用户名: 密码: 验证码:
污泥间接式干化机理及处置过程中污染物排放特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
污泥是一种量大面广且对人体和环境都具有很大危害作用的固体废弃物,广泛来源于市政污水、工业污水、水体疏浚等污水处理过程。机械脱水污泥的主要成分为约80%的水分、5-12%的有机质和8-15%的灰分。目前污泥的处置方法主要为填埋、农用和焚烧,其中干化结合焚烧的污泥处理处置技术已被公认为能最大限度地实现污泥的减量化和资源化。但有关污泥干化机理的研究并不多,基于此背景,本文将开展污泥干化特性及其影响参数和污染物排放的相关研究,通过理论和实验研究建立可指导工业应用的理论体系。
     论文的第一章是对论文背景相关知识的文献综述。首先介绍了污泥的定义、分类、危害和现有的处理处置技术,以及污泥干化技术的概念、污泥干化技术工艺类型和污泥干化技术的主要流派,并对污泥干化的研究现状、污泥干化和焚烧污染物排放研究现状进行了综述。在此章节中,还包括了对全文系统和框架的介绍。
     论文的第二章是污泥水分分布特性研究。首先介绍了各种不同的水分分布测定方法,重点介绍了本文所采用的热干燥法、热重—示差热分析法(Thermogravimetric-differential thermal analysis, TG-DTA)、热重—差示扫描量热法(Thermogravimetric-differential scanning calorimetry, TG-DSC)和水活度法的检测原理和方法。然后通过上述4种方法对不同污泥的水分分布特性进行了实验研究,根据实验结果对比不同污泥水分分布特性的差异和不同检测方法的优缺点。
     论文的第三章是污泥在空心桨叶式干化机内干化特性及影响因素研究。结合常压渗透模型和实验结果对城市污水污泥和造纸污泥的干化机理进行了研究。根据模型要求对污泥的物性参数进行了检测,这些参数包括热扩散系数、导热系数、污泥比热和污泥粒径等,同时给出了检测方法。通过实验结果和理论模拟计算结果之间的对比,分析了干化温度、热轴搅动速率和载气流量对污泥干化特性的影响。本章最后还开展了不同添加剂和干化热源对污泥干化的影响研究,所用添加剂包括污泥燃烧辅助燃料如煤和废油、CaO脱硫剂和干污泥,研究发现当CaO添加剂的质量百分比高于0.5%时即能明显促进污泥干化速率的提高。通过实验测定了烟气热源在空心热轴内的对流换热系数,研究发现当烟气流速为3.5~13m/s时,烟气换热系数为18.6~53.0 W/(m2K)。最后对比分析和讨论了烟气热源、导热油热源和饱和水蒸汽热源对污泥干化的影响。
     论文的第四章是污泥间壁式真空搅动干化特性研究。首先结合真空渗透模型分析了城市污水污泥真空条件下的间壁式搅动干化机理,在此基础上以城市污水污泥为例研究了真空压力、干化温度、搅动速率和容积负荷对污泥干化特性的影响,同时探讨了干化机内刮条的功用。最后,对比研究了污泥真空干化特性和污泥常压干化特性,并对真空和常压干化条件下的干化冷凝液进行了对比分析。
     论文的第五章是污泥干化过程挥发性化合物排放特性研究。首先通过管式炉试验结合红外光谱分析研究了城市污水污泥和造纸污泥干化气体中挥发性化合物的主要成分为NH3、CH4、C7H16、CO2和挥发性有机酸,并根据实验结果对各种污染物的生成机理进行了分析。然后,在干化面积为2 m2桨叶式干化机上对污泥的干化气体污染物以及冷凝液的排放进行了研究,研究发现城市污水污泥干化冷凝液呈弱碱性,而造纸污泥干化冷凝液呈若酸性。
     论文的第六章是流化床内污泥焚烧污染物排放特性研究。本章的第一部分内容是城市污水污泥在小型流化床实验台内焚烧污染物排放特性研究,主要针对焚烧烟气中多环芳烃和二噁英的排放特性进行了研究,同时还研究了煤和生石灰等辅助燃料和添加剂对污染物排放的影响。本章的第二部分内容是在0.5 MW大型流化床焚烧炉上对滇池污泥焚烧过程污染物排放特性进行了研究,结果表明焚烧烟气中的重金属、二噁英和氮氧化物的排放浓度均符合国家标准。
     论文的第七章是计算机辅助污泥干化焚烧系统设计计算研究。首先对常见的干化辅助计算软件进行了详细的介绍。然后,以卧型桨叶式污泥干化机为例研究了间歇式污泥干化向连续式污泥干化转化的方法,并利用Excel Spreadsheet建立了污泥干化过程模型和可视化操作界面,研究了干化气体余热利用对污泥干化能量利用率的影响。模拟计算结果表明,如果对干化气体进行余热回收利用,污泥干化能量利用率将由69.8%提高至83.3%。最后,利用Excel Spreadsheet建立了污泥干化焚烧系统过程模型和可视化操作界面,并以杭州城市污水污泥为例,开展了干化焚烧系统优化方面的计算研究。计算结果表明:当杭州污泥入炉含水率不高于60%时,污泥焚烧系统不需要添加辅助燃料,而且当入炉污泥含水率等于60%时,污泥干化焚烧系统辅助燃料消耗量最低。
     论文的第八章是60吨/天污泥干化焚烧工程实例。该工程由污泥干化和污泥焚烧两部分组成,污泥焚烧产生的蒸汽用于污泥干化,污泥干化至含水率60%后投入焚烧炉进行焚烧。利用Excel Spreadsheet对污泥干化焚烧系统进行了设计计算,计算结果表明当制革污泥干化至含水率60%时,系统辅助燃料消耗量最低,为2.32吨煤/天。
     论文的第九章是全文总结及工作展望。主要包括对全文结论的总结归纳,论文创新点介绍,以及在未来需要进一步加强或开展的研究工作。
Sludge is particularly burdensome for both the natural environment and human health. It is widely emitted from the treatment processes of municipal wastewater, industrial wastewater and urban waterbody sediment. Mechanically dewatered sludge usually contains about 80% of water,10% of organic matter and 10% of ash. Land-filling, agricultural utilization and incineration are the most widely used method for sludge disposal in the world. Drying and incineration has been recognized as the most effective method for sludge volume reduction and energy recovery. However, the drying mechanism of sludge is not well studied in the published documents. Based on above, in current dissertation the drying and pollutants emission mechanisms of sludge is studied:a theoretical system which can be used for the guidance of industrial application is built based on the theoretical analysis and experimental researchs.
