; Wang, S.; Jaiswal, M.; Bao, Q.; Loh, K. P., High‐Gain Graphene‐TitaniumOxide Photoconductor Made from Inkjet Printable Ionic Solution. Adv Mater2010,22,(46),5265-5270.
    [125] Kim, S. R.; Parvez, M. K.; Chhowalla, M., UV-reduction of graphene oxide and its applicationas an interfacial layer to reduce the back-transport reactions in dye-sensitized solar cells. ChemPhys Lett2009,483,(1),124-127.
    [126] Chunder, A.; Pal, T.; Khondaker, S. I.; Zhai, L., Reduced graphene oxide/copperphthalocyanine composite and its optoelectrical properties. J Phys Chem C2010,114,(35),15129-15135.
    [127] Hwang, J. O.; Lee, D. H.; Kim, J. Y.; Han, T. H.; Kim, B. H.; Park, M.; No, K.; Kim, S. O.,Vertical ZnO nanowires/graphene hybrids for transparent and flexible field emission. J MaterChem2011,21,(10),3432-3437.
    [128] Lightcap, I. V.; Kosel, T. H.; Kamat, P. V., Anchoring semiconductor and metal nanoparticleson a two-dimensional catalyst mat. Storing and shuttling electrons with reduced graphene oxide.Nano Lett2010,10,(2),577-583.
    [129] Xu, C.; Wang, X.; Zhu, J.; Yang, X.; Lu, L., Deposition of Co3O4nanoparticles onto exfoliatedgraphite oxide sheets. J Mater Chem2008,18,(46),5625-5629.
    [130] Akhavan, O.; Ghaderi, E., Photocatalytic reduction of graphene oxide nanosheets on TiO2thinfilm for photoinactivation of bacteria in solar light irradiation. J Phys Chem C2009,113,(47),20214-20220.
    [131] Wu, Z. S.; Wang, D. W.; Ren, W.; Zhao, J.; Zhou, G.; Li, F.; Cheng, H. M., Anchoring HydrousRuO2on Graphene Sheets for High-Performance Electrochemical Capacitors. Adv FunctMater2010,20,(20),3595-3602.
    [132] Dong, H.; Gao, W.; Yan, F.; Ji, H.; Ju, H., Fluorescence resonance energy transfer betweenquantum dots and graphene oxide for sensing biomolecules. Anal Chem2010,82,(13),5511-5517.
    [133] Williams, G.; Seger, B.; Kamat, P. V., TiO2-graphene nanocomposites. UV-assistedphotocatalytic reduction of graphene oxide. ACS Nano2008,2,(7),1487-1491.
    [134] Watcharotone, S.; Dikin, D. A.; Stankovich, S.; Piner, R.; Jung, I.; Dommett, G. H.;Evmenenko, G.; Wu, S.-E.; Chen, S.-F.; Liu, C.-P., Graphene-silica composite thin films astransparent conductors. Nano Lett.2007,7,(7),1888-1892.
    [135] Wang, P.; Jiang, T.; Zhu, C.; Zhai, Y.; Wang, D.; Dong, S., One-step, solvothermal synthesisof graphene-CdS and graphene-ZnS quantum dot nanocomposites and their interestingphotovoltaic properties. Nano Research2010,3,(11),794-799.
    [136] Cao, A.; Liu, Z.; Chu, S.; Wu, M.; Ye, Z.; Cai, Z.; Chang, Y.; Wang, S.; Gong, Q.; Liu, Y., AFacile One‐step Method to Produce Graphene–CdS Quantum Dot Nanocomposites asPromising Optoelectronic Materials. Adv Mater2010,22,(1),103-106.
    [137] Wang, D.; Choi, D.; Li, J.; Yang, Z.; Nie, Z.; Kou, R.; Hu, D.; Wang, C.; Saraf, L. V.; Zhang,J., Self-assembled TiO2–graphene hybrid nanostructures for enhanced Li-ion insertion. ACSnano2009,3,(4),907-914.
    [138] Akhavan, O.; Abdolahad, M.; Esfandiar, A.; Mohatashamifar, M., Photodegradation ofgraphene oxide sheets by TiO2nanoparticles after a photocatalytic reduction. J Phys Chem C2010,114,(30),12955-12959.
    [139] Carotenuto, G.; Romeo, V.; Cannavaro, I.; Roncato, D.; Martorana, B.; Gosso, M. InGraphene-polymer composites, IOP Conference Series: Materials Science and Engineering,2012; IOP Publishing:2012; p012018.
    [140] Herrera-Alonso, M.; Abdala, A. A.; McAllister, M. J.; Aksay, I. A.; Prud'homme, R. K.,Intercalation and stitching of graphite oxide with diaminoalkanes. Langmuir2007,23,(21),10644-10649.
    [141] Wang, G.; Shen, X.; Wang, B.; Yao, J.; Park, J., Synthesis and characterisation of hydrophilicand organophilic graphene nanosheets. Carbon2009,47,(5),1359-1364.
    [142] Ramanathan, T.; Abdala, A.; Stankovich, S.; Dikin, D.; Herrera-Alonso, M.; Piner, R.;Adamson, D.; Schniepp, H.; Chen, X.; Ruoff, R., Functionalized graphene sheets for polymernanocomposites. Nat Nanotechnol2008,3,(6),327-331.
    [143] Xu, Y.; Bai, H.; Lu, G.; Li, C.; Shi, G., Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc2008,130,(18),5856-5857.
    [144] Hao, R.; Qian, W.; Zhang, L.; Hou, Y., Aqueous dispersions of TCNQ-anion-stabilizedgraphene sheets. Chem Commun2008,(48),6576-6578.
    [145] Xu, Y.; Liu, Z.; Zhang, X.; Wang, Y.; Tian, J.; Huang, Y.; Ma, Y.; Zhang, X.; Chen, Y., Agraphene hybrid material covalently functionalized with porphyrin: synthesis and opticallimiting property. Adv Mater2009,21,(12),1275-1279.
    [146] Yang, Y.; Wang, J.; Zhang, J.; Liu, J.; Yang, X.; Zhao, H., Exfoliated graphite oxide decoratedby PDMAEMA chains and polymer particles. Langmuir2009,25,(19),11808-11814.
    [147] Fang, M.; Wang, K.; Lu, H.; Yang, Y.; Nutt, S., Covalent polymer functionalization ofgraphene nanosheets and mechanical properties of composites. J Mater Chem2009,19,(38),7098-7105.
    [148] Gon alves, G.; Marques, P. A.; Barros-Timmons, A.; Bdkin, I.; Singh, M. K.; Emami, N.;Grácio, J., Graphene oxide modified with PMMA via ATRP as a reinforcement filler. J MaterChem2010,20,(44),9927-9934.
    [149] Salavagione, H. J.; Go mez, M. n. A.; Marti nez, G., Polymeric modification of graphenethrough esterification of graphite oxide and poly (vinyl alcohol). Macromolecules2009,42,(17),6331-6334.
    [150] Jiang, L.; Shen, X. P.; Wu, J. L.; Shen, K. C., Preparation and characterization of graphene/poly(vinyl alcohol) nanocomposites. J Appl Polym Sci2010,118,(1),275-279.
    [151] Liang, J.; Huang, Y.; Zhang, L.; Wang, Y.; Ma, Y.; Guo, T.; Chen, Y., Molecular‐LevelDispersion of Graphene into Poly (vinyl alcohol) and Effective Reinforcement of theirNanocomposites. Adv Funct Mater2009,19,(14),2297-2302.
    [152] Vadukumpully, S.; Paul, J.; Mahanta, N.; Valiyaveettil, S., Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability.Carbon2011,49,(1),198-205.
    [153] Kalaitzidou, K.; Fukushima, H.; Drzal, L. T., A new compounding method for exfoliatedgraphite–polypropylene nanocomposites with enhanced flexural properties and lowerpercolation threshold. Compos Sci Technol2007,67,(10),2045-2051.
    [154] Kim, H.; Macosko, C. W., Morphology and properties of polyester/exfoliated graphitenanocomposites. Macromolecules2008,41,(9),3317-3327.
    [155] Kim, H.; Macosko, C. W., Processing-property relationships of polycarbonate/graphenecomposites. Polymer2009,50,(15),3797-3809.
    [156] Jang, J. Y.; Kim, M. S.; Jeong, H. M.; Shin, C. M., Graphite oxide/poly (methyl methacrylate)nanocomposites prepared by a novel method utilizing macroazoinitiator. Compos Sci Technol2009,69,(2),186-191.
    [157] Huang, Y.; Qin, Y.; Zhou, Y.; Niu, H.; Yu, Z.-Z.; Dong, J.-Y., Polypropylene/Graphene oxidenanocomposites prepared by in situ Ziegler-natta polymerization. Chem Mater2010,22,(13),4096-4102.
    [158] Fim, F. d. C.; Guterres, J. M.; Basso, N. R.; Galland, G. B., Polyethylene/graphitenanocomposites obtained by in situ polymerization. J Polym Sci, Part A: Polym Chem2010,48,(3),692-698.
    [159] Chen, G.; Weng, W.; Wu, D.; Wu, C., PMMA/graphite nanosheets composite and itsconducting properties. Eur Polym J2003,39,(12),2329-2335.
    [160] Chen, G.; Wu, C.; Weng, W.; Wu, D.; Yan, W., Preparation of polystyrene/graphite nanosheetcomposite. Polymer2003,44,(6),1781-1784.
    [161] Yan, X.; Chen, J.; Yang, J.; Xue, Q.; Miele, P., Fabrication of free-standing, electrochemicallyactive, and biocompatible graphene oxide-polyaniline and graphene-polyaniline hybrid papers.ACS Appl Mater Interfaces2010,2,(9),2521-2529.
    [162] Yan, J.; Wei, T.; Fan, Z.; Qian, W.; Zhang, M.; Shen, X.; Wei, F., Preparation of graphenenanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors. JPower Sources2010,195,(9),3041-3045.
    [163] Wang, H.; Hao, Q.; Yang, X.; Lu, L.; Wang, X., Graphene oxide doped polyaniline forsupercapacitors. Electrochem Commun2009,11,(6),1158-1161.
    [164] Gómez-Navarro, C.; Meyer, J. C.; Sundaram, R. S.; Chuvilin, A.; Kurasch, S.; Burghard, M.;Kern, K.; Kaiser, U., Atomic structure of reduced graphene oxide. Nano Lett2010,10,(4),1144-1148.
    [165] Lee, S. H.; Dreyer, D. R.; An, J.; Velamakanni, A.; Piner, R. D.; Park, S.; Zhu, Y.; Kim, S. O.;Bielawski, C. W.; Ruoff, R. S., Polymer Brushes via Controlled, Surface-Initiated AtomTransfer Radical Polymerization (ATRP) from Graphene Oxide. Macromol Rapid Commun2010,31,(3),281-288.
    [166] Xu, Z.; Gao, C., In situ polymerization approach to graphene-reinforced nylon-6composites.Macromolecules2010,43,(16),6716-6723.
    [167] Cai, D.; Yusoh, K.; Song, M., The mechanical properties and morphology of a graphite oxidenanoplatelet/polyurethane composite. Nanotechnology2009,20,(8),085712.
    [168] Nguyen, D. A.; Lee, Y. R.; Raghu, A. V.; Jeong, H. M.; Shin, C. M.; Kim, B. K., Morphologicaland physical properties of a thermoplastic polyurethane reinforced with functionalizedgraphene sheet. Polym Int2009,58,(4),412-417.
    [169] Raghu, A. V.; Lee, Y. R.; Jeong, H. M.; Shin, C. M., Preparation and physical properties ofwaterborne polyurethane/functionalized graphene sheet nanocomposites. Macromol ChemPhys2008,209,(24),2487-2493.
    [170] Yavari, F.; Rafiee, M.; Rafiee, J.; Yu, Z.-Z.; Koratkar, N., Dramatic increase in fatigue life inhierarchical graphene composites. ACS Appl Mater Interfaces2010,2,(10),2738-2743.
    [171] Rafiee, M. A.; Rafiee, J.; Srivastava, I.; Wang, Z.; Song, H.; Yu, Z. Z.; Koratkar, N., Fractureand fatigue in graphene nanocomposites. Small2010,6,(2),179-183.
    [172] Fang, M.; Zhang, Z.; Li, J.; Zhang, H.; Lu, H.; Yang, Y., Constructing hierarchically structuredinterphases for strong and tough epoxy nanocomposites by amine-rich graphene surfaces. JMater Chem2010,20,(43),9635-9643.
    [173] Rafiee, M. A.; Rafiee, J.; Wang, Z.; Song, H.; Yu, Z.-Z.; Koratkar, N., Enhanced mechanicalproperties of nanocomposites at low graphene content. ACS Nano2009,3,(12),3884-3890.
    [174] Miller, S. G.; Bauer, J. L.; Maryanski, M. J.; Heimann, P. J.; Barlow, J. P.; Gosau, J.-M.; Allred,R. E., Characterization of epoxy functionalized graphite nanoparticles and the physicalproperties of epoxy matrix nanocomposites. Compos Sci Technol2010,70,(7),1120-1125.
    [175] Domingues, S. H.; Salvatierra, R. V.; Oliveira, M. M.; Zarbin, A. J., Transparent andconductive thin films of graphene/polyaniline nanocomposites prepared through interfacialpolymerization. Chem Commun2011,47,(9),2592-2594.
    [176] Salavagione, H. J.; Martínez, G.; Gómez, M. A., Synthesis of poly (vinyl alcohol)/reducedgraphite oxide nanocomposites with improved thermal and electrical properties. J Mater Chem2009,19,(28),5027-5032.
    [177] Yoonessi, M.; Gaier, J. R., Highly conductive multifunctional graphene polycarbonatenanocomposites. ACS Nano2010,4,(12),7211-7220.
    [178] Kim, H.; Miura, Y.; Macosko, C. W., Graphene/polyurethane nanocomposites for improvedgas barrier and electrical conductivity. Chem Mater2010,22,(11),3441-3450.
