用户名: 密码: 验证码:
聚苯胺和导电银纳米结构的形貌控制制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会的快速发展,传统的导电材料无法满足在伸缩的情况下保持电性能不变的功能,目前亟需开发柔性导体来满足科技的需求。柔性导体的制备包括导电填料的制备和加工工艺,导电填料是柔性导体的关键材料,低维导电纳米结构因其具有巨大的比表面积、量子效应、比传统材料具有更好的光电、磁学、催化、传感等性能,在纳米光电器件、传感器、纳米生物技术、能量存储及转换等领域具有极其重要的作用。聚苯胺有掺杂/脱掺杂质子可调控性、环境稳定性以及合成简便、原料易得等优点,将纳米技术引入导电聚苯胺的合成工艺中,可以使其集导电性和纳米结构功能于一体,能极大地改善导电聚苯胺的加工性,聚苯胺纳米管具有空心结构,质轻,比表面积大等优点,聚苯胺纳米片具有覆盖面积大,渗滤阀值低的优点,而螺旋型聚苯胺有特殊的形貌,它们作为导电填料将在柔性导体中得到潜在的应用。纳米银具有高的电导率,抗氧化性强,电性能稳定,独特的物理和化学性质,尤其银纳