     Chapter one is the background review, mainly including the definitions of sludge, the categories of sludge, the harm of sludge, the available sludge disposal methods, the concept of sludge drying, the types of sludge drying technologies, the research status of sludge drying mechanism, and the research status of pollutants emission during sludge drying and incineration processes, etc. In this chapter, the framework of the full text and the structure of this dissertation are also introduced.
     Chapter two is the researches on moisture distribution characteristics in sludges. Different methods for determination of moisture distribution in sludge are introduced. Thermal drying method, thermogravimetric-differential thermal analysis method (TG-DTA), thermogravimetric-differential scanning calorimetry method (TG-DSC), and water activity method have been paid a lot of attentions, focusing on their measuring principles and methods. The moisture distribution characteristics of different sludges are studied by these four methods respectively. The differences in moisture distributions of different sludges are compared, as well as the advantages and disadvantages of the four measuring methods.
     Chapter three is on the sludge drying characteristics in a nara-type paddle dryer. The drying mechanisms of sewage sludge and paper mill sludge are studied based on the laboratory experiments and penetration model. Physical parameters of sludge, including thermal diffusivity, thermal conductivity, specific heat capacity, and particle diameter, are experimentally determined for theoretical calculation. The experimental results are compared with those from theoretical calculation. The effects of drying temperature, stirrer speed and gas flowrate on drying characteristics of sludge are also studied. Furthermore, the effects of additives, including coal, waste oil, CaO, and dried sludge, on sludge drying are studied. The result indicates that the drying rate of sewage sludge increases significantly when CaO content in sludge is higher than 0.5%. The effects of heat-transfer media, including saturated water vapor, thermal oil and flue gas, on sludge drying are also studied. The heat transfer coefficient of flue gas in the hollow shaft of paddle dryer is measured. The effects of flue gas temperature and flowrate on the heat transfer coefficient of flue gas in are studied. The result indicates that when the flowrate increases from 3.5 to 13 m/s, the heat transfer coefficient will increase from 18.6 to 53.0 W/(m2 K). A comparison of overall heat transfer resistances from flue gas heated, thermal oil heated and saturated water vapor heated paddle dryers is presented.
     Chapter four is on drying characteristics of sludge under partial vacuum condition. The agitated drying mechanism of sewage sludge under partial vacuum condition based on penetration model is presented. The effects of system pressure, drying temperature, stirrer speed, and filling ratio on sludge drying characteristics are experimentally studied. The role of the scrappers in sludge dryer is also discussed. Furthermore, comparisons of drying characteristics and condensate properties between partial vacuum contact drying and atmospheric contact drying are presented.
     Chapter five is on emission characteristics of volatile compounds during sludge drying process. The drying experiments of sewage sludge and paper mill sludge are conducted on a tubular furnace, and the main components of drying gas are identified to be NH3、CH4、C7H16、CO2 by an infra-red spectrum analyzer. The formation mechanism of these compounds are also analysed. Furthermore, sludge drying experiments are carried out in a nara-type paddle dryer with 2m2 heating area. The drying gas and condensate from the dryer are analysed. The result indicates that condensate from sewage sludge drying is weakly alkaline, while the condensate from paper mill sludge drying is weakly acidic.
     Chapter six is on emission characteristics of pollutants during sludge combustion in a fluidized bed incinerator. In the first part, the emission characteristics of PAHs and dioxins, and the effects of coal and CaO on PAHs and dioxins emissions during sewage sludge combustion are studied, are also studied. In the second part, pollutants emission during incineration of Dianchi sludge in a 0.5 MW pilot-scale fluidized bed are studied. The result indicates that the heavy metal, dioxins and nitrogen oxide concentration in flue gas can meet the national standards.
     Chapter seven is on computer-aided sludge drying system and sludge drying incineration system design. The drying softwares available in the market are introduced. The method for sludge batch drying transferring to sludge continuous drying is presented. The process model of sludge drying and visualizing window are developed based on Excel spreadsheet software. Based on numerical simulation of spreadsheet software, it is found that energy utilization ratio of sludge drying system will increase from 69.8% to 83.3%, when the waste heat in drying gas is utilized. The process model of sludge drying and incineration system and visualizing are also developed based on Excel spreadsheet software. Optimizational calculation of the drying and incineration system is carried out based on the sewage sludge from Hangzhou city. The result indicates that, during incineration process, no auxiliary fuel is needed when the moisture content of sludge incinerated is not more than 60%; and that the sludge drying and incineration system consumes minimal auxiliary fuel when moisture content of sludge is 60%.
     Chapter eight is on a 60 t/d sludge drying and incineration project built in Wenzhou city. The project is composed of a sludge drying system and a sludge incineration system. Saturate water vapor produced from sludge incineration is supplied for sludge drying, and sludge is dried to a water content of 60% before being incinerated. The sludge drying and incineration system design is carried out based on Excel Spreadsheet software. The result indicates that the sludge drying and incineration system consumes minimal auxiliary fuel (2.32 t coal/d) when moisture content of sludge is 60%.
     Chapter nine mainly includes the conclusions of full text, the innovative point of this dissertation, and the prospect of future work.
引文
[1]USEPA, Part 503-standards for the use or disposal of sewage sludge.1993:USA.
    [2]Evaluation of sludge treatments for pathogen reduction.2001, European Commission.
    [3]Deportes I., Benoit-Guyod J.L., Zmirou D., Hazard to man and the environment posed by the use of urban waste composte-a review. Science of the Total Environment,1995. 172(2/3):197-222.