    [179] Ansari, S.; Giannelis, E. P., Functionalized graphene sheet—Poly (vinylidene fluoride)conductive nanocomposites. J Polym Sci, Part B: Polym Phys2009,47,(9),888-897.
    [180] Pang, H.; Zhang, Y.-C.; Chen, T.; Zeng, B.-Q.; Li, Z.-M., Tunable positive temperaturecoefficient of resistivity in an electrically conducting polymer/graphene composite. Appl PhysLett2010,96,(25),251907-251907-3.
    [181] Yang, S.-Y.; Lin, W.-N.; Huang, Y.-L.; Tien, H.-W.; Wang, J.-Y.; Ma, C.-C. M.; Li, S.-M.;Wang, Y.-S., Synergetic effects of graphene platelets and carbon nanotubes on the mechanicaland thermal properties of epoxy composites. Carbon2011,49,(3),793-803.
    [182] Ganguli, S.; Roy, A. K.; Anderson, D. P., Improved thermal conductivity for chemicallyfunctionalized exfoliated graphite/epoxy composites. Carbon2008,46,(5),806-817.
    [183] Hu, Y.; Shen, J.; Li, N.; Ma, H.; Shi, M.; Yan, B.; Huang, W.; Wang, W.; Ye, M., Comparisonof the thermal properties between composites reinforced by raw and amino-functionalizedcarbon materials. Compos Sci Technol2010,70,(15),2176-2182.
    [184] Kalaitzidou, K.; Fukushima, H.; Drzal, L. T., Multifunctional polypropylene compositesproduced by incorporation of exfoliated graphite nanoplatelets. Carbon2007,45,(7),1446-1452.
    [185] Yu, A.; Ramesh, P.; Itkis, M. E.; Bekyarova, E.; Haddon, R. C., Graphite nanoplatelet-epoxycomposite thermal interface materials. J Phys Chem C2007,111,(21),7565-7569.
    [186] Veca, L. M.; Meziani, M. J.; Wang, W.; Wang, X.; Lu, F.; Zhang, P.; Lin, Y.; Fee, R.; Connell,J. W.; Sun, Y. P., Carbon nanosheets for polymeric nanocomposites with high thermalconductivity. Adv Mater2009,21,(20),2088-2092.
    [187] Yu, A.; Ramesh, P.; Sun, X.; Bekyarova, E.; Itkis, M. E.; Haddon, R. C., Enhanced thermalconductivity in a hybrid graphite nanoplatelet–carbon nanotube filler for epoxy composites.Adv Mater2008,20,(24),4740-4744.
    [1] Hoffman, A. S., Hydrogels for biomedical applications. Adv Drug Delivery Rev2012,64,Supplement,(0),18-23.
    [2] Qiu, Y.; Park, K., Environment-sensitive hydrogels for drug delivery. Adv Drug Delivery Rev2012,64, Supplement,(0),49-60.
    [3] Kloxin, A. M.; Kasko, A. M.; Salinas, C. N.; Anseth, K. S., Photodegradable Hydrogels forDynamic Tuning of Physical and Chemical Properties. Science2009,324,(5923),59-63.
    [4] Itagaki, H.; Kurokawa, T.; Furukawa, H.; Nakajima, T.; Katsumoto, Y.; Gong, J. P., Water-Induced Brittle-Ductile Transition of Double Network Hydrogels. Macromolecules2010,43,(22),9495-9500.
    [5] Nakajima, T.; Furukawa, H.; Tanaka, Y.; Kurokawa, T.; Osada, Y.; Gong, J. P., True ChemicalStructure of Double Network Hydrogels. Macromolecules2009,42,(6),2184-2189.
    [6] Nakayama, A.; Kakugo, A.; Gong, J. P.; Osada, Y.; Takai, M.; Erata, T.; Kawano, S., HighMechanical Strength Double-Network Hydrogel with Bacterial Cellulose. Adv Funct Mater2004,14,(11),1124-1128.
    [7] Tanaka, Y.; Gong, J. P.; Osada, Y., Novel hydrogels with excellent mechanical performance.Prog Polym Sci2005,30,(1),1-9.
    [8] Liu, Y.; Zhu, M.; Liu, X.; Zhang, W.; Sun, B.; Chen, Y.; Adler, H.-J. P., High clay contentnanocomposite hydrogels with surprising mechanical strength and interesting deswellingkinetics. Polymer2006,47,(1),1-5.
    [9] Tong, X.; Zheng, J.; Lu, Y.; Zhang, Z.; Cheng, H., Swelling and mechanical behaviors ofcarbon nanotube/poly(vinyl alcohol) hybrid hydrogels. Mater Lett2007,61,(8–9),1704-1706.
    [10] Dash, R.; Foston, M.; Ragauskas, A. J., Improving the mechanical and thermal properties ofgelatin hydrogels cross-linked by cellulose nanowhiskers. Carbohydr Polym2013,91,(2),638-645.
    [11] Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Potts, J. R.; Ruoff, R. S., Graphene andgraphene oxide: synthesis, properties, and applications. Adv Mater2010,22,(35),3906-3924.
    [12] Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.;Nguyen, S. T.; Ruoff, R. S., Synthesis of graphene-based nanosheets via chemical reductionof exfoliated graphite oxide. Carbon2007,45,(7),1558-1565.
    [13] Huang, Y.; Zeng, M.; Ren, J.; Wang, J.; Fan, L.; Xu, Q., Preparation and swelling propertiesof graphene oxide/poly(acrylic acid-co-acrylamide) super-absorbent hydrogel nanocomposites.Colloids and Surfaces A: Physicochemical and Engineering Aspects2012,401,(0),97-106.
    [14] Shen, J.; Yan, B.; Li, T.; Long, Y.; Li, N.; Ye, M., Study on graphene-oxide-basedpolyacrylamide composite hydrogels. Compos Part A: Appl Sci Manufac2012,43,(9),1476-1481.
    [15] Sun, S.; Wu, P., A one-step strategy for thermal-and pH-responsive graphene oxideinterpenetrating polymer hydrogel networks. J Mater Chem2011,21,(12),4095-4097.
    [16] Zhang, L.; Wang, Z.; Xu, C.; Li, Y.; Gao, J.; Wang, W.; Liu, Y., High strength grapheneoxide/polyvinyl alcohol composite hydrogels. J Mater Chem2011,21,(28),10399-10406.
    [17] Liu, R.; Liang, S.; Tang, X.-Z.; Yan, D.; Li, X.; Yu, Z.-Z., Tough and highly stretchablegraphene oxide/polyacrylamide nanocomposite hydrogels. J Mater Chem2012,22,(28),14160-14167.
    [18] Zhang, N.; Li, R.; Zhang, L.; Chen, H.; Wang, W.; Liu, Y.; Wu, T.; Wang, X.; Wang, W.; Li,Y.; Zhao, Y.; Gao, J., Actuator materials based on graphene oxide/polyacrylamide compositehydrogels prepared by in situ polymerization. Soft Matter2011,7,(16),7231-7239.
    [19] He, Y.; Zhang, N.; Gong, Q.; Qiu, H.; Wang, W.; Liu, Y.; Gao, J., Alginate/graphene oxidefibers with enhanced mechanical strength prepared by wet spinning. Carbohydr Polym2012,88,(3),1100-1108.
    [20] Haque, M. A.; Kurokawa, T.; Gong, J. P., Super tough double network hydrogels and theirapplication as biomaterials. Polymer2012,53,(9),1805-1822.
    [21] Rioux, L. E.; Turgeon, S. L.; Beaulieu, M., Characterization of polysaccharides extracted frombrown seaweeds. Carbohydr Polym2007,69,(3),530-537.
    [22] Lee, K. Y.; Mooney, D. J., Alginate: Properties and biomedical applications. Prog Polym Sci2012,37,(1),106-126.
    [23] Bajpai, S. K.; Sharma, S., Investigation of swelling/degradation behaviour of alginate beadscrosslinked with Ca2+and Ba2+ions. React Funct Polym2004,59,(2),129-140.
    [24] Sun, J.-Y.; Zhao, X.; Illeperuma, W. R. K.; Chaudhuri, O.; Oh, K. H.; Mooney, D. J.; Vlassak,J. J.; Suo, Z., Highly stretchable and tough hydrogels. Nature2012,489,(7414),133-136.
    [25] Hummers, W. S.; Offeman, R. E., Preparation of Graphitic Oxide. J Am Chem Soc1958,80,(6),1339-1339.
    [26] Kovtyukhova, N. I.; Ollivier, P. J.; Martin, B. R.; Mallouk, T. E.; Chizhik, S. A.; Buzaneva, E.V.; Gorchinskiy, A. D., Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater1999,11,(3),771-778.
    [27] Brannon-Peppas, L.; Peppas, N. A., Equilibrium swelling behavior of pH-sensitive hydrogels.Chem Eng Sci1991,46,(3),715-722.
    [28] Chang, C.; He, M.; Zhou, J.; Zhang, L., Swelling Behaviors of pH-and salt-responsivecellulose-based hydrogels. Macromolecules2011,44,(6),1642-1648.
    [29] Zhou, L.; Gao, C.; Xu, W., Magnetic dendritic materials for highly efficient adsorption of dyesand drugs. ACS Appl Mater Interfaces2010,2,(5),1483-1491.
    [30] Fan, W.; Gao, W.; Zhang, C.; Tjiu, W. W.; Pan, J.; Liu, T., Hybridization of graphene sheetsand carbon-coated Fe3O4nanoparticles as a synergistic adsorbent of organic dyes. J MaterChem2012,22,(48),25108-25115.
    [31] Zhou, Y.; Bao, Q.; Tang, L. A. L.; Zhong, Y.; Loh, K. P., Hydrothermal dehydration for theGreen reduction of exfoliated graphene oxide to graphene and demonstration of tunableoptical limiting properties. Chem Mater2009,21,(13),2950-2956.
    [32] Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S., The chemistry of graphene oxide. ChemSoc Rev2010,39,(1),228-240.
    [33] Park, S.; Ruoff, R. S., Chemical methods for the production of graphenes. Nat Nano2009,4,(4),217-224.
    [34] Zhu, C. H.; Hai, Z. B.; Cui, C. H.; Li, H. H.; Chen, J. F.; Yu, S. H., In situ controlled synthesisof thermosensitive poly(N-isopropylacrylamide)/Au nanocomposite hydrogels by gammaradiation for catalytic application. Small2012,8,(6),930-936.
    [35] Adrus, N.; Ulbricht, M., Rheological studies on PNIPAAm hydrogel synthesis via in situpolymerization and on resulting viscoelastic properties. React Funct Polym2013,73,(1),141-148.
    [36] Shen, J.; Yan, B.; Li, T.; Long, Y.; Li, N.; Ye, M., Mechanical, thermal and swelling propertiesof poly(acrylic acid)-graphene oxide composite hydrogels. Soft Matter2012,8,(6),1831-1836.
    [37] Muniz, E. C.; Geuskens, G., Compressive elastic modulus of polyacrylamide hydrogels andsemi-IPNs with poly(N-isopropylacrylamide). Macromolecules2001,34,(13),4480-4484.
    [38] Liu, M.; Li, W.; Rong, J.; Zhou, C., Novel polymer nanocomposite hydrogel with natural claynanotubes. Colloid Polym Sci2012,290,(10),895-905.
    [39] Gong, J. P.; Katsuyama, Y.; Kurokawa, T.; Osada, Y., Double-network hydrogels withextremely high mechanical strength. Adv Mater2003,15,(14),1155-1158.
    [40] Podsiadlo, P.; Kaushik, A. K.; Arruda, E. M.; Waas, A. M.; Shim, B. S.; Xu, J.; Nandivada, H.;Pumplin, B. G.; Lahann, J.; Ramamoorthy, A.; Kotov, N. A., Ultrastrong and stiff layeredpolymer nanocomposites. Science2007,318,(5847),80-83.
    [41] Zhang, J.; Yang, H.; Shen, G.; Cheng, P.; Zhang, J.; Guo, S., Reduction of graphene oxide vial-ascorbic acid. Chem Commun2010,46,(7),1112-1114.
    [42] aykara, T.; Demirci, S.; Ero lu, M. S.; Güven, O., Poly(ethylene oxide) and its blends withsodium alginate. Polymer2005,46,(24),10750-10757.
    [43] Guo, L.; Sato, H.; Hashimoto, T.; Ozaki, Y., FT-IR Study on hydrogen-bonding interactionsin biodegradable polymer blends of poly(3-hydroxybutyrate) and poly(4-vinylphenol).Macromolecules2010,43,(8),3897-3902.
    [44] Coleman, M. M.; Skrovanek, D. J.; Hu, J.; Painter, P. C., Hydrogen bonding in polymer blends.1. FT-IR studies of urethane-ether blends. Macromolecules1988,21,(1),59-65.
    [45] Zhang, Y.; Tan, K. L.; Liaw, B. Y.; Liaw, D. J.; Kang, E. T., Thermal imidization of poly(amicacid) precursors on glycidyl methacrylate (GMA) graft-polymerized Si(100) surface. ThinSolid Films2000,374,(1),70-79.
    [46] Tang, Q.; Sun, X.; Li, Q.; Wu, J.; Lin, J., Fabrication of a high-strength hydrogel with aninterpenetrating network structure. Colloids and Surfaces A: Physicochemical and EngineeringAspects2009,346,(1–3),91-98.
    [47] Fabbri, P.; Bassoli, E.; Bon, S. B.; Valentini, L., Preparation and characterization of poly(butylene terephthalate)/graphene composites by in-situ polymerization of cyclic butyleneterephthalate. Polymer2012,53,(4),897-902.
    [48] Zhang, N.; Qiu, H.; Si, Y.; Wang, W.; Gao, J., Fabrication of highly porous biodegradablemonoliths strengthened by graphene oxide and their adsorption of metal ions. Carbon2011,49,(3),827-837.
    [49] Li, G. L.; Liu, G.; Li, M.; Wan, D.; Neoh, K. G.; Kang, E. T., Organo-and Water-DispersibleGraphene Oxide Polymer Nanosheets for Organic Electronic Memory and GoldNanocomposites. J Phys Chem C2010,114,(29),12742-12748.