    [4]Gantzer C., Gaspard P., Galvez L., et al., Monitoring of bacterial and parasitological contaminiation during various treatment of sludge. Water Research,2001. 23(16):3763-3770.
    [5]McGrath S.P., Chang A.C., Page A.L., et al., Land application of sewage sludge:scientific perspectives of heavy metal loading limits in Europe and United States. Environ Rev,1994. 2(1):91-107.
    [6]McGrath S.P., Metal concentrations in sludges and soil from a long-term field trial. J Agric Sci,1994.103.
    [7]陈建斌,黄启飞,高定等,中国城市污泥的重金属含量及其变化趋势.环境科学学报,2003.23(5):561-569.
    [8]Stevens J.L., Northcott G.L., Stern G.A., et al., PAHs, PCBs, PCNs, organochlorine pesticides, synthetic musks, and polychlorinated n-alkanes in U.K. sewage sludge:survey results and implications. Environ Sci Technol,2003.37:463-467.
    [9]Rappe C, Andersson R., Bonner M., et al., PCDDs and PCDFs in municipal sewage sludge and effluent from potw in the state of mississipi. Chemosphere,1998.36(2):315-328.
    [10]Blanchard M., Teil M.J., Ollivon D., et al., Polycyclic aromatic hydrocarbons and polychlorobiphenyls in wastewaters and sewage sludges from the Paris area (France). Environmental Research,2004.95:184-197.
    [11]http://www.stats.gov.cn/tjsj/qtsj/hjtjzl/hjtjsj2003/t20050706_402261002.htm.
    [12]《欧洲议会环境保护、特别是污泥农用土地保护法令》.1986.
    [13]《城市污水处理法令》.1991.
    [14]《城镇污水处理厂污泥处理技术政策通知》,in建城[2009]23号.2009.
    [15]《城镇污水处理厂污泥处置混合填埋泥质》,in CJ/T 249-2007.2007.
    [16]《城镇污水处理厂污染物排放标准》,in GB/T 18918-2002.2002.
    [17]《农用污泥中对污染物的控制标准》,in GB/T 4284-84.1984.
    [18]Moreira R., Sousa J.P., Canhoto C., Biological testing of a digested sewage sludge and derived composts. Bioresource Technology,2008.99(17):8382-8389.
    [19]Roca-Perez L., Martinez C., Marcilla P., et al., Composting rice straw with sewage sludge and compost effects on the soil-plant system. Chemosphere,2009.75(6):781-787.
    [20]Stylianou M.A., Inglezakis V.J., Moustakas K.G., et al., Improvement of the quality of sewage sludge compost by adding natural clinoptilolite. Desalination,2008. 224(1-3):240-249.
    [21]Mininni G., Di Bartolo Zuccarello R., Lotito V., et al., A design model of sewage sludge incineration plants with energy recovery. Water Science and Technology,1997. 36(11):211-218.
    [22]Ogada T., Werther J., Combustion characteristics of wet sludge in a fluidized bed. Fuel, 1996.75(5):617-626.
    [23]Werther J., Ogada T., Sewage sludge combustion. Progress in Energy and Combustion Science,1999.25:55-116.
    [24]Irene M.C.L., Zhou W.W., Lee K.M., Geotechnical characterization of dewatered sewage sludge for landfill disposal. Canada Geotech,2002.39(5):1139-1149.
    [25]Koenig A., Key J., Wan I.M., Physical properties of dewatered wastewater sludge for landfilling. Water Science and Technology,1996.34(3/4):533-540.
    [26]Horace K., Jr M.Y., Zimmie F., Waste minimization and reuse of paper sludges in landfill covers:a case study. Waste Management & Research,1997.15(6):593-605.
    [27]Shen L., Zhang D.K., An experimental study of oil recovery from sewage sludge by low-temperature pyrolysis in a fluidized-bed. Fuel,2003.8(4):465-472.
    [28]Lutz H., Romeiro G.A., Damasceno R.N., Low temperature conversion of some Brazilian municipal and industrial sludges. Bioresource Technology,2002.7(1):103-107.
    [29]刑英杰,污泥催化低温热解制油的研究.2006,大连理工大学:大连.
    [30]Tay J.H., Chen X.G., Jeyaseelan S., et al., A comparative study of anaerobically digested and undigested sewage sludges in preparation of activated carbons. Chemosphere,2001. 44(11):53-57.
    [31]Martin M.J., Artola A., Balaguer M.D., et al., Activated carbons developed from surplus sewage sludge for the removal of dyes from dilute aqueous solutions. Chemical Engineering Journal,2003.94(3):231-239.
    [32]Rozada F., Otero M., Moran A., et al., Activated carbons from sewage sludge and discarded tyres:Production and optimization. Journal of Hazardous Materials,2005. B124(1-3):181-191.
    [33]Neyens E., Baeyens J., A review of thermal sludge pre-treatment processes to improve dewaterbiligy. Journal of Hazardous Materials,2003. B98(1/3):51-67.
    [34]Neyens E., Baeyens J., Dewil R., et al., Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering. Journal of Hazardous Materials,2004.106B(2/3):83-92.
    [35]Neyens E., Baeyens J., Weemaes M., et al., Hot acid hydrolysis as a potential treatment of thickened sewage sludge. Journal of Hazardous Materials,2003. B98(1/3):275-293.
    [36]Nakouzi S., A novel approach to paint sludge recycling. Journal of Hazardous Materials, 1998.13(1):53-60.
    [37]范忠锦,利用污泥生产节能型人造轻骨料-陶粒.新型建材,2004.3:25-28.
    [38]李淑展,施周,谢敏,污水厂污泥制地砖及其性能.硅酸盐学报,2007.35(2):251-254.
    [39]张杰,谢时伟,污泥制砌块探索.中国皮革,2000.29(7):38-39.
    [40]USEPA, Biosolids Generation, Use, and Disposal in the United States.1999.