    [50] Liu, J.; Fu, S.; Yuan, B.; Li, Y.; Deng, Z., Toward a Universal Adhesive Nanosheet forthe Assembly of Multiple Nanoparticles Based on a Protein-Induced Reduction/Decoration ofGraphene Oxide. J Am Chem Soc2010,132,(21),7279-7281.
    [51] Ramesha, G. K.; Vijaya Kumara, A.; Muralidhara, H. B.; Sampath, S., Graphene and grapheneoxide as effective adsorbents toward anionic and cationic dyes. J Colloid Interface Sci2011,361,(1),270-277.
    [1] Kumar, M. N. V. R.; Muzzarelli, R. A. A.; Muzzarelli, C.; Sashiwa, H.; Domb, A. J., Chitosanchemistry and pharmaceutical perspectives. Chem Rev2004,104,(12),6017-6084.
    [2] Weiss, J.; Kriegel, C.; Kit, K. M.; McClements, D. J., Electrospinning of chitosan-poly(ethylene oxide) blend nanofibers in the presence of micellar surfactant solutions. Polymer2009,50,(1),189-200.
    [3] Chirachanchai, S.; Choochottiros, C.; Yoksan, R., Amphiphilic chitosan nanospheres: Factorsto control nanosphere formation and its consequent pH responsive performance. Polymer2009,50,(8),1877-1886.
    [4] Yuan, W. Z.; Li, X. F.; Gu, S. Y.; Cao, A.; Ren, J., Amphiphilic chitosan graft copolymer viacombination of ROP, ATRP and click chemistry: Synthesis, self-assembly, thermosensitivity,fluorescence, and controlled drug release. Polymer2011,52,(3),658-666.
    [5] Zhu, K. J.; Shu, X. Z.; Song, W. H., Novel pH-sensitive citrate cross-linked chitosan film fordrug controlled release. Int J Pharm2001,212,(1),19-28.
    [6] Gurny, R.; Felt, O.; Buri, P., Chitosan: A unique polysaccharide for drug delivery. Drug DevInd Pharm1998,24,(11),979-993.
    [7] Caner, C.; Vergano, P. J.; Wiles, J. L., Chitosan film mechanical and permeation properties asaffected by acid, plasticizer, and storage. J Food Sci1998,63,(6),1049-1053.
    [8] Yao, S. Z.; Li, J.; Liu, Q.; Liu, Y. J.; Liu, S. C., DNA biosensor based on chitosan film dopedwith carbon nanotubes. Anal Biochem2005,346,(1),107-114.
    [9] Yang, X. R.; Qian, L., Composite film of carbon nanotubes and chitosan for preparation ofamperometric hydrogen peroxide biosensor. Talanta2006,68,(3),721-727.
    [10] Yamada, M.; Maeda, A., Heteropolyacid-conjugated chitosan matrix for triphase catalyst.Polymer2009,50,(25),6076-6082.
    [11] Ge, J. J.; Cui, Y. F.; Yan, Y.; Jiang, W. Y., The effect of structure on pervaporation of chitosanmembrane. J Membrane Sci2000,165,(1),75-81.
    [12] Kit, K.; Desai, K.; Li, J. J.; Davidson, P. M.; Zivanovic, S.; Meyer, H., Nanofibrous chitosannon-wovens for filtration applications. Polymer2009,50,(15),3661-3669.
    [13] Chen, J. P.; Cheng, T. H., Preparation and evaluation of thermo-reversible copolymerhydrogels containing chitosan and hyaluronic acid as injectable cell carriers. Polymer2009,50,(1),107-116.
    [14] Sanchez, M. S.; Cruz, D. M. G.; Coutinho, D. F.; Mano, J. F.; Ribelles, J. L. G., Physicalinteractions in macroporous scaffolds based on poly(epsilon-caprolactone)/chitosan semi-interpenetrating polymer networks. Polymer2009,50,(9),2058-2064.
    [15] Zhang, X. G.; Teng, D. Y.; Wu, Z. M.; Wang, Y. X.; Zheng, C.; Wang, Z.; Li, C. X., Synthesisand characterization of in situ cross-linked hydrogel based on self-assembly of thiol-modifiedchitosan with PEG diacrylate using Michael type addition. Polymer2010,51,(3),639-646.
    [16] Fang, M.; Zhang, Z.; Li, J.; Zhang, H.; Lu, H.; Yang, Y., Constructing hierarchically structuredinterphases for strong and tough epoxy nanocomposites by amine-rich graphene surfaces. JMater Chem2010,20,(43),9635-9643.
    [17] Studart, A. R.; Bonderer, L. J.; Gauckler, L. J., Bioinspired design and assembly of plateletreinforced polymer films. Science2008,319,(5866),1069-1073.
    [18] Hanna, M. A.; Xu, Y. X.; Ren, X., Chitosan/clay nanocomposite film preparation andcharacterization. J Appl Polym Sci2006,99,(4),1684-1691.
    [19] Ge, Z. G.; Fan, H. L.; Wang, L. L.; Zhao, K. K.; Li, N.; Shi, Z. J.; Jin, Z. X., Fabrication,Mechanical Properties, and Biocompatibility of Graphene-Reinforced Chitosan Composites.Biomacromolecules2010,11,(9),2345-2351.
    [20] Shi, G. Q.; Wang, X. L.; Bai, H.; Yao, Z. Y.; Liu, A. R., Electrically conductive andmechanically strong biomimetic chitosan/reduced graphene oxide composite films. J MaterChem2010,20,(41),9032-9036.
    [21] Akil, H. M.; Julkapli, N. M.; Ahmad, Z., Mechanical Properties of1,2,4,5-Benzene TetraCarboxylic Chitosan-Filled Chitosan Biocomposites. J Appl Polym Sci2011,121,(1),111-126.
    [22] Wang, S. F.; Shen, L.; Zhang, W. D.; Tong, Y. J., Preparation and mechanical properties ofchitosan/carbon nanotubes composites. Biomacromolecules2005,6,(6),3067-3072.
    [23] Kim, S. J.; Spinks, G. M.; Shin, S. R.; Wallace, G. G.; Whitten, P. G.; Kim, S. I., Mechanicalproperties of chitosan/CNT microfibers obtained with improved dispersion. Sensor Actuat B-Chem2006,115,(2),678-684.
    [24] Guan, W. C.; Ke, G.; Tang, C. Y.; Guan, W. J.; Deng, F., Covalent functionalization ofmultiwalled carbon nanotubes with a low molecular weight chitosan. Biomacromolecules2007,8,(2),322-326.
    [25] Cao, X. D.; Dong, H.; Li, C. M.; Lucia, L. A., The Enhanced Mechanical Properties of aCovalently Bound Chitosan-Multiwalled Carbon Nanotube Nanocomposite. J Appl Polym Sci2009,113,(1),466-472.
    [26] Liu, Y. L.; Chen, W. H.; Chang, Y. H., Preparation and properties of chitosan/carbon nanotubenanocomposites using poly(styrene sulfonic acid)-modified CNTs. Carbohyd Polym2009,76,(2),232-238.
    [27] Winey, K. I.; Moniruzzaman, M., Polymer nanocomposites containing carbon nanotubes.Macromolecules2006,39,(16),5194-5205.
    [28] Che, J.; Yuan, W.; Jiang, G.; Dai, J.; Lim, S. Y.; Chan-Park, M. B., Epoxy Composite FibersReinforced with Aligned Single-Walled Carbon Nanotubes Functionalized with Generation02Dendritic Poly(amidoamine). Chem Mater2009,21,(8),1471-1479.
    [29] Ajayan, P. M.; Simmons, T. J.; Bult, J.; Hashim, D. P.; Linhardt, R. J., NoncovalentFunctionalization as an Alternative to Oxidative Acid Treatment of Single Wall CarbonNanotubes With Applications for Polymer Composites. ACS Nano2009,3,(4),865-870.
    [30] Ajayan, P. M.; Stephan, O.; Colliex, C.; Trauth, D., Aligned Carbon Nanotube Arrays Formedby Cutting a Polymer Resin—Nanotube Composite. Science1994,265,(5176),1212-1214.
    [31] Ajayan, P. M.; Tour, J. M., Materials Science: Nanotube composites. Nature2007,447,(7148),1066-1068.
    [32] Spitalsky, Z.; Tasis, D.; Papagelis, K.; Galiotis, C., Carbon nanotube–polymer composites:Chemistry, processing, mechanical and electrical properties. Progress in Polymer Science2010,35,(3),357-401.
    [33] Paul, D. R.; Robeson, L. M., Polymer nanotechnology: Nanocomposites. Polymer2008,49,(15),3187-3204.
    [34] Dyke, C. A.; Tour, J. M., Covalent functionalization of single-walled carbon nanotubes formaterials applications. J Phys Chem A2004,108,(51),11151-11159.
    [35] Kim, S. H.; Lee, W. I.; Park, J. M., Assessment of dispersion in carbon nanotube reinforcedcomposites using differential scanning calorimetry. Carbon2009,47,(11),2699-2703.
    [36] Coleman, J. N.; Khan, U.; Gun'ko, Y. K., Mechanical reinforcement of polymers using carbonnanotubes. Adv Mater2006,18,(6),689-706.
    [37] Bokobza, L., Multiwall carbon nanotube elastomeric composites: A review. Polymer2007,48,(17),4907-4920.
    [38] Gao, J.; Itkis, M. E.; Yu, A.; Bekyarova, E.; Zhao, B.; Haddon, R. C., Continuous Spinning ofa Single-Walled Carbon Nanotube-Nylon Composite Fiber. J Am Chem Soc2005,127,(11),3847-3854.
    [39] Rahatekar, S. S.; Rasheed, A.; Jain, R.; Zammarano, M.; Koziol, K. K.; Windle, A. H.; Gilman,J. W.; Kumar, S., Solution spinning of cellulose carbon nanotube composites using roomtemperature ionic liquids. Polymer2009,50,(19),4577-4583.
    [40] Lee, W. I.; Kim, S. H.; Park, J. M., Assessment of dispersion in carbon nanotube reinforcedcomposites using differential scanning calorimetry. Carbon2009,47,(11),2699-2703.
    [41] Chou, T. W.; Thostenson, E. T., Processing-structure-multi-functional property relationship incarbon nanotube/epoxy composites. Carbon2006,44,(14),3022-3029.
    [42] Sun, Y. P.; Lin, Y.; Meziani, M. J., Functionalized carbon nanotubes for polymericnanocomposites. J Mater Chem2007,17,(12),1143-1148.
    [43] Sue, H. J.; Sun, L.; Warren, G. L.; O'Reilly, J. Y.; Everett, W. N.; Lee, S. M.; Davis, D.;Lagoudas, D., Mechanical properties of surface-functionalized SWCNT/epoxy composites.Carbon2008,46,(2),320-328.
    [44] Yang, B. X.; Pramoda, K. P.; Xu, G. Q.; Goh, S. H., Mechanical reinforcement of polyethyleneusing polyethylene-grafted multiwalled carbon nanotubes. Adv Funct Mater2007,17,(13),2062-2069.
    [45] Liu, J.; Hou, Y.; Tang, J.; Zhang, H. B.; Qian, C.; Feng, Y. Y., Functionalized Few-WalledCarbon Nanotubes for Mechanical Reinforcement of Polymeric Composites. ACS Nano2009,3,(5),1057-1062.
    [46] Coleman, J. N.; Cadek, M.; Ryan, K. P.; Nicolosi, V.; Bister, G.; Fonseca, A.; Nagy, J. B.;Szostak, K.; Beguin, F.; Blau, W. J., Reinforcement of polymers with carbon nanotubes: Therole of nanotube surface area. Nano Lett2004,4,(2),353-356.
    [47] Tour, J. M.; Kosynkin, D. K., D. V.; Higginbotham, A. L.; Sinitskii, A.; Lomeda, J. R.; Dimiev,A.; Price, B. K., Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons.Nature2009,458,(7240),872-U5.
    [48] Tour, J. M.; Higginbotham, A. L.; Kosynkin, D. V.; Sinitskii, A.; Sun, Z. Z., Lower-DefectGraphene Oxide Nanoribbons from Multiwalled Carbon Nanotubes. ACS Nano2010,4,(4),2059-2069.
    [49] Tour, J. M.; Zhang, Z. X.; Sun, Z. Z.; Yao, J.; Kosynkin, D. V., Transforming Carbon NanotubeDevices into Nanoribbon Devices. J Am Chem Soc2009,131,(37),13460-13463.
    [50] Shi, Z. X.; Wang, Y.; Yin, J., Unzipped Multiwalled Carbon Nanotubes for MechanicalReinforcement of Polymer Composites. J Phys Chem C2010,114,(46),19621-19628.
    [51] Tour, J. M.; Rafiee, M. A.; Lu, W.; Thomas, A. V.; Zandiatashbar, A.; Rafiee, J.; Koratkar, N.A., Graphene Nanoribbon Composites. ACS Nano2010,4,(12),7415-7420.
    [52] Hummers, W. S.; Offeman, R. E., Preparation of Graphitic Oxide. J Am Chem Soc1958,80,(6),1339-1339.
    [53] Ruoff, R. S.; Park, S.; Dikin, D. A.; Nguyen, S. T., Graphene Oxide Sheets Chemically Cross-Linked by Polyallylamine. J Phys Chem C2009,113,(36),15801-15804.
    [54] Liao, S.-H.; Yen, C.-Y.; Hung, C.-H.; Weng, C.-C.; Tsai, M.-C.; Lin, Y.-F.; Ma, C.-C. M.; Pan,C.; Su, A., One-step functionalization of carbon nanotubes by free-radical modification for thepreparation of nanocomposite bipolar plates in polymer electrolyte membrane fuel cells. JMater Chem2008,18,(33),3993-4002.
    [55] Xie, X. L.; Yang, Y. K.; Wu, J. G.; Yang, Z. F.; Wang, X. T.; Mai, Y. W., Multiwalled carbonnanotubes functionalized by hyperbranched poly(urea-urethane)s by a one-potpolycondensation. Macromol Rapid Comm2006,27,(19),1695-1701.
    [56] Potschke, P.; Fornes, T. D.; Paul, D. R., Rheological behavior of multiwalled carbonnanotube/polycarbonate composites. Polymer2002,43,(11),3247-3255.
    [57] Fischer, S.; Zhang, K.; Helm, J.; Peschel, D.; Gruner, M.; Groth, T., NMR and FT Ramancharacterisation of regioselectively sulfated chitosan regarding the distribution of sulfategroups and the degree of substitution. Polymer2010,51,(21),4698-4705.
    [58] Lin, W. J.; Chen, T. D.; Liu, C. W., Synthesis and characterization of lactobionic acid graftedpegylated chitosan and nanoparticle complex application. Polymer2009,50,(17),4166-4174.
    [59] Brugnerotto, J.; Lizardi, J.; Goycoolea, F. M.; Argüelles-Monal, W.; Desbrières, J.; Rinaudo,M., An infrared investigation in relation with chitin and chitosan characterization. Polymer2001,42,(8),3569-3580.
    [60] Pakravan, M.; Heuzey, M.-C.; Ajji, A., A fundamental study of chitosan/PEO electrospinning.Polymer2011,52,(21),4813-4824.
    [61] Vao-soongnern, V.; Rakkapao, N.; Masubuchi, Y.; Watanabe, H., Miscibility ofchitosan/poly(ethylene oxide) blends and effect of doping alkali and alkali earth metal ions onchitosan/PEO interaction. Polymer2011,52,(12),2618-2627.
    [62] Ogawa, K.; Hirano, S.; Miyanishi, T.; Yui, T.; Watanabe, T., A new polymorph of chitosan.Macromolecules1984,17,(4),973-975.
    [63] Guibal, E.; Jaworska, M.; Sakurai, K.; Gaudon, P., Influence of chitosan characteristics onpolymer properties. I: Crystallographic properties. Polym Int2003,52,(2),198-205.
    [64] Guibal, E.; Jaworska, M.; Kula, K.; Chassary, P., Influence of chitosan characteristics onpolymer properties: II. Platinum sorption properties. Polym Int2003,52,(2),206-212.
    [65] Focher, B.; Beltrame, P. L.; Naggi, A.; Torri, G., Alkaline N-deacetylation of chitin enhancedby flash treatments. Reaction kinetics and structure modifications. Carbohyd Polym1990,12,(4),405-418.
    [66] Fan, M.; Hu, Q.; Shen, K., Preparation and structure of chitosan soluble in wide pH range.Carbohyd Polym2009,78,(1),66-71.
    [67] Li, L. A.; Yang, X. M.; Tu, Y. F.; Shang, S. M.; Tao, X. M., Well-DispersedChitosan/Graphene Oxide Nanocomposites. ACS Appl Mater Inter2010,2,(6),1707-1713.
    [68] Samuels, R. J., Solid state characterization of the structure of chitosan films. J Polym Sci, PartB: Polym Phys.1981,19,(7),1081-1105.
    [1] Lin, Y.; Meziani, M. J.; Sun, Y.-P., Functionalized carbon nanotubes for polymericnanocomposites. J Mater Chem2007,17,(12),1143-1148.
    [2] Bokobza, L., Multiwall carbon nanotube elastomeric composites: A review. Polymer2007,48,(17),4907-4920.
    [3] Spitalsky, Z.; Tasis, D.; Papagelis, K.; Galiotis, C., Carbon nanotube–polymer composites:Chemistry, processing, mechanical and electrical properties. Prog Polym Sci2010,35,(3),357-401.
    [4] Ajayan, P. M.; Stephan, O.; Colliex, C.; Trauth, D., Aligned Carbon Nanotube Arrays Formedby Cutting a Polymer Resin-Nanotube Composite. Science1994,265,(5176),1212-1214.
    [5] Zhang, X.; Liu, T.; Sreekumar, T. V.; Kumar, S.; Moore, V. C.; Hauge, R. H.; Smalley, R. E.,Poly(vinyl alcohol)/SWNT Composite Film. Nano Lett2003,3,(9),1285-1288.
    [6] Coleman, J. N.; Khan, U.; Gun'ko, Y. K., Mechanical Reinforcement of Polymers UsingCarbon Nanotubes. Adv Mater2006,18,(6),689-706.
    [7] Coleman, J. N.; Khan, U.; Blau, W. J.; Gun’ko, Y. K., Small but strong: A review of themechanical properties of carbon nanotube–polymer composites. Carbon2006,44,(9),1624-1652.
    [8] Andrews, R.; Weisenberger, M. C., Carbon nanotube polymer composites. Curr Opin SolidState Mater Sci2004,8,(1),31-37.
    [9] Demczyk, B. G.; Wang, Y. M.; Cumings, J.; Hetman, M.; Han, W.; Zettl, A.; Ritchie, R. O.,Direct mechanical measurement of the tensile strength and elastic modulus of multiwalledcarbon nanotubes. Mater Sci Eng A2002,334,(1–2),173-178.
    [10] Chae, H. G.; Sreekumar, T. V.; Uchida, T.; Kumar, S., A comparison of reinforcementefficiency of various types of carbon nanotubes in polyacrylonitrile fiber. Polymer2005,46,(24),10925-10935.
    [11] Jeon, J.-H.; Lim, J.-H.; Kim, K.-M., Fabrication of hybrid nanocomposites with polystyreneand multiwalled carbon nanotubes with well-defined polystyrene via multiple atom transferradical polymerization. Polymer2009,50,(19),4488-4495.
    [12] Zeng, H.; Gao, C.; Wang, Y.; Watts, P. C. P.; Kong, H.; Cui, X.; Yan, D., In situ polymerizationapproach to multiwalled carbon nanotubes-reinforced nylon1010composites: Mechanicalproperties and crystallization behavior. Polymer2006,47,(1),113-122.
    [13] Wang, M.; Pramoda, K. P.; Goh, S. H., Enhancement of the mechanical properties ofpoly(styrene-co-acrylonitrile) with poly(methyl methacrylate)-grafted multiwalled carbonnanotubes. Polymer2005,46,(25),11510-11516.
    [14] Lee, R.-S.; Chen, W.-H.; Lin, J.-H., Polymer-grafted multi-walled carbon nanotubes throughsurface-initiated ring-opening polymerization and click reaction. Polymer2011,52,(10),2180-2188.
    [15] Chen, G.-X.; Kim, H.-S.; Park, B. H.; Yoon, J.-S., Multi-walled carbon nanotubes reinforcednylon6composites. Polymer2006,47,(13),4760-4767.
    [16] Andrews, R.; Jacques, D.; Qian, D.; Rantell, T., Multiwall Carbon Nanotubes: Synthesis andApplication. Acc Chem Res2002,35,(12),1008-1017.
    [17] Wong, M.; Paramsothy, M.; Xu, X. J.; Ren, Y.; Li, S.; Liao, K., Physical interactions at carbonnanotube-polymer interface. Polymer2003,44,(25),7757-7764.
    [18] Lee, W. I.; Kim, S. H.; Park, J. M., Assessment of dispersion in carbon nanotube reinforcedcomposites using differential scanning calorimetry. Carbon2009,47,(11),2699-2703.
    [19] Chou, T. W.; Thostenson, E. T., Processing-structure-multi-functional property relationship incarbon nanotube/epoxy composites. Carbon2006,44,(14),3022-3029.
    [20] Yang, B. X.; Pramoda, K. P.; Xu, G. Q.; Goh, S. H., Mechanical reinforcement of polyethyleneusing polyethylene-grafted multiwalled carbon nanotubes. Adv Funct Mater2007,17,(13),2062-2069.
    [21] Coleman, J. N.; Cadek, M.; Ryan, K. P.; Nicolosi, V.; Bister, G.; Fonseca, A.; Nagy, J. B.;Szostak, K.; Beguin, F.; Blau, W. J., Reinforcement of polymers with carbon nanotubes: Therole of nanotube surface area. Nano Lett2004,4,(2),353-356.
    [22] Meng, H.; Sui, G. X.; Fang, P. F.; Yang, R., Effects of acid-and diamine-modified MWNTson the mechanical properties and crystallization behavior of polyamide6. Polymer2008,49,(2),610-620.
    [23] Hong, C.-Y.; You, Y.-Z.; Pan, C.-Y., A new approach to functionalize multi-walled carbonnanotubes by the use of functional polymers. Polymer2006,47,(12),4300-4309.
    [24] Paiva, M. C.; Zhou, B.; Fernando, K. A. S.; Lin, Y.; Kennedy, J. M.; Sun, Y. P., Mechanicaland morphological characterization of polymer–carbon nanocomposites from functionalizedcarbon nanotubes. Carbon2004,42,(14),2849-2854.
    [25] Moniruzzaman, M.; Winey, K. I., Polymer Nanocomposites Containing Carbon Nanotubes.Macromolecules2006,39,(16),5194-5205.
    [26] Eitan, A.; Jiang, K.; Dukes, D.; Andrews, R.; Schadler, L. S., Surface Modification ofMultiwalledCarbonNanotubes: TowardtheTailoringoftheInterfaceinPolymerComposites.Chem Mater2003,15,(16),3198-3201.
    [27] Hwang, G. L.; Shieh, Y. T.; Hwang, K. C., Efficient Load Transfer to Polymer-GraftedMultiwalled Carbon Nanotubes in Polymer Composites. Adv Funct Mater2004,14,(5),487-491.
    [28] Yu, M.-F.; Lourie, O.; Dyer, M. J.; Moloni, K.; Kelly, T. F.; Ruoff, R. S., Strength andBreaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load. Science2000,287,(5453),637-640.
    [29] Sharma, R.; Strano, M. S., Centerline Placement and Alignment of Anisotropic Nanotubes inHigh Aspect Ratio Cylindrical Droplets of Nanometer Diameter. Adv Mater2009,21,(1),60-65.
    [30] Daniel Wagner, H., Nanotube–polymer adhesion: a mechanics approach. Chem Phys Lett2002,361,(1–2),57-61.
    [31] Kosynkin, D. V.; Higginbotham, A. L.; Sinitskii, A.; Lomeda, J. R.; Dimiev, A.; Price, B. K.;Tour, J. M., Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons.Nature2009,458,(7240),872-876.
    [32] Zhang, Z.; Sun, Z.; Yao, J.; Kosynkin, D. V.; Tour, J. M., Transforming Carbon NanotubeDevices into Nanoribbon Devices. J Am Chem Soc2009,131,(37),13460-13463.
    [33] Higginbotham, A. L.; Kosynkin, D. V.; Sinitskii, A.; Sun, Z.; Tour, J. M., Lower-DefectGraphene Oxide Nanoribbons from Multiwalled Carbon Nanotubes. ACS Nano2010,4,(4),2059-2069.
    [34] Rafiee, M. A.; Lu, W.; Thomas, A. V.; Zandiatashbar, A.; Rafiee, J.; Tour, J. M.; Koratkar, N.A., Graphene Nanoribbon Composites. ACS Nano2010,4,(12),7415-7420.
    [35] Wang, Y.; Shi, Z.; Yin, J., Unzipped Multiwalled Carbon Nanotubes for MechanicalReinforcement of Polymer Composites. J Phys Chem C2010,114,(46),19621-19628.
    [36] Fan, J.; Shi, Z.; Ge, Y.; Wang, Y.; Wang, J.; Yin, J., Mechanical reinforcement of chitosanusing unzipped multiwalled carbon nanotube oxides. Polymer2012,53,(2),657-664.
    [37] Wan, C.; Chen, B., Reinforcement and interphase of polymer/graphene oxide nanocomposites.J Mater Chem2012,22,(8),3637-3646.
    [38] Gong, L.; Kinloch, I. A.; Young, R. J.; Riaz, I.; Jalil, R.; Novoselov, K. S., Interfacial StressTransfer in a Graphene Monolayer Nanocomposite. Adv Mater2010,22,(24),2694-2697.
    [39] Verdejo, R.; Bernal, M. M.; Romasanta, L. J.; Lopez-Manchado, M. A., Graphene filledpolymer nanocomposites. J Mater Chem2011,21,(10),3301-3310.
    [40] Zhang, C.; Huang, S.; Tjiu, W. W.; Fan, W.; Liu, T., Facile preparation of water-dispersiblegraphene sheets stabilized by acid-treated multi-walled carbon nanotubes and their poly(vinylalcohol) composites. J Mater Chem2012,22,(6),2427-2434.
    [41] Li, Y.; Yang, T.; Yu, T.; Zheng, L.; Liao, K., Synergistic effect of hybrid carbon nantube-graphene oxide as a nanofiller in enhancing the mechanical properties of PVA composites. JMater Chem2011,21,(29),10844-10851.
    [42] Qian, Z.; Shaojun, Y.; Jing, Z.; Ling, Z.; Pingli, K.; Jinghong, L.; Jingwei, X.; Hua, Z.; Xi-Ming, S., Fabrication of an electrochemical platform based on the self-assembly of grapheneoxide–multiwall carbon nanotube nanocomposite and horseradish peroxidase: directelectrochemistry and electrocatalysis. Nanotechnology2011,22,(49),494010.
    [43] Zhang, C.; Ren, L.; Wang, X.; Liu, T., Graphene Oxide-Assisted Dispersion of PristineMultiwalled Carbon Nanotubes in Aqueous Media. J Phys Chem C2010,114,(26),11435-11440.
    [44] Guldi, D. M.; Rahman, G. M. A.; Jux, N.; Balbinot, D.; Hartnagel, U.; Tagmatarchis, N.; Prato,M., Functional Single-Wall Carbon Nanotube NanohybridsAssociating SWNTs with Water-Soluble Enzyme Model Systems. J Am Chem Soc2005,127,(27),9830-9838.
    [45] Cheng, F.; Imin, P.; Maunders, C.; Botton, G.; Adronov, A., Soluble, Discrete SupramolecularComplexes of Single-Walled Carbon Nanotubes with Fluorene-Based Conjugated Polymers.Macromolecules2008,41,(7),2304-2308.