    [41]姚刚,德国的污泥利用和处置.城市环境与城市生态,2000.13(1):43-47.
    [42]Lowe P., Development in the thermal drying of sewage sludge. Water Environment Journal, 1995.9(3):306-316.
    [43]Chen G.H., Yue P.L., Mujumdar A.S., Sludge dewatering and drying. Drying technology, 2002.20(4&5):883-916.
    [44]Vaxelaire J., Puiggali J.R., Analysis of the drying of residual sludge:from the experiment to the simulation of a belt dryer. Drying Technology,2002.20(4&5):989-1008.
    [45]Leonard A., Blacher S., Marchot P., et al., Convective drying of wastewater sludges: influence of air temperature, superficial velocity, and humidity on the kinetics. Drying Technology,2005.23(8):1667-1679.
    [46]Reyes A., Eckholt M., Troncoso F., et al., Drying kinetics of sludge from a wastewater treatment plant. Drying Technology,2004.22(9):2135-2150.
    [47]Ferrasse J.H., Arlabosse P., Lecomte D., Heat, momentum, and mass transfer measurements in indirect agitated sludge drying. Drying Technology,2002.20(4&5):749-769.
    [48]Devahastin S., Mujumdar A.S., Indirect dryers. Handbook of Industrial Drying,3rd Edition. 2007:CRC Press, Boca Raton.137-149.
    [49]Arlabosse P., Chavez S., Lecomte D., Method for thermal design of paddle dryers: application to municipal sewage sludge. Drying Technology,2004.22(10):2375-2393.
    [50]Chun W.P., Lee K.W. Sludge drying characteristics on combined system of contact dryer and fluidized bed dryer. in Drying 2004-Proceeding of the 14th International Drying Symposium (IDS 2004).2004. Sao Paulo, Brazil.
    [51]顾忠民,杨殿海,太阳能污泥干化在欧洲的应用.四川环境,2008.27(6):93-96.
    [52]Ohm T.I., Chae J.S., Kim J.E., et al., A study on the dewatering of industrial waste sludge by fry-drying technology. Journal of Hazardous Materials,2009. Article in press.
    [53]Reyes A., Eckholt M., Alvarez P.I., Drying and heat transfer characteristics for a novel fluidized bed dryer. Drying Technology,2004.22(8):1869-1895.
    [54]Adamiec J., Drying of waste sludges in a fluidized bed dryer with a mixer. Drying Technology,2002.20(4):839-853.
    [55]Peregrina C., Rudolph V., Lecomte D., et al., Immersion frying for the thermal drying of sewage sludge:An economic assessment. Journal of Environmental Management,2008. 86(1):246-261.
    [56]Silva D.P., Rudolph V., Taranto O.P., The drying of sewage sludge by immersion frying. Brazilian Journal of Chemical Engineering,2005.22(2):271-276.
    [57]Gan Q., A case study of microwave processing of metal hydroxide sediment sludge from printed circuit board manufacturing wash water. Waste Management,2000.20(8):695-701.
    [58]Idris A., Khalid K., Omar W., Drying of silica sludge using microwave heating. Applied Thermal Engineering,2004.24(5/6):905-918.
    [59]Menendez J.A., Dominguez A., Inguanzo M., et al., Microwave-induced drying, pyrolysis and gasification (MWDPG) of sewage sludge:Vitrification of the solid residue. Journal of Analytical and Applied Pyrolysis,2005.74(1/2):406-412.
    [60]Mahmood T., Zawadzki M., Banerjee S., Pilot study of impulse drying industrial sludge. Environmental Science and Technology,1998.32(12):1813-1816.
    [61]Banerjee S., Mahmood T., Phelan P.M., et al., Impulse drying sludge. Water Research, 1998.32(1):258-260.
    [62]Hippinen I., Ahtila P., Drying of activated sludge under partial vacuum conditions-An experimental study. Drying Technology,2004.22(9):2119-2134.
    [63]Arlabosse P., Chavez S., Prevot C., Drying of municipal sewage sludge:From a laboratory scale batch indirect dryer to the paddle dryer. Brazilian Journal of Chemical Engineering, 2005.22(2):227-232.
    [64]Arlabosse P., Chavez S., Lecomte D., Method for thermal design of paddle dryers: Application to municipal sewage sludge. Drying Technology,2004.22(10):2375-2393.
    [65]Cambero C.A.P., Arlabosse P., Lecomte D., Thermal efficiency in sewage sludge fry drying, in Drying 2004-Proceedings of the 14th International Drying Symposium (IDS 2004).2004: Sao Paulo, Brazil.972-978.
    [66]Yamahata Y., Izawa H., Experimental study on application of paddle dryers for sludge cake drying, in Drying 1984, Proceeding of the 4th International Drying Symposium, IDS'84. 1984:Kyoto.719-724.
    [67]Imoto Y., Kasakura T., The state of the art of sludge drying in Japan. Drying Technology, 1993.11(7):1495-1522.
    [68]马侠,蒋旭光,马增益等,桨叶式干化机污泥干化试验研究.能源工程,2006(3):57-60.
    [69]王兴润,金宜英,杜欣等,污水污泥动态间壁热干燥特性及工艺.化工学报,2007.58(9):2211-2215.
    [70]Vesilind P.A., Ramsey T.B., Effect of drying temperature on the fuel value of wastewater sludge. Waste Management,1996.14(2):189-196.
    [71]王兴润,金宜英,王志玉等,污水污泥间壁热干燥实验研究.环境科学,2007.28(3):407-410.
    [72]Werther J., Saenger M., Emissions from sewage combustion in Germany-Status and future trends. Journal of Chemical Engineering of Japan,2000.33(1):1-11.
    [73]Ogada T., Werther J., Combustion characteristics of wet sludge in a fluidized bed-Release and combustion of the volatiles. Fuel,1996.75(5):617-626.
    [74]Hartman M., Svoboda K., Pohorely M., et al., Combustion of dried sewage sludge in a fluidized-bed reactor. Industrial & Engineering Chemistry Research,2005. 44(10):3432-3441.
    [75]Shimizu T., Toyono M., Ohsawa H., Emissions of NOx and N2O during co-combustion of dried sewage sludge with coal in a bubbling fluidized bed combustor. Fuel,2007. 86(7/8):957-964.
    [76]Shimizu T., Toyono M., Emissions of NOx and N2O during co-combustion of dried sewage sludge with coal in a circulating fluidized bed combustor. Fuel,2007.86(15):2308-2315.
    [77]Sanger M., Werther J., Ogada T., NOx and N2O emission characteristics from fluidised bed combustion of semi-dried municipal sewage sludge. Fuel,2001.80(2):167-177.
    [78]Lopes M.H., Gulyurtlu I., Cabrita I., Control of pollutants during FBC combustion of sewage sludge. Industrial & Engineering Chemical Research,2004.43(18):5540-5547.
    [79]Leckner B., Amand L.E., Lucke K., et al., Gaseous emissions from co-combustion of sewage sludge and coal/wood in a fluidized bed. Fuel,2004.83(4/5):477-486.
    [80]Marani D., Braguglia C.M., Mininni G., et al., Behaviour of Cd, Cr, Mn, Ni, Pb, and Zn in sewage sludge incineration by fluidised bed furnace. Waste Management,2003. 23(2):117-124.
    [81]Yao H., Naruse I., Combustion characteristics of dried sewage sludge and control of trace-metal emission. Enegy & Fuels,2005.19(6):2298-2303.
    [82]Folgueras M.B., Diaz R.M., Xiberta J., et al., Effect of inorganic matter on trace element behavior during combustion of coal-sewage sludge blends. Energy & Fuels,2007. 21(2):744-755.
    [83]Shao J., Yan R., Chen H., et al., Emission characteristics of heavy metals and organic pollutants from the combustion of sewage sludge in a fluidized bed combustor. Energy & Fuels,2008.22(4):2278-2283.
    [84]Corella J., Toledo J.M., Incineration of doped sludges in fluidized bed. Fate and partitioning of six targeted heavy metals. I. Pilot plant used and results. Journal of Hazardous Materials, 2000.B80(1/3):81-105.
    [85]Malerius O., Werther J., Modeling the adsorption of mercury in the flue gas of sewage sludge incineration. Chemical Engineering Journal,2003.96(1/3):197-205.
    [86]Cenni R., Frandsen F., Gerhardt T., et al., Study on trace metal partitioning in pulverized combustion of bituminous coal and dry sewage sludge. Waste Management,1998. 18(6/8):433-444.
    [87]Lopes M.H., Abelha P., Lapa N., et al., The behaviour of ashes and heavy metals during the co-combustion of sewage sludges in a fluidised bed. Waste Management,2003. 23(9):859-870.
    [88]Miller B.B., Kandiyoti R., Dugwell D.R., Trace element behavior during co-combustion of sewage sludge with polish coal. Energy & Fuels,2004.18(4):1093-1103.
    [89]Samaras P., Blumenstock M., Schramm K.W., et al., Emissions of chlorinated aromatics during sludge combustion. Water Science and Technology,2000.42(9):251-258.
    [90]Mininni G., Sbrilli A., Guerriero E., et al., Dioxins and furans formation in pilot incineration tests of sewage sludge spiked with organic chlorine. Chemosphere,2004. 54(9):1337-1350.
    [91]Fullana A., Conesa J.A., Font R., et al., Formation and destruction of chlorinated pollutants during sewage sludge incineration. Environmental Science and Technology,2004. 38(10):2953-2958.
    [92]Galvez A., Conesa J.A., Martin-Gullon I., et al., Interaction between pollutants produced in sewage sludge combustion and cement raw material. Chemosphere,2007.69(3):387-394.
    [93]Yasuhara A., Role of inorganic chlorides in formation of PCDDs, PCDFs, and coplanar PCBs from combustion of plastics, newspaper, and pulp in an incinerator. Environmental Science and Technology,2002.36(18):3924-3927.
    [94]Park J.M., Lee S.B., Kim J.P., et al., Behavior of PAHs from sewage sludge incinerators in Korea. Waste Management,2009.29(2):690-695.
    [95]Werther J., Ogada T., Philippek C., Sewage sludge combustion in the fluidized bed comparison of stationary and circulating fluidized bed techniques. Proc. Int. Conf. Fluid. Bed Combust.,1995.13(2):951-962.
    [96]Philippek C, Werther J., Co-combustion of wet sewage sludge in a coal-fired circulating fluidized-bed combustor. Journal of the Institute of Energy,1997.70:141-150.
    [97]张文景,曾庭华,蒋旭光等,造纸污泥与废水煤浆流化床焚烧排放特性.环境保护,1996.10:15-17.
    [98]李斌,池涌,李爱民等,造纸污泥与废水污泥流化床焚烧时NOx和S02的排放特性研究.工程热物理学报,1998.19(6):776-779.
    [99]蒋旭光,池涌,严建华等,污水污泥流化床焚烧研究及65t/d焚烧炉设计.热力发电,2000.4:21-25.
    [100]陈晓平,顾利锋,赵长遂等,城市污泥与煤混烧过程中NOx和N20的排放特性.东南大学学报(自然科学版),2005.35(1):122-125.
    [101]吕清刚,李志伟,那永洁等,CFBC混烧城市污泥与煤:N20和NO的排放.工程热物理学报,2004.25(1):163-166.
    [102]Nakayama K., Separation characteristics of heavy metals from molten fly ash by chloride-induced volatilization, in 10th the APCCHE conference.2004:Japan.
    [103]徐旭,谷月玲,严建华等,污泥流化床焚烧产物的重金属排放特性研究.环境工程,1.999.17(6):51-54.
    [104]李润东,刘连芳,李爱民,添加剂对污泥流化床焚烧过程重金属迁移特性影响.热力发电,2004.10:11-14.
    [105]Weber R., Nagai K., Nishino J., et al., Effects of selected metal oxides on the dechlorination and destruction of PCDD and PCDF. Chemosphere,2002. 46(9/10):1247-1253.