    [46] Ikeda, A.; Nobusawa, K.; Hamano, T.; Kikuchi, J.-i., Single-Walled Carbon NanotubesTemplate the One-Dimensional Ordering of a Polythiophene Derivative. Org Lett2006,8,(24),5489-5492.
    [47] Lui, C. H.; Mak, K. F.; Shan, J.; Heinz, T. F., Ultrafast Photoluminescence from Graphene.Phys Rev Lett2010,105,(12),127404.
    [48] Eda, G.; Lin, Y.-Y.; Mattevi, C.; Yamaguchi, H.; Chen, H.-A.; Chen, I. S.; Chen, C.-W.;Chhowalla, M., Blue Photoluminescence from Chemically Derived Graphene Oxide. AdvMater2010,22,(4),505-509.
    [49] Gokus, T.; Nair, R. R.; Bonetti, A.; Bo hmler, M.; Lombardo, A.; Novoselov, K. S.; Geim, A.K.; Ferrari, A. C.; Hartschuh, A., Making Graphene Luminescent by Oxygen Plasma Treatment.ACS Nano2009,3,(12),3963-3968.
    [50] Williams, G.; Kamat, P. V., Graphene Semiconductor Nanocomposites: Excited-StateInteractions between ZnO Nanoparticles and Graphene Oxide. Langmuir2009,25,(24),13869-13873.
    [51] Kim, Y. J.; Shin, T. S.; Choi, H. D.; Kwon, J. H.; Chung, Y.-C.; Yoon, H. G., Electricalconductivity of chemically modified multiwalled carbon nanotube/epoxy composites. Carbon2005,43,(1),23-30.
    [52] Si, Y.; Samulski, E. T., Synthesis of Water Soluble Graphene. Nano Lett2008,8,(6),1679-1682.
    [53] Zeta Potential of Colloids in Water and Waste Water, American Society for Testing andMaterials1985, D4187-82.
    [54] Park, S.; An, J.; Jung, I.; Piner, R. D.; An, S. J.; Li, X.; Velamakanni, A.; Ruoff, R. S., ColloidalSuspensions of Highly Reduced Graphene Oxide in a Wide Variety of Organic Solvents. NanoLett2009,9,(4),1593-1597.
    [55] Pham, V. H.; Cuong, T. V.; Hur, S. H.; Oh, E.; Kim, E. J.; Shin, E. W.; Chung, J. S., Chemicalfunctionalization of graphene sheets by solvothermal reduction of a graphene oxide suspensionin N-methyl-2-pyrrolidone. J Mater Chem2011,21,(10),3371-3377.
    [56] Quintana, M.; Grzelczak, M.; Spyrou, K.; Calvaresi, M.; Bals, S.; Kooi, B.; Van Tendeloo, G.;Rudolf, P.; Zerbetto, F.; Prato, M., A Simple Road for the Transformation of Few-LayerGraphene into MWNTs. J Am Chem Soc2012,134,(32),13310-13315.
    [57] Liao, S.-H.; Yen, C.-Y.; Hung, C.-H.; Weng, C.-C.; Tsai, M.-C.; Lin, Y.-F.; Ma, C.-C. M.; Pan,C.; Su, A., One-step functionalization of carbon nanotubes by free-radical modification for thepreparation of nanocomposite bipolar plates in polymer electrolyte membrane fuel cells. JMater Chem2008,18,(33),3993-4002.
    [58] Yang, Y.; Xie, X.; Wu, J.; Yang, Z.; Wang, X.; Mai, Y.-W., Multiwalled Carbon NanotubesFunctionalized by Hyperbranched Poly(urea-urethane)s by a One-Pot Polycondensation.Macromol Rapid Commun2006,27,(19),1695-1701.
    [59] Su, C.-Y.; Xu, Y.; Zhang, W.; Zhao, J.; Tang, X.; Tsai, C.-H.; Li, L.-J., Electrical andSpectroscopic Characterizations of Ultra-Large Reduced Graphene Oxide Monolayers. ChemMater2009,21,(23),5674-5680.
    [60] Guo, H.-L.; Wang, X.-F.; Qian, Q.-Y.; Wang, F.-B.; Xia, X.-H., A Green Approach to theSynthesis of Graphene Nanosheets. ACS Nano2009,3,(9),2653-2659.
    [61] Dresselhaus, M. S.; Jorio, A.; Hofmann, M.; Dresselhaus, G.; Saito, R., Perspectives on CarbonNanotubes and Graphene Raman Spectroscopy. Nano Lett2010,10,(3),751-758.
    [62] Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.;Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K., Raman Spectrum of Graphene andGraphene Layers. Phys Rev Lett2006,97,(18),187401.
    [63] Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Potts, J. R.; Ruoff, R. S., Graphene andGraphene Oxide: Synthesis, Properties, and Applications. Adv Mater2010,22,(35),3906-3924.
    [64] Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud'homme, R. K.; Aksay, I. A.; Car, R., RamanSpectra of Graphite Oxide and Functionalized Graphene Sheets. Nano Lett2007,8,(1),36-41.
    [65] Jung, I.; Dikin, D.; Park, S.; Cai, W.; Mielke, S. L.; Ruoff, R. S., Effect of Water Vapor onElectrical Properties of Individual Reduced Graphene Oxide Sheets. J Phys Chem C2008,112,(51),20264-20268.
    [66] Koski, A.; Yim, K.; Shivkumar, S., Effect of molecular weight on fibrous PVA produced byelectrospinning. Mater Lett2004,58,(3–4),493-497.
    [67] Cadek, M.; Coleman, J. N.; Barron, V.; Hedicke, K.; Blau, W. J., Morphological andmechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymercomposites. Appl Phys Lett2002,81,(27),5123-5125.
    [68] Peppas, N. A.; Merrill, E. W., Differential scanning calorimetry of crystallized PVA hydrogels.J Appl Polym Sci1976,20,(6),1457-1465.
    [69] Bhattacharyya, S.; Salvetat, J. P.; Saboungi, M. L., Reinforcement of semicrystalline polymerswith collagen-modified single walled carbon nanotubes. Appl Phys Lett2006,88,(23).
    [70] Asran, A. S.; Henning, S.; Michler, G. H., Poly(vinyl alcohol)–collagen–hydroxyapatitebiocomposite nanofibrous scaffold: Mimicking the key features of natural bone at thenanoscale level. Polymer2010,51,(4),868-876.
    [1] Geim, A. K., Graphene: Status and Prospects. Science2009,324,(5934),1530-1534.
    [2] Geim, A. K.; Novoselov, K. S., The rise of graphene. Nat Mater2007,6,(3),183-191.
    [3] Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.;Piner, R. D.; Nguyen, S. T.; Ruoff, R. S., Graphene-based composite materials. Nature2006,442,(7100),282-286.
    [4] Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Potts, J. R.; Ruoff, R. S., Graphene andGraphene Oxide: Synthesis, Properties, and Applications. Adv Mater2010,22,(35),3906-3924.
    [5] Robinson, J. T.; Perkins, F. K.; Snow, E. S.; Wei, Z.; Sheehan, P. E., Reduced Graphene OxideMolecular Sensors. Nano Lett2008,8,(10),3137-3140.
    [6] Fowler, J. D.; Allen, M. J.; Tung, V. C.; Yang, Y.; Kaner, R. B.; Weiller, B. H., PracticalChemical Sensors from Chemically Derived Graphene. ACS Nano2009,3,(2),301-306.
    [7] De, S.; King, P. J.; Lotya, M.; O'Neill, A.; Doherty, E. M.; Hernandez, Y.; Duesberg, G. S.;Coleman, J. N., Flexible, Transparent, Conducting Films of Randomly Stacked Graphene fromSurfactant-Stabilized, Oxide-Free Graphene Dispersions. Small2010,6,(3),458-464.
    [8] Li, X.; Zhu, Y.; Cai, W.; Borysiak, M.; Han, B.; Chen, D.; Piner, R. D.; Colombo, L.; Ruoff, R.S., Transfer of Large-Area Graphene Films for High-Performance Transparent ConductiveElectrodes. Nano Lett2009,9,(12),4359-4363.
    [9] Liu, C.; Yu, Z.; Neff, D.; Zhamu, A.; Jang, B. Z., Graphene-Based Supercapacitor with anUltrahigh Energy Density. Nano Lett2010,10,(12),4863-4868.
    [10] Wang, G.; Shen, X.; Yao, J.; Park, J., Graphene nanosheets for enhanced lithium storage inlithium ion batteries. Carbon2009,47,(8),2049-2053.
    [11] Zhang, L. L.; Zhou, R.; Zhao, X. S., Graphene-based materials as supercapacitor electrodes. JMater Chem2010,20,(29),5983-5992.
    [12] Liang, M. H.; Zhi, L. J., Graphene-based electrode materials for rechargeable lithium batteries.J Mater Chem2009,19,(33),5871-5878.
    [13] Eswaraiah, V.; Balasubramaniam, K.; Ramaprabhu, S., Functionalized graphene reinforcedthermoplastic nanocomposites as strain sensors in structural health monitoring. J Mater Chem2011,21,(34),12626-12628.
    [14] Huang, X.; Qi, X.; Boey, F.; Zhang, H., Graphene-based composites. Chem Soc Rev2012,41,(2),666-686.
    [15] Potts, J. R.; Dreyer, D. R.; Bielawski, C. W.; Ruoff, R. S., Graphene-based polymernanocomposites. Polymer2011,52,(1),5-25.
    [16] Pinto, A. M.; Cabral, J.; Pacheco Tanaka, D. A.; Mendes, A. M.; Magalh es, F. D., Effect ofincorporation of graphene oxide and graphene nanoplatelets on mechanical and gaspermeability properties of poly(lactic acid) films. Polym Int2012,33-40.
    [17] Wan, C.; Chen, B., Reinforcement and interphase of polymer/graphene oxide nanocomposites.J Mater Chem2012,22,(8),3637-3646.
    [18] Dong, X. C.; Li, B.; Wei, A.; Cao, X. H.; Chan, M. B. P.; Zhang, H.; Li, L. J.; Huang, W.; Chen,P., Carbon2011,49,2929-2944.
    [19] Ruiz-Hitzky, E.; Darder, M.; Fernandes, F. M.; Zatile, E.; Palomares, F. J.; Aranda, P.,Supported Graphene from Natural Resources: Easy Preparation and Applications. Adv Mater2011,23,(44),5250-5255.
    [20] Wei, A.; Wang, J.; Long, Q.; Liu, X.; Li, X.; Dong, X.; Huang, W., Synthesis of high-performance graphene nanosheets by thermal reduction of graphene oxide. Mater Res Bull2011,46,(11),2131-2134.
    [21] Niyogi, S.; Bekyarova, E.; Itkis, M. E.; McWilliams, J. L.; Hamon, M. A.; Haddon, R. C.,Solution Properties of Graphite and Graphene. J Am Chem Soc2006,128,(24),7720-7721.
    [22] Dubin, S.; Gilje, S.; Wang, K.; Tung, V. C.; Cha, K.; Hall, A. S.; Farrar, J.; Varshneya, R.; Yang,Y.; Kaner, R. B., A One-Step, Solvothermal Reduction Method for Producing ReducedGraphene Oxide Dispersions in Organic Solvents. ACS Nano2010,4,(7),3845-3852.
    [23] Liang, Y.; Wu, D.; Feng, X.; Müllen, K., Dispersion of Graphene Sheets in Organic SolventSupported by Ionic Interactions. Adv Mater2009,21,(17),1679-1683.
    [24] Park, S.; An, J.; Jung, I.; Piner, R. D.; An, S. J.; Li, X.; Velamakanni, A.; Ruoff, R. S., ColloidalSuspensions of Highly Reduced Graphene Oxide in a Wide Variety of Organic Solvents. NanoLett2009,9,(4),1593-1597.
    [25] Kim, H.; Abdala, A. A.; Macosko, C. W., Graphene/Polymer Nanocomposites.Macromolecules2010,43,(16),6515-6530.
    [26] Liang, J.; Huang, Y.; Zhang, L.; Wang, Y.; Ma, Y.; Guo, T.; Chen, Y., Molecular-LevelDispersion of Graphene into Poly(vinyl alcohol) and Effective Reinforcement of theirNanocomposites. Adv Funct Mater2009,19,(14),2297-2302.
    [27] Yang, X.; Tu, Y.; Li, L.; Shang, S.; Tao, X.-m., Well-Dispersed Chitosan/Graphene OxideNanocomposites. ACS Appl Mater Inter2010,2,(6),1707-1713.
    [28] Lee, H. B.; Raghu, A. V.; Yoon, K. S.; Jeong, H. M., Preparation and Characterization ofPoly(ethylene oxide)/Graphene Nanocomposites from an Aqueous Medium. Journal ofMacromolecular Science, Part B2010,49,(4),802-809.
    [29] Kim, J.; Cote, L. J.; Kim, F.; Yuan, W.; Shull, K. R.; Huang, J., Graphene Oxide Sheets atInterfaces. J Am Chem Soc2010,132,(23),8180-8186.
    [30] Stankovich, S.; Piner, R. D.; Chen, X.; Wu, N.; Nguyen, S. T.; Ruoff, R. S., Stable aqueousdispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in thepresence of poly(sodium4-styrenesulfonate). J Mater Chem2006,16,(2),155-158.
    [31] Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.;Nguyen, S. T.; Ruoff, R. S., Synthesis of graphene-based nanosheets via chemical reduction ofexfoliated graphite oxide. Carbon2007,45,(7),1558-1565.
    [32] Si, Y.; Samulski, E. T., Synthesis of water soluble graphene. Nano Lett2008,8,(6),1679-1682.
    [33] Shin, H. J.; Kim, K. K.; Benayad, A.; Yoon, S. M.; Park, H. K.; Jung, I. S.; Jin, M. H.; Jeong,H. K.; Kim, J. M.; Choi, J. Y.; Lee, Y. H., Efficient reduction of graphite oxide by sodiumborohydride and its effect on electrical conductance. Adv Funct Mater2009,19,(12),1987-1992.