    [106]Smollen M., Categories of moisture content and dewatering characteristics of biological sludges, in Proceeding of the 4th World Filtration Congress.1986:Belgium, Ostend.22-25.
    [107]Coackley P., Allos R., The drying characteristics of some sewage sludges. Journal of Institute of Sewage Purification,1962.6:557-564.
    [108]Vaxelaire J., Cezac P., Moisture distribution in activated sludges:a review. Water Research, 2004.38(9):2215-2230.
    [109]Lee D.L., Lai J.Y., Mujumdar A.S., Moisture distribution and dewatering efficiency for wet materials. Drying Technology,2006.24(10):1201-1208.
    [110]Keey R.B.,干燥原理及其应用.1986:上海科学技术文献出版社.
    [111]Katsiris N., Kouzeli-Katsiri A., Bound water content of biological sludge in relation to filtration and dewatering. Water Research,1987.21(11):1319-1327.
    [112]Willard H.H., Merritt L.L., Dean J.A., Instrumental methods of analysis, in 7th Ed. Wadsworth Inc.1988:Belmont Calif.
    [113]Colin F., Gazbar S., Distribution of water in sludges in relation to their mechanical dewatering. Water Research,1995.29(8):2000-2005.
    [114]Lee D.J., Measurement of bound water in waste activated sludge-use of the centrifugal settling method. Journal of Chemical Technology and Biotechnology,1994.61(2):139-144.
    [115]Wu R.M., Lee D.J., Wang C.H., et al., Discrepancy in cake characteristics measurement: Compression-permeability cell. Journal of Chemical Engineering of Japan,2000. 33(6):869-878.
    [116]Wu R.M., Lee D.J., Wang C.H., et al., Novel cake characteristics of waste-activated sludge. Water Research,2001.35(5):1358-1362.
    [117]Kawasaki K., Matsuda A., Mizukawa Y., Compression characteristics of excess activated sludges treated by freezing-and-thawing process. Journal of Chemical Engineering of Japan, 1991.24(6):743-748.
    [118]Chang I.L., Lee D.J., Ternary expression stage in biological sludge dewatering. Water Research,1998.32(3):905-914.
    [119]Chen G.W., Hung W.T., Chang I.L., et al., Continuous classification of moisture content in waste activated sludges. Journal of Environmental Engineering,1997.123(3):253-258.
    [120]Vaxelaire J., Moisture sorption characteristics of waste activated sludge. Journal of Chemical Technology and Biotechnology,2001.76(4):377-382.
    [121]Ferrasse J.H., Lecomte D., Simultaneous heat-flow differential calorimetry and thermogravimetry for fast determination of sorption isotherms and heat of sorption in environmental or food engineering. Chemical Engineering Science,2004.59(6):1365-1376.
    [122]Bird R.B., Stewart W.E., Lightfoot E.N., Transport Phenomena.1960, Wiley, New York.
    [123]Vaxelaire J., Mousques P., Bongiovanni M., et al., Desorption isotherms of domestic activated sludge. Environmental Technology,2000.21(3):327-335.
    [124]易浩勇,污泥干燥特性及干燥过程研究.2006,东南大学:南京.
    [125]Michaud A., Peczalski R., Andrieu J., Experimental study and modeling of crystalline powders vacuum contact drying with intermittent stirring. Drying Technology,2007. 25(7):1163-1173.
    [126]Peng X., Mujumdar A.S., Boming Y., Fractal theory on drying:A review. Drying Technology,2008.26(6):640-650.
    [127]Tsotsas E., Kwapinska M., Saage G., Modeling of contact dryers. Drying Technology,2007. 25(7):1377-1391.
    [128]Michaud A., Peczalski R., Andrieu J., Modeling of vacuum contact drying of crystalline powders packed beds. Chemical Engineering and Processing,2008.47:722-730.
    [129]Metzger T., Kwapinska M., Peglow M., et al., Modern modelling methods in drying. Transport in Porous Media,2007.66:103-120.
    [130]Tsotsas E., Schlunder E.U., Contact drying of mechanically agitated particulate material in the presence of inert gas. Chemical Engineering and Processing,1986.20:277-285.
    [131]Geyaudan A., Andrieu J., Contact drying modeling of agitated porous alumina beads. Chemical Engineering and Processing,1991.30:31-37.
    [132]Schlunder E.U., Mollekopf N., Vacuum contact drying of free flowing mechanically agitated particulate materials. Chemical Engineering and Processing,1984.18(6):93-111.
    [133]Rogers H.R., Sources, behavior and fate of organic contaminants during sewage sludge treatment and in sewage sludges. Science of the Total Environment,1996.185:3-26.
    [134]Bauer R., Schlunder E.U., Effective radial thermal conductivity of packings in gas flow. International Chemical Engineering,1978.18:181-204.
    [135]Dewil R., Baeyens J., Neyens E., Fenton peroxidation improves the drying performance of waste activated sludge. Journal of Hazardous Materials,2005. B117(2/3):161-170.
    [136]Carlslaw H., Jaeger J., Conduction of heat in solids, second ed.1960, London:Oxford University Press.
    [137]ASTM, Standard test method for determining specific heat capacity by differential scanning calorimetry, in ASTM E1269-01 .2001.
    [138]Dittler A., Bamberger T., Gehrmann D., et al., Measurement and simulation of the vacuum contact drying of pastes in a LIST-type kneader drier. Chemical Engineering and Processing, 1997.36:301-308.
    [139]Mollekopf N., Warmeubertragung an mechanisch durchmischtes Schuttgut mit Warmesenken in Kontaktapparaten.1983, University of Karlsruhe.
    [140]Arlabosse P., Chitu T., Identification of the limiting mechanism in contact drying of agitated sewage sludge. Drying Technology,2007.25:557-567.
    [141]Gevaudan A., Andrieu J., Contact drying modeling of agitated porous alumina beads. Chemical Engineering and Processing,1991.30(1):31-37.