    [34] Pei, S.; Zhao, J.; Du, J.; Ren, W.; Cheng, H. M., Direct reduction of graphene oxide films intohighly conductive and flexible graphene films by hydrohalic acids. Carbon2010,48,(15),4466-4474.
    [35] Li, D.; Muller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G., Processable aqueous dispersionsof graphene nanosheets. Nat Nano2008,3,(2),101-105.
    [36] Cao, Y.; Lai, Z.; Feng, J.; Wu, P., Graphene oxide sheets covalently functionalized with blockcopolymers via click chemistry as reinforcing fillers. J Mater Chem2011,21,(25),9271-9278.
    [37] Zaman, I.; Kuan, H.C.; Meng, Q.; Michelmore, A.; Kawashima, N.; Pitt, T.; Zhang, L.; Gouda,S.; Luong, L.; Ma, J., A Facile Approach to Chemically Modified Graphene and its PolymerNanocomposites. Adv Funct Mater2012,2735-2743
    [38] Ahn, B. K.; Sung, J.; Li, Y.; Kim, N.; Ikenberry, M.; Hohn, K.; Mohanty, N.; Nguyen, P.;Sreeprasad, T. S.; Kraft, S.; Berry, V.; Sun, X. S., Synthesis and Characterization ofAmphiphilic Reduced Graphene Oxide with Epoxidized Methyl Oleate. Adv Mater2012,24,(16),2123-2129.
    [39] Huang, Y.; Qin, Y.; Zhou, Y.; Niu, H.; Yu, Z.-Z.; Dong, J.-Y., Polypropylene/Graphene OxideNanocomposites Prepared by In Situ Ziegler Natta Polymerization. Chem Mater2010,22,(13),4096-4102.
    [40] Bao, C.; Guo, Y.; Song, L.; Kan, Y.; Qian, X.; Hu, Y., In situ preparation of functionalizedgraphene oxide/epoxy nanocomposites with effective reinforcements. J Mater Chem2011,21,(35),13290-13298.
    [41] Fang, M.; Wang, K.; Lu, H.; Yang, Y.; Nutt, S., Covalent polymer functionalization of graphenenanosheets and mechanical properties of composites. J Mater Chem2009,19,(38),7098-7105.
    [42] Goncalves, G.; Marques, P. A. A. P.; Barros-Timmons, A.; Bdkin, I.; Singh, M. K.; Emami, N.;Gracio, J., Graphene oxide modified with PMMA via ATRP as a reinforcement filler. J MaterChem2010,20,(44),9927-9934.
    [43] Wang, J.-Y.; Yang, S.-Y.; Huang, Y.-L.; Tien, H.-W.; Chin, W.-K.; Ma, C.-C. M., Preparationand properties of graphene oxide/polyimide composite films with low dielectric constant andultrahigh strength via in situ polymerization. J Mater Chem2011,21,(35),13569-13575.
    [44] Wu, C.; Huang, X.; Wang, G.; Wu, X.; Yang, K.; Li, S.; Jiang, P., Hyperbranched-polymerfunctionalization of graphene sheets for enhanced mechanical and dielectric properties ofpolyurethane composites. J Mater Chem2012,22,(14),7010-7019.
    [45] Yang, Y.-K.; He, C.-E.; Peng, R.-G.; Baji, A.; Du, X.-S.; Huang, Y.-L.; Xie, X.-L.; Mai, Y.-W.,Non-covalently modified graphene sheets by imidazolium ionic liquids for multifunctionalpolymer nanocomposites. J Mater Chem2012,22,(12),5666-5675.
    [46] Xu, Z.; Gao, C., In situ Polymerization Approach to Graphene-Reinforced Nylon-6Composites. Macromolecules2010,43,(16),6716-6723.
    [47] Little, B. K.; Li, Y.; Cammarata, V.; Broughton, R.; Mills, G., Metallization of Kevlar Fiberswith Gold. ACS Appl Mater Inter2011,3,(6),1965-1973.
    [48] Arrieta, C.; David, E.; Dolez, P.; Vu-Khanh, T., X-ray diffraction, Raman, and differentialthermal analyses of the thermal aging of a Kevlar-PBI blend fabric. Polym Compos2011,32,(3),362-367.
    [49] O'Connor, I.; Hayden, H.; Coleman, J. N.; Gun'ko, Y. K., High-Strength, High-ToughnessComposite Fibers by Swelling Kevlar in Nanotube Suspensions. Small2009,5,(4),466-469.
    [50] Sainsbury, T.; Erickson, K.; Okawa, D.; Zonte, C. S.; Fre chet, J. M. J.; Zettl, A., KevlarFunctionalized Carbon Nanotubes for Next-Generation Composites. Chem Mater2010,22,(6),2164-2171.
    [51] O'Connor, I.; Hayden, H.; O'Connor, S.; Coleman, J. N.; Gun'ko, Y. K., Kevlar coated carbonnanotubes for reinforcement of polyvinylchloride. J Mater Chem2008,18,(46),5585-5588.
    [52] O’Connor, I.; Hayden, H.; O’Connor, S.; Coleman, J. N.; Gun’ko, Y. K., PolymerReinforcement with Kevlar-Coated Carbon Nanotubes. J Phys Chem C2009,113,(47),20184-20192.
    [53] Xiang, C.; Lu, W.; Zhu, Y.; Sun, Z.; Yan, Z.; Hwang, C.-C.; Tour, J. M., Carbon Nanotube andGraphene Nanoribbon-Coated Conductive Kevlar Fibers. ACS Appl Mater Inter2011,4,(1),131-136.
    [54] Wang, Y.; Shi, Z.; Yin, J., Kevlar oligomer functionalized graphene for polymer composites.Polymer2011,52,(16),3661-3670.
    [55] Tanner, D.; Fitzgerald, J. A.; Phillips, B. R., The Kevlar Story—an Advanced Materials CaseStudy. Angew Chem Int Ed Engl1989,28,(5),649-654.
    [56] Chae, H. G.; Kumar, S., Rigid-rod polymeric fibers. J Appl Polym Sci2006,100,(1),791-802.
    [57] Takayanagi, M.; Katayose, T., N-substituted poly(p-phenylene terephthalamide). Journal ofPolymer Science: Polymer Chemistry Edition1981,19,(5),1133-1145.
    [58] Yang, M.; Cao, K.; Sui, L.; Qi, Y.; Zhu, J.; Waas, A.; Arruda, E. M.; Kieffer, J.; Thouless, M.D.; Kotov, N. A., Dispersions of Aramid Nanofibers: A New Nanoscale Building Block. ACSNano2011,5,(9),6945-6954.
    [59] Wang, B.; Wang, X.; Lou, W.; Hao, J., Relationship between disperse state and reinforcementeffect of graphene oxide in microcrystalline cellulose/graphene oxide composite filmsregenerated from microcrystalline cellulose/1-butyl-3-methylimidazolium chloride solutions.J Mater Chem2012,22,(25),12859-12866.
    [60] Li, C.; Adamcik, J.; Mezzenga, R., Biodegradable nanocomposites of amyloid fibrils andgraphene with shape-memory and enzyme-sensing properties. Nat Nano2012,7,(7),421-427.
    [61] Hummers, W. S.; Offeman, R. E., Preparation of Graphitic Oxide. J Am Chem Soc1958,80,(6),1339-1339.
    [62] Liff, S. M.; Kumar, N.; McKinley, G. H., High-performance elastomeric nanocomposites viasolvent-exchange processing. Nat Mater2007,6,(1),76-83.
    [63] Wang, Y.; Shi, Z.; Fang, J.; Xu, H.; Yin, J., Graphene oxide/polybenzimidazole compositesfabricated by a solvent-exchange method. Carbon2011,49,(4),1199-1207.
    [64] Takayanagi, M.; Kajiyama, T.; Katayose, T., Surface-modified kevlar fiber-reinforcedpolyethylene and ionomer. J Appl Polym Sci1982,27,(10),3903-3917.
    [65] Burch, R. R.; Sweeny, W.; Schmidt, H. W.; Kim, Y. H., Preparation of aromatic polyamidepolyanions: a novel processing strategy for aromatic polyamides. Macromolecules1990,23,(4),1065-1072.
    [66] Burch, R. R.; Manring, L. E., N-Alkylation and Hofmann elimination from thermaldecomposition of R4N+salts of aromatic polyamide polyanions: synthesis and stereochemistryof N-alkylated aromatic polyamides. Macromolecules1991,24,(8),1731-1735.
    [67] He, F.-A.; Fan, J.-T.; Song, F.; Zhang, L.-M.; Lai-Wa Chan, H., Fabrication of hybrids basedon graphene and metal nanoparticles by in situ and self-assembled methods. Nanoscale2011,3,(3),1182-1188.
    [68] Stankovich, S.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S., Synthesis and exfoliation ofisocyanate-treated graphene oxide nanoplatelets. Carbon2006,44,(15),3342-3347.
    [69] Perepelkin, K. E.; Andreeva, I. V.; Pakshver, E. A.; Morgoeva, I. Y., Thermal Characteristicsof Para-Aramid Fibres. Fibre Chemistry2003,35,(4),265-269.
    [70] RamanathanT; Abdala, A. A.; StankovichS; Dikin, D. A.; Herrera Alonso, M.; Piner, R. D.;Adamson, D. H.; Schniepp, H. C.; ChenX; Ruoff, R. S.; Nguyen, S. T.; Aksay, I. A.;Prud'Homme, R. K.; Brinson, L. C., Functionalized graphene sheets for polymernanocomposites. Nat Nano2008,3,(6),327-331.
    [71] Yeh, J.-M.; Liou, S.-J.; Lin, C.-Y.; Cheng, C.-Y.; Chang, Y.-W.; Lee, K.-R., AnticorrosivelyEnhanced PMMA Clay Nanocomposite Materials with Quaternary Alkylphosphonium Salt asan Intercalating Agent. Chem Mater2001,14,(1),154-161.
    [72] Zhang, H.; Zhang, J.; Chen, J.; Hao, X.; Wang, S.; Feng, X.; Guo, Y., Effects of solar UVirradiation on the tensile properties and structure of PPTA fiber. Polym Degrad Stabil2006,91,(11),2761-2767.
    [1] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.;Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films. Science2004,306,(5696),666-669.
    [2] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.;Dubonos, S. V.; Firsov, A. A., Two-dimensional gas of massless Dirac fermions in graphene.Nature2005,438,(7065),197-200.
    [3] Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.;Piner, R. D.; Nguyen, S. T.; Ruoff, R. S., Graphene-based composite materials. Nature2006,442,(7100),282-286.
    [4] Robinson, J. T.; Perkins, F. K.; Snow, E. S.; Wei, Z.; Sheehan, P. E., Reduced Graphene OxideMolecular Sensors. Nano Lett2008,8,(10),3137-3140.
    [5] Fowler, J. D.; Allen, M. J.; Tung, V. C.; Yang, Y.; Kaner, R. B.; Weiller, B. H., PracticalChemical Sensors from Chemically Derived Graphene. ACS Nano2009,3,(2),301-306.
    [6] De, S.; King, P. J.; Lotya, M.; O'Neill, A.; Doherty, E. M.; Hernandez, Y.; Duesberg, G. S.;Coleman, J. N., Flexible, Transparent, Conducting Films of Randomly Stacked Graphene fromSurfactant-Stabilized, Oxide-Free Graphene Dispersions. Small2010,6,(3),458-464.
    [7] Li, X.; Zhu, Y.; Cai, W.; Borysiak, M.; Han, B.; Chen, D.; Piner, R. D.; Colombo, L.; Ruoff, R.S., Transfer of Large-Area Graphene Films for High-Performance Transparent ConductiveElectrodes. Nano Lett2009,9,(12),4359-4363.
    [8] Liu, C.; Yu, Z.; Neff, D.; Zhamu, A.; Jang, B. Z., Graphene-Based Supercapacitor with anUltrahigh Energy Density. Nano Lett2010,10,(12),4863-4868.
    [9] Wang, G.; Shen, X.; Yao, J.; Park, J., Graphene nanosheets for enhanced lithium storage inlithium ion batteries. Carbon2009,47,(8),2049-2053.
    [10] Zhang, L. L.; Zhou, R.; Zhao, X. S., Graphene-based materials as supercapacitor electrodes. JMater Chem2010,20,(29),5983-5992.
    [11] Liang, M. H.; Zhi, L. J., Graphene-based electrode materials for rechargeable lithium batteries.J Mater Chem2009,19,(33),5871-5878.
    [12] Eswaraiah, V.; Balasubramaniam, K.; Ramaprabhu, S., Functionalized graphene reinforcedthermoplastic nanocomposites as strain sensors in structural health monitoring. J Mater Chem2011,21,(34),12626-12628.
    [13] Yan, L.; Yuan, C.; Chen, W., Amino-grafted Graphene as a Stable and Metal-free Solid BasicCatalyst. J Mater Chem2012,22,(15),7456-7460.
    [14] Koo, H. Y.; Lee, H.-J.; Noh, Y.-Y.; Lee, E.-S.; Kim, Y.-H.; Choi, W. S., Gold nanoparticle-doped graphene nanosheets: sub-nanosized gold clusters nucleate and grow at the nitrogen-induced defects on graphene surfaces. J Mater Chem2012,22,(15),7130-7135.
    [15] Lee, H.; Kang, J.; Cho, M. S.; Choi, J.-B.; Lee, Y., MnO2/graphene composite electrodes forsupercapacitors: the effect of graphene intercalation on capacitance. J Mater Chem2011,21,(45),18215-18219.
    [16] Wang, Y.; Yao, H.-B.; Wang, X.-H.; Yu, S.-H., One-pot facile decoration of CdSe quantum dotson graphene nanosheets: novel graphene-CdSe nanocomposites with tunable fluorescentproperties. J Mater Chem2011,21,(2),562-566.
    [17] Wang, L.-H.; Luo, Z.; Yuwen, L.; Bao, B.; Tian, J.; Zhu, X.; Weng, L., One-pot, Low-temperature Synthesis of Branched Platinum Nanowire/Reduced Graphene Oxide(BPtNW/RGO) Hybrids for Fuel Cells. J Mater Chem2012,22,(16),7791-7796.
    [18] Ji, J.; Zhang, G.; Chen, H.; Li, Y.; Zhang, G.; Zhang, F.; Fan, X., A general strategy to preparegraphene-metal/metal oxide nanohybrids. J Mater Chem2011,21,(38),14498-14501.
    [19] Kamat, P. V., Graphene-Based Nanoarchitectures. Anchoring Semiconductor and MetalNanoparticles on a Two-Dimensional Carbon Support. J Phys Chem Lett2010,1,(2),520-527.
    [20] Shi, H. F.; Li, Z. S.; Kou, J. H.; Ye, J. H.; Zou, Z. G., Facile Synthesis of Single-CrystallineAg(2)V(4)O(11) Nanotube Material as a Novel Visible-Light-Sensitive Photocatalyst. J PhysChem C2011,115,(1),145-151.
    [21] Xu, C.; Wang, X.; Zhu, J. W.; Yang, X. J.; Lu, L., Deposition of Co(3)O(4) nanoparticles ontoexfoliated graphite oxide sheets. J Mater Chem2008,18,(46),5625-5629.
    [22] Shen, J. F.; Shi, M.; Li, N.; Yan, B.; Ma, H. W.; Hu, Y. Z.; Ye, M. X., Facile Synthesis andApplication of Ag-Chemically Converted Graphene Nanocomposite. Nano Res2010,3,(5),339-349.
    [23] Li, B.; Lu, G.; Zhou, X. Z.; Cao, X. H.; Boey, F.; Zhang, H., Controlled Assembly of GoldNanoparticles and Graphene Oxide Sheets on Dip Pen Nanolithography-Generated Templates.Langmuir2009,25,(18),10455-10458.
    [24] Xu, C.; Wang, X.; Zhu, J. W., Graphene-Metal Particle Nanocomposites. J Phys Chem C2008,112,(50),19841-19845.
    [25] Shen, J. F.; Shi, M.; Yan, B.; Ma, H. W.; Li, N.; Ye, M. X., One-pot hydrothermal synthesis ofAg-reduced graphene oxide composite with ionic liquid. J Mater Chem2011,21,(21),7795-7801.
    [26] Xu, W. P.; Zhang, L. C.; Li, J. P.; Lu, Y.; Li, H. H.; Ma, Y. N.; Wang, W. D.; Yu, S. H., Facilesynthesis of silver@graphene oxide nanocomposites and their enhanced antibacterialproperties. J Mater Chem2011,21,(12),4593-4597.
    [27] Aravind, S. S. J.; Eswaraiah, V.; Ramaprabhu, S., Facile and simultaneous production ofmetal/metal oxide dispersed graphene nanocomposites by solar exfoliation. J Mater Chem2011,21,(43),17094-17097.
    [28] Zhang, Z.; Xu, F. G.; Yang, W. S.; Guo, M. Y.; Wang, X. D.; Zhanga, B. L.; Tang, J. L., A facileone-pot method to high-quality Ag-graphene composite nanosheets for efficient surface-enhanced Raman scattering. Chem Commun2011,47,(22),6440-6442.
    [29] Pasricha, R.; Gupta, S.; Srivastava, A. K., A Facile and Novel Synthesis of Ag-Graphene-BasedNanocomposites. Small2009,5,(20),2253-2259.
    [30] Li, J.; Liu, C. Y., Ag/Graphene Heterostructures: Synthesis, Characterization and OpticalProperties. Eur J Inorg Chem2010,(8),1244-1248.
    [31] Liu, S.; Wang, L.; Tian, J. Q.; Luo, Y. L.; Zhang, X. X.; Sun, X. P., Aniline as a dispersing andstabilizing agent for reduced graphene oxide and its subsequent decoration with Agnanoparticles for enzymeless hydrogen peroxide detection. J Colloid Interf Sci2011,363,(2),615-619.
    [32] Xu, Z. X.; Gao, H. Y.; Guoxin, H., Solution-based synthesis and characterization of a silvernanoparticle-graphene hybrid film. Carbon2011,49,(14),4731-4738.
    [33] Wan, Y.; Wang, Y.; Wu, J. J.; Zhag, D., Graphene Oxide Sheet-Mediated Silver Enhancementfor Application to Electrochemical Biosensors. Anal Chem2011,83,(3),648-653.
    [34] Lu, G.; Li, H.; Liusman, C.; Yin, Z. Y.; Wu, S. X.; Zhang, H., Surface enhanced Ramanscattering of Ag or Au nanoparticle-decorated reduced graphene oxide for detection ofaromatic molecules. Chem Sci2011,2,(9),1817-1821.
    [35] Liu, S.; Tian, J. Q.; Wang, L.; Sun, X. P., Microwave-assisted rapid synthesis of Agnanoparticles/graphene nanosheet composites and their application for hydrogen peroxidedetection. J Nanopart Res2011,13,(10),4539-4548.
    [36] Baby, T. T.; Ramaprabhu, S., Synthesis and nanofluid application of silver nanoparticlesdecorated graphene. J Mater Chem2011,21,(26),9702-9709.
    [37] Liu, S.; Tian, J. Q.; Wang, L.; Sun, X. P., A method for the production of reduced grapheneoxide using benzylamine as a reducing and stabilizing agent and its subsequent decoration withAg nanoparticles for enzymeless hydrogen peroxide detection. Carbon2011,49,(10),3158-3164.
    [38] Ou, E. C.; Zhang, X. J.; Chen, Z. M.; Zhan, Y. G.; Du, Y.; Zhang, G. P.; Xiang, Y. J.; Xiong, Y.Q.; Xu, W. J., Macroscopic, Free-Standing Ag-Reduced, Graphene Oxide Janus Films Preparedby Evaporation-Induced Self-Assembly. Chem-Eur J2011,17,(32),8789-8793.
    [39] Ren, W.; Fang, Y. X.; Wang, E. K., A Binary Functional Substrate for Enrichment andUltrasensitive SERS Spectroscopic Detection of Folic Acid Using Graphene Oxide/AgNanoparticle Hybrids. ACS Nano2011,5,(8),6425-6433.
    [40] Wu, T. S.; Liu, S.; Luo, Y. L.; Lu, W. B.; Wang, L.; Sun, X. P., Surface plasmon resonance-induced visible light photocatalytic reduction of graphene oxide: Using Ag nanoparticles as aplasmonic photocatalyst. Nanoscale2011,3,(5),2142-2144.
    [41] Yang, Y. K.; He, C. E.; He, W. J.; Yu, L. J.; Peng, R. G.; Xie, X. L.; Wang, X. B.; Mai, Y. W.,Reduction of silver nanoparticles onto graphene oxide nanosheets with N,N-dimethylformamide and SERS activities of GO/Ag composites. J Nanopart Res2011,13,(10),5571-5581.
    [42] Zhang, Z.; Xu, F.; Yang, W.; Guo, M.; Wang, X.; Zhang, B.; Tang, J., A facile one-pot methodto high-quality Ag-graphene composite nanosheets for efficient surface-enhanced Ramanscattering. Chem Commun2011,47,(22).
    [43] Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S., The chemistry of graphene oxide.Chemical Society Reviews2010,39,(1),228-240.
    [44] Watcharotone, S.; Dikin, D. A.; Stankovich, S.; Piner, R.; Jung, I.; Dommett, G. H. B.;Evmenenko, G.; Wu, S. E.; Chen, S. F.; Liu, C. P.; Nguyen, S. T.; Ruoff, R. S., Graphene-silicacomposite thin films as transparent conductors. Nano Lett2007,7,(7),1888-1892.
    [45] Lotya, M.; Hernandez, Y.; King, P. J.; Smith, R. J.; Nicolosi, V.; Karlsson, L. S.; Blighe, F. M.;De, S.; Wang, Z.; McGovern, I. T.; Duesberg, G. S.; Coleman, J. N., Liquid Phase Productionof Graphene by Exfoliation of Graphite in Surfactant/Water Solutions. J Am Chem Soc2009,131,(10),3611-3620.
    [46] Shang, N. G.; Papakonstantinou, P.; Sharma, S.; Lubarsky, G.; Li, M.; McNeill, D. W.; Quinn,A. J.; Zhou, W.; Blackley, R., Controllable selective exfoliation of high-quality graphenenanosheets and nanodots by ionic liquid assisted grinding. Chem Commun2012,48,(13),1877-1879.
    [47] Laaksonen, P.; Kainlauri, M.; Laaksonen, T.; Shchepetov, A.; Jiang, H.; Ahopelto, J.; Linder,M. B., Interfacial Engineering by Proteins: Exfoliation and Functionalization of Graphene byHydrophobins. Angew Chem Int Edit2010,49,(29),4946-4949.
    [48] Liu, F.; Choi, J. Y.; Seo, T. S., DNA mediated water-dispersible graphene fabrication and goldnanoparticle-graphene hybrid. Chem Commun2010,46,(16),2844-2846.
    [49] Nakauma, M.; Funami, T.; Noda, S.; Ishihara, S.; Al-Assaf, S.; Nishinari, K.; Phillips, G. O.,Comparison of sugar beet pectin, soybean soluble polysaccharide, and gum arabic as foodemulsifiers.1. Effect of concentration, pH, and salts on the emulsifying properties. FoodHydrocolloids2008,22,(7),1254-1267.
    [50] Krishnan, S.; Kshirsagar, A. C.; Singhal, R. S., The use of gum arabic and modified starch inthe microencapsulation of a food flavoring agent. Carbohyd Polym2005,62,(4),309-315.
    [51] Ward, F. M., Uses of gum arabic (Acacia sp.) in the food and pharmaceutical industries. Celland Developmental Biology of Arabinogalactan-Proteins2000,231-239.
    [52] Wang, B.; Wang, L. J.; Li, D.; Adhikari, B.; Shi, J., Effect of gum Arabic on stability of oil-in-water emulsion stabilized by flaxseed and soybean protein. Carbohyd Polym2011,86,(1),343-351.
    [53] Djordjevic, D.; Cercaci, L.; Alamed, J.; McClements, D. J.; Decker, E. A., Stability of citral inprotein-and gum arabic-stabilized oil-in-water emulsions. Food Chem2008,106,(2),698-705.
    [54] Bandyopadhyaya, R.; Nativ-Roth, E.; Regev, O.; Yerushalmi-Rozen, R., Stabilization ofindividual carbon nanotubes in aqueous solutions. Nano Lett2002,2,(1),25-28.
    [55] Bandyopadhyaya, R.; Nativ-Roth, E.; Regev, O.; Rozen, R. Y., Utilizing old Egyptian wisdomfor stabilization of individual carbon nanotubes in aqueous dispersions. Making FunctionalMaterials with Nanotubes2002,706,313-321.
    [56] Roque, A. C. A.; Bicho, A.; Batalha, I. L.; Cardoso, A. S.; Hussain, A., Biocompatible andbioactive gum Arabic coated iron oxide magnetic nanoparticles. J Biotechnol2009,144,(4),313-320.
    [57] Kattumuri, V.; Katti, K.; Bhaskaran, S.; Boote, E. J.; Casteel, S. W.; Fent, G. M.; Robertson,D. J.; Chandrasekhar, M.; Kannan, R.; Katti, K. V., Gum arabic as a phytochemical constructfor the stabilization of gold nanoparticles: In vivo pharmacokinetics and X-ray-contrast-imaging studies. Small2007,3,(2),333-341.
    [58] Mohan, Y. M.; Raju, K. M.; Sambasivudu, K.; Singh, S.; Sreedhar, B., Preparation of acacia-stabilized silver nanoparticles: A green approach. J Appl Polym Sci2007,106,(5),3375-3381.
    [59] Wu, C. C.; Chen, D. H., Facile green synthesis of gold nanoparticles with gum arabic as astabilizing agent and reducing agent. Gold Bull2010,43,(4),234-240.
    [60] Fent, G. M.; Casteel, S. W.; Kim, D. Y.; Kannan, R.; Katti, K.; Chanda, N.; Katti, K.,Biodistribution of maltose and gum arabic hybrid gold nanoparticles after intravenous injectionin juvenile swine. Nanomed-Nanotechnol2009,5,(2),128-135.
    [61] Kan, P.; Engelbrecht, H. P.; Watkinson, L. D.; Carmack, T. L.; Lever, J. R.; Smith, C. J.; Kannan,R.; Kattesh, K. V.; Jurisson, S. S.; Cutler, C. S., Evaluation of Gum Arabic Stabilized Gold-198Nanoparticles in Prostate Cancer Bearing Mice. J Labelled Compd Rad2009,52, S521-S521.
    [62] Lemoine, P.; Zhao, J. F.; Bell, A.; Maguire, P.; McLaughlin, J., Intrinsic stress measured onultra-thin amorphous carbon films deposited on AFM cantilevers. Diamond and RelatedMaterials2001,10,(1),94-98.
    [63] Dror, Y.; Cohen, Y.; Yerushalmi-Rozen, R., Structure of gum arabic in aqueous solution. JPolym Sci Pol Phys2006,44,(22),3265-3271.
    [64] Ali, B. H.; Ziada, A.; Blunden, G., Biological effects of gum arabic: A review of some recentresearch. Food Chem Toxicol2009,47,(1),1-8.
    [65] Islam, A. M.; Phillips, G. O.; Sljivo, A.; Snowden, M. J.; Williams, P. A., A review of recentdevelopments on the regulatory, structural and functional aspects of gum arabic. FoodHydrocolloids1997,11,(4),493-505.
    [66] Dickinson, E.; Murray, B. S.; Stainsby, G.; Anderson, D. M. W., Surface activity andemulsifying behaviour of some Acacia gums. Food Hydrocolloids1988,2,(6),477-490.
    [67] Garti, N.; Slavin, Y.; Aserin, A., Surface and emulsification properties of a new gum extractedfrom Portulaca oleracea L. Food Hydrocolloids1999,13,(2),145-155.
    [68] Garti, N.; Reichman, D., Surface properties and emulsification activity of galactomannans.Food Hydrocolloids1994,8,(2),155-173.