    [142]曹仲宏,徐泽,赵乐军等,添加剂对脱水污泥中重金属形态的影响.中国给水排水,2007.23(23):82-86.
    [143]王晓,活性污泥的稳定化处理技术及其发展.青海大学学报(自然科学版),2001.19(1):35-37.
    [144]赵乐军,戴树桂,吴彩霞等,不同添加剂改善脱水污泥填埋特性的正交试验研究.给水排水,2006.32(1):11-14.
    [145]赵乐军,戴树桂,闫澍旺等,掺添加剂改善脱水污泥填埋特性研究.中国给水排水,2005.21(2):47-49.
    [146]粉煤灰和生石灰对生活污水污泥脱水影响研究环境科学与技术,2007.30(4):98-99.
    [147]王兴润,金宜英,聂永丰,国内外污泥热干燥工艺的应用进展及技术要点.中国给水排水,2007.23(8):5-8.
    [148]杨世铭,传热学(第二版).1987,北京:高等教育出版社.
    [149]Kohout M., Collier A.P., Stepanek F., Vacuum contact drying kinetics:An experimental parametric study. Drying Technology,2008.23(9):1825-1839.
    [150]Skansi D., Tomas S., Pudic I., et al., The influence of pressure and temperature on the kinetics of vacuum drying of ketoprofen. Drying Technology,1997.15:1617-1631.
    [151]Malczewski J., Kaczmarek W., Vacuum contact drying of seeds. Drying Technology,1989. 7:59-69.
    [152]Nastaj F.J., Vacuum contact drying of selected biotechnology products. Drying Technology, 1994.12:1145-1166.
    [153]陈茗,李爱民,脱水污泥真空干燥实验研究.沈阳航空工业学院报,2006.23(3):63-66.
    [154]煤的发热量测定方法,in GB/T 213-2003.2003.
    [155]Deng W.Y., Yan J.H., Wang F., et al., Emission characteristics of volatile compounds during sludges drying process. Journal of Hazardous Materials,2009.15(1):186-192.
    [156]Chang J.S., Abu-Orf M., Dentel S.K., Alkylamine odors from degradation of flocculant polymers in sludges. Water Research,2005.39:3369-3375.
    [157]Gostelow P., Parsons S.A., Stuetz R.M., Odour measurements for sewage treatment works. Water Research,2001.35:570-597.
    [158]Dincer F., Muezzinoglu A., Odor determination at wastewater collection systems: olfactometry versus H2S analyses. Clean,2007.35:565-570.
    [159]Dincer F., Muezzinoglu A., Odor-causing volatile organic compounds in wastewater treatment plant units and sludge management areas, in Proceedings of IWA Conference: Facing sludge diversities, challenges, risks and opportunities.2007:Antalya, Turkey.
    [160]Li S., Lyons-Hart J., Banyasz J., et al., Real-time evolved gas analysis by FTIR method:an experimental study of cellulose pyrolysis. Fuel,2001.80:1809-1817.
    [161]Ren L.H., Nie Y.F., Liu J.G., et al., Impact of hydrothermal process on the nutrient ingredients of restaurant garbage. Journal of Environmental Science,2006.18:1012-1019.
    [162]Rudolfs W., Baumgartner W.H., Loss of volatile matter by drying sewage sludge before incineration. Water Works Sewarage,1932.4:199-201.
    [163]Jomaa S., Shanableh A., Khalil W., et al., Hydrothermal decomposition and oxidation of the organic component of municipal and industrial waste products. Advances in Environmental Research,2003.7:647-653.
    [164]Quitain A.T., Faisal M., Kang K., et al., Low-molecular-weight carboxylic acids produced from hydrothermal treatment of organic wastes. Journal of Hazardous Materials,2002. 93:209-220.
    [165]Shanableh A., Production of useful organic matter from sludge using hydrothermal treatment. Water Research,2000.34:945-951.
    [166]中华人民共和国地质矿产行业标准,滴定法测定碳酸根、重碳酸根和氢氧根,in DZ/T0064.49-93.1993.
    [167]Richard J.L., Hazardous Chemicals Desk Reference.1991, New York:Van Nostrand Reinhold.
    [168]Bories A., Guillot J.M., Sire Y., et al., Prevention of volatile fatty acids production and limitation of odours from winery wastewaters by denitrification. Water Research,2007. 41:2987-2995.
    [169]Tsang Y.F., Chua H., Sin S.N., et al., Treatment of odorous volatiles fatty acids using a biotrickling filter. Bioresource Technology,2008.99:589-595.
    [170]Rogers H.R., Sources, behaviour and fate of organic contaminants during sewage treatment and in sewage sludges. Science of the Total Environment,1996.185:3-26.
    [171]Marche T., Schnitzer M., Dinel H., et al., Chemical changes during composting of a paper mill sludge-hardwood sawdust mixture. Geoderma,2003.116:345-356.
    [172]恶臭污染物排放标准,in GB 14554-1993.1993.
    [173]污水综合排放标准,in GB 8978-1996.1996.
    [174]Werther J., Ogada T., Philippek C., N2O emissions from fluidised bed of sewage sludge. Journal of the Institude of Energy,1995.68(475):93-101.
    [175]Werther J., Ogada T., Philippek C, Sewage sludge combustion in the fluidized bed-a comparison of stationary and circulating fluidised bed techniques, in 13th International Conference on Fluidized Bed Combustion.1995:Orlando, FL:ASME.951-962.
    [176]Ogada T., Combustion and emission characteristics of sewage sludge in a bubbling fluidised bed combustor.1995, Technical University of Hamburg:Hamburg.
    [177]Kicherer A., Gerhardt T., Spliethoff H., et al., CO-combustion of biomass/sewage sludge with hard coal in a pulverized fuel semi-industrial test rig, in European Commission: APAS-contract COAL-92-0002.
    [178]USEPA, Method 23 Determination of Polychlorinated Dibenzofuran from Stationary Sources, in USEPA Method 23, Regulations U.U.C.O., Regulations U.U.C.O.^Editors.1994.
    [179]USEPA, Tetra through octa-chlorinated dioxins and furans by isotope dilution HRGC/HRMS, in Method 1613 B.1994, USEPA Press:Washington, DC.
    [180]Ledesma E.B., Kalish M.A., Nelson P.F., et al., Formation and fate of PAH during pyrolysis and fuel rich combustion of coal primary tar. Fuel,2000.79(14):1801-1814.
    [181]Liu K.L., Han W.J., Pan W.P., et al., Polycyclic aromatic hydrocarbon (PAH) emissions from a coal fired pilot FBC system. Journal of Hazardous Materials,2001.84(2/3):175-188.
    [182]倪明江,尤孝方,李晓东等,不同煤燃烧方式多环芳烃生成特性的研究.动力工程,2004.24(3):400-405.
    [183]李晓东,傅纲,尤孝方等,不同煤种燃烧生成多环芳烃的研究.热能动力工程,2003.18(104):125-127.
    [184]Lee W.J., Liow M.C., Tsai P.J., et al., Emission of polycyclic aromatic hydrocarbons from medical waste incinerators. Atmospheric Environment,2002.36(5):781-790.
    [185]Zhong Z.P., Jin B.S., Huang Y.J., et al., Experimental research on emission and removal of dioxins in flue gas from a co-combustion of MSW and coal incinerator. Waste Management, 2006.26(6):580-586.
    [186]Zhang H.J., Ni Y.W., Chen J.P., et al., Influence of variation in the operation conditions on PCDD/F distribution in a full-scale MSW incinerator. Chemosphere,2008.70(4):721-730.
    [187]Stieglitz L., Vogg H., Zwick G., et al., On formation conditions of organhalogen compounds from particulate carbon of fly ash. Chemosphere,1991.23(8/10):1255-1264.
    [188]Lutho C., Strang A., Uloth V., Sulfur addition to control dioxins formation in salt-laden power boiler. Pulp & Paper Canada,1998.99(11):391-398.
    [189]Lu S.Y., Yan J.H., Li X.D., et al., Effects of inorganic chlorine source on dioxin formation using fly ash from a fluidized bed incinerator. Journal of Environmental Science,2007. 19(6):756-761.
    [190]Wey M.Y., Liu K.Y., Yu W.J., et al., nfluences of chlorine content on emission of HCl and organic compounds in waste incineration using fluidized beds. Waste Management,2008. 28(2):406-415.
    [191]Chang M.B., Chung Y.T., Dioxin contents in fly ashes of MSW incineration in Taiwan. Chemosphere,1997.36(9):1959-1968.
    [192]生活垃圾焚烧污染控制标准,in GB/T 18485-2001.2001.
    [193]危险废物鉴别标准浸出毒性鉴别,in GB/T 5085.3-1996.1996.
    [194]固体废物总汞的测定冷原子吸收分光光度法,in GB/T 15555.1-1995.1995.
    [195]固体废物铜、锌、铅、镉的测定原子吸收分光光度法,in GB/T 15555.2-1995.1995.
    [196]固体废物总铬的测定直接吸入火焰原子吸收分光光度法,in GB/T 15555.6-1995.1995.
    [197]固体废物六价铬的测定二苯碳酰二肼分光光度法,in GB/T 15555.4-1995.1995.
    [198]有色金属工业固体废物浸出毒性试验方法标准,in GB 5086-1985.1985.
    [199]固体废物镍的测定直接吸入火焰原子吸收分光光度法,in GB/T 15555.9-1995.1995.
    [200]固体废物砷的测定二乙基二硫代氨基甲酸银分光光度法,in GB/T 15555.3-1995.1995.
    [201]固体废物氟化物的测定离子选择性电极法,in GB/T 15555.11-1995.1995.
    [202]含氰废物污染控制标准,in GB 12502-1990.1990.
    [203]贺华波,旋转圆盘式干燥机内干燥过程的计算机模拟.轻工机械,2004(1):48-50.
    [204]Hoekstra L., Vonk P., Hulshof L.A., Modeling the scale-up of contact drying processes. Organic Process Research & Development,2006.10:409-416.
    [205]Kemp I.C., Drying software:Past, present, and future. Drying Technology,2007. 25(7):1249-1263.
    [206]Kemp I.C., A new algorithm for dryer selection. Drying Technology,1995.13(1563-1578).
    [207]Baker C.G.J., Lababidi H.M.S., Developments in computer-aided dryer selection. Drying Technology,2001.19:1851-1874.
    [208]Kemp I.C., Progress in dryer selection techniques. Drying Technology,1999.17:1667-1680.
    [209]刘燕,胡启磊,基于数据库的干燥器选型模糊专家系统的设计.山东工业大学学报,2001.31(1):43-48.
    [210]Zhen X.G., Mujumdar A.S., Software for design and analysis of drying systems. Drying Technology & Equipment,2008.6(3):153-167.
    [211]Devahastin S., Software for drying/evaporation simulations:Simprosys. Drying Technology, 2006.24(11):1533-1534.
    [212]Pakowski Z., Mujumdar A.S., Basic process calculations and simulations in drying. Handbook of Industrial Drying,3rd Edition, ed. Mujumdar A.S.2007:CRC Press.
    [213]Master K.. Spray Dring Handbook,4th Edition.1985:John Wiley & Sons.
    [214]Menshutina N.V., Kudra T., Computer aided drying technologies. Drying Technology,2001. 19(8):1825-1849.
    [215]Kudra T., Software review:WINMETRIC V.3.0 (a complete reference program for drying scientists and engineers). Drying Technology,1996.14(3&4):951-953.
    [216]Maroulis Z.B., Saravacos G.D., Mujumdar A.S., Spreadsheet-aided dryer design. Handbook of Industrial Drying 3rd Edition, ed. Mujumdar A.S.2006:CRC Press.
    [217]Sakai S., Hiraoka M., Takeda N., et al., System design and full-scale plant study on a dry ing-incineration system for sewage sludge. Water Science and Technology,1989. 21:1453-1466.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700