    [69] Sanchez, C.; Renard, D.; Robert, P.; Schmitt, C.; Lefebvre, J., Structure and rheologicalproperties of acacia gum dispersions. Food Hydrocolloids2002,16,(3),257-267.
    [70] Lotya, M.; Hernandez, Y.; King, P. J.; Smith, R. J.; Nicolosi, V.; Karlsson, L. S.; Blighe, F. M.;De, S.; Wang, Z. M.; McGovern, I. T.; Duesberg, G. S.; Coleman, J. N., Liquid PhaseProduction of Graphene by Exfoliation of Graphite in Surfactant/Water Solutions. J Am ChemSoc2009,131,(10),3611-3620.
    [71] Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.;Holland, B.; Byrne, M.; Gun'ko, Y. K.; Boland, J. J.; Niraj, P.; Duesberg, G.; Krishnamurthy,S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A. C.; Coleman, J. N., High-yieldproduction of graphene by liquid-phase exfoliation of graphite. Nature Nanotech2008,3,(9),563-568.
    [72] Graf, D.; Molitor, F.; Ensslin, K.; Stampfer, C.; Jungen, A.; Hierold, C.; Wirtz, L., SpatiallyResolved Raman Spectroscopy of Single-and Few-Layer Graphene. Nano Lett2007,7,(2),238-242.
    [73] Calizo, I.; Balandin, A. A.; Bao, W.; Miao, F.; Lau, C. N., Temperature Dependence of theRaman Spectra of Graphene and Graphene Multilayers. Nano Lett2007,7,(9),2645-2649.
    [74] Choi, E.-K.; Jeon, I.-Y.; Bae, S.-Y.; Lee, H.-J.; Shin, H. S.; Dai, L.; Baek, J.-B., High-yieldexfoliation of three-dimensional graphite into two-dimensional graphene-like sheets. ChemCommun2010,46,(34),6320-6322.
    [75] Wang, Y.; Shao, Y. Y.; Matson, D. W.; Li, J. H.; Lin, Y. H., Nitrogen-Doped Graphene and ItsApplication in Electrochemical Biosensing. ACS Nano2010,4,(4),1790-1798.
    [76] Becerril, H. A.; Mao, J.; Liu, Z.; Stoltenberg, R. M.; Bao, Z.; Chen, Y., Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano2008,2,(3),463-470.
    [77] Lu, W.; Liu, S.; Qin, X.; Wang, L.; Tian, J.; Luo, Y.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X.,High-yield, large-scale production of few-layer graphene flakes within seconds: usingchlorosulfonic acid and H2O2as exfoliating agents. J Mater Chem2012,22,(18),8775-8777.
    [78] Yang, J.; Zang, C.; Sun, L.; Zhao, N.; Cheng, X., Synthesis of graphene/Ag nanocompositewith good dispersibility and electroconductibility via solvothermal method. Mater Chem Phys2011,129,(1–2),270-274.
    [79] Badawy, A. M. E.; Luxton, T. P.; Silva, R. G.; Scheckel, K. G.; Suidan, M. T.; Tolaymat, T. M.,Impact of Environmental Conditions (pH, Ionic Strength, and Electrolyte Type) on the SurfaceCharge and Aggregation of Silver Nanoparticles Suspensions. Environ Sci Technol2010,44,(4),1260-1266.
    [80] Lee, S. J.; Morrill, A. R.; Moskovits, M., Hot spots in silver nanowire bundles for surface-enhanced Raman spectroscopy. J Am Chem Soc2006,128,(7),2200-1.
    [81] Freeman, R. G.; Grabar, K. C.; Allison, K. J.; Bright, R. M.; Davis, J. A.; Guthrie, A. P.;Hommer, M. B.; Jackson, M. A.; Smith, P. C.; Walter, D. G.; Natan, M. J., Self-AssembledMetal Colloid Monolayers: An Approach to SERS Substrates. Science1995,267,(5204),1629-1632.
    [82] Hunyadi, S. E.; Murphy, C. J., Bimetallic silver-gold nanowires: fabrication and use in surface-enhanced Raman scattering. J Mater Chem2006,16,(40),3929-3935.
    [1] Wu, Y.; Xia, M.; Fan, Q.; Zhu, M., Designable synthesis of nanocomposite hydrogels withexcellent mechanical properties based on chemical cross-linked interactions. Chem Commun2010,46,(41),7790-7792.
    [2] Qiu, Y.; Park, K., Environment-sensitive hydrogels for drug delivery. Adv Drug Delivery Rev2001,53,(3),321-339.
    [3] Hoffman, A. S., Hydrogels for biomedical applications. Adv Drug Delivery Rev2012,64,Supplement,(0),18-23.
    [4] Sun, J.-Y.; Zhao, X.; Illeperuma, W. R. K.; Chaudhuri, O.; Oh, K. H.; Mooney, D. J.; Vlassak,J. J.; Suo, Z., Highly stretchable and tough hydrogels. Nature2012,489,(7414),133-136.
    [5] Gong, J. P.; Katsuyama, Y.; Kurokawa, T.; Osada, Y., Double-Network Hydrogels withExtremely High Mechanical Strength. Adv Mater2003,15,(14),1155-1158.
    [6] Geim, A. K.; Novoselov, K. S., The rise of graphene. Nat Mater2007,6,(3),183-191.
    [7] Das, S.; Wajid, A. S.; Shelburne, J. L.; Liao, Y.-C.; Green, M. J., Localized In situPolymerization on Graphene Surfaces for Stabilized Graphene Dispersions. ACS Appl MaterInterfaces2011,3,(6),1844-1851.
    [8] Potts, J. R.; Dreyer, D. R.; Bielawski, C. W.; Ruoff, R. S., Graphene-based polymernanocomposites. Polymer2011,52,(1),5-25.
    [9] Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S., The chemistry of graphene oxide. ChemSoc Rev2010,39,(1),228-240.
    [10] Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G.;Nguyen, S. T.; Ruoff, R. S., Preparation and characterization of graphene oxide paper. Nature2007,448,(7152),457-460.
    [11] Shen, J.; Yan, B.; Li, T.; Long, Y.; Li, N.; Ye, M., Mechanical, thermal and swelling propertiesof poly(acrylic acid)-graphene oxide composite hydrogels. Soft Matter2012,8,(6),1831-1836.
    [12] Liu, R.; Liang, S.; Tang, X.-Z.; Yan, D.; Li, X.; Yu, Z. Z., Tough and highly stretchablegraphene oxide/polyacrylamide composite hydrogels. J Mater Chem2012,22,(28),14160-14167.
    [13] Coleman, J. N., Liquid exfoliation of defect-free graphene. Acc Chem Res2013,46,(1),14-22.
    [14] Lotya, M.; King, P. J.; Khan, U.; De, S.; Coleman, J. N., High-Concentration, Surfactant-Stabilized Graphene Dispersions. ACS Nano2010,4,(6),3155-3162.
    [15] Schniepp, H. C.; Kudin, K. N.; Li, J.-L.; Prud’homme, R. K.; Car, R.; Saville, D.A.;Aksay, I.A., Bending Properties of Single Functionalized Graphene Sheets Probed by Atomic ForceMicroscopy. ACS Nano2008,2,(12),2577-2584.
    [16] Su, Q.; Pang, S.; Alijani, V.; Li, C.; Feng, X.; Müllen, K., Composites of Graphene with LargeAromatic Molecules. Adv Mater2009,21,(31),3191-3195.
    [17] Kim, H.; Macosko, C. W., Morphology and Properties of Polyester/Exfoliated GraphiteNanocomposites. Macromolecules2008,41,(9),3317-3327.
    [18] May, P.; Khan, U.; O'Neill, A.; Coleman, J. N., Approaching the theoretical limit forreinforcing polymers with graphene. J Mater Chem2012,22,(4),1278-1282.
    [19] Khan, U.; O’Neill, A.; Porwal, H.; May, P.; Nawaz, K.; Coleman, J. N., Size selection ofdispersed, exfoliated graphene flakes by controlled centrifugation. Carbon2012,50,(2),470-475.
    [20] Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z.; De, S.; McGovern, I. T.; Holland,B.; Byrne, M.; Gun'Ko, Y. K.; Boland, J. J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.;Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A. C.; Coleman, J. N., High-yield productionof graphene by liquid-phase exfoliation of graphite. Nat Nano2008,3,(9),563-568.
    [21] Lotya, M.; Hernandez, Y.; King, P. J.; Smith, R. J.; Nicolosi, V.; Karlsson, L. S.; Blighe, F. M.;De, S.; Wang, Z.; McGovern, I. T.; Duesberg, G. S.; Coleman, J. N., Liquid Phase Productionof Graphene by Exfoliation of Graphite in Surfactant/Water Solutions. J Am Chem Soc2009,131,(10),3611-3620.
    [22] Wang, Y.; Shi, Z.; Fang, J.; Xu, H.; Ma, X.; Yin, J., Direct exfoliation of graphene inmethanesulfonic acid and facile synthesis of graphene/polybenzimidazole composites. J MaterChem2011,21,(2),505-512.
    [23] Vadukumpully, S.; Paul, J.; Valiyaveettil, S., Cationic surfactant mediated exfoliation ofgraphite into graphene flakes. Carbon2009,47,(14),3288-3294.
    [24] Das, S.; Irin, F.; Tanvir Ahmed, H. S.; Cortinas, A. B.; Wajid, A. S.; Parviz, D.; Jankowski, A.F.; Kato, M.; Green, M. J., Non-covalent functionalization of pristine few-layer graphene usingtriphenylene derivatives for conductive poly (vinyl alcohol) composites. Polymer2012,53,(12),2485-2494.
    [25] Guardia, L.; Fernández-Merino, M. J.; Paredes, J. I.; Solís-Fernández, P.; Villar-Rodil, S.;Martínez-Alonso, A.; Tascón, J. M. D., High-throughput production of pristine graphene in anaqueous dispersion assisted by non-ionic surfactants. Carbon2011,49,(5),1653-1662.
    [26] Liu, F.; Choi, J. Y.; Seo, T. S., DNA mediated water-dispersible graphene fabrication and goldnanoparticle-graphene hybrid. Chem Commun2010,46,(16),2844-2846.
    [27] Islam, A. M.; Phillips, G. O.; Sljivo, A.; Snowden, M. J.; Williams, P. A., A review of recentdevelopments on the regulatory, structural and functional aspects of gum arabic. FoodHydrocolloids1997,11,(4),493-505.
    [28] Lu, E.-X.; Jiang, Z.-Q.; Zhang, Q.-Z.; Jiang, X.-G., A water-insoluble drug monolithic osmotictablet system utilizing gum arabic as an osmotic, suspending and expanding agent. J.Controlled Release2003,92,(3),375-382.
    [29] Fan, J.; Shi, Z.; Ge, Y.; Wang, J.; Wang, Y.; Yin, J., Gum arabic assisted exfoliation andfabrication of Ag-graphene-based hybrids. J Mater Chem2012,22,(27),13764-13772.
    [30] Zohuriaan-Mehr, M. J.; Motazedi, Z.; Kabiri, K.; Ershad-Langroudi, A.; Allahdadi, I., Gumarabic–acrylic superabsorbing hydrogel hybrids: Studies on swelling rate and environmentalresponsiveness. J Appl Polym Sci2006,102,(6),5667-5674.
    [31] Reis, A. V.; Guilherme, M. R.; Cavalcanti, O. A.; Rubira, A. F.; Muniz, E. C., Synthesis andcharacterization of pH-responsive hydrogels based on chemically modified Arabic gumpolysaccharide. Polymer2006,47,(6),2023-2029.
    [32] Brannon-Peppas, L.; Peppas, N. A., Equilibrium swelling behavior of pH-sensitive hydrogels.Chem Eng Sci1991,46,(3),715-722.
    [33] Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J., LargeArea, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition.Nano Lett2008,9,(1),30-35.
    [34] Shao, G.; Lu, Y.; Wu, F.; Yang, C.; Zeng, F.; Wu, Q., Graphene oxide: the mechanisms ofoxidation and exfoliation. J Mater Sci2012,47,(10),4400-4409.
    [35] Graf, D.; Molitor, F.; Ensslin, K.; Stampfer, C.; Jungen, A.; Hierold, C.; Wirtz, L., SpatiallyResolved Raman Spectroscopy of Single-and Few-Layer Graphene. Nano Lett2007,7,(2),238-242.
    [36] Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.;Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K., Raman Spectrum of Graphene andGraphene Layers. Phys Rev Lett2006,97,(18),187401.
    [37] Becerril, H. A.; Mao, J.; Liu, Z.; Stoltenberg, R. M.; Bao, Z.; Chen, Y., Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors. ACS Nano2008,2,(3),463-470.
    [38] Lu, W.; Liu, S.; Qin, X.; Wang, L.; Tian, J.; Luo, Y.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X.,High-yield, large-scale production of few-layer graphene flakes within seconds: usingchlorosulfonic acid and H2O2as exfoliating agents. J Mater Chem2012,22,(18),8775-8777.
    [39] Jeon, I.-Y.; Choi, H.-J.; Bae, S.-Y.; Chang, D. W.; Baek, J.-B., Wedging graphite into grapheneand graphene-like platelets by dendritic macromolecules. J Mater Chem2011,21,(21),7820-7826.
    [40] Xiang, Y.; Peng, Z.; Chen, D., A new polymer/clay nano-composite hydrogel with improvedresponse rate and tensile mechanical properties. Eur Polym J2006,42,(9),2125-2132.
    [41] Li, X.; Wu, W.; Wang, J.; Duan, Y., The swelling behavior and network parameters of guargum/poly(acrylic acid) semi-interpenetrating polymer network hydrogels. Carbohydr Polym2006,66,(4),473-479.
    [42] Zhang, X. Z.; Yang, Y. Y.; Wang, F. J.; Chung, T. S., Thermosensitive Poly(N-isopropylacrylamide-co-acrylic acid) Hydrogels with Expanded Network Structures andImproved Oscillating Swelling Deswelling Properties. Langmuir2002,18,(6),2013-2018.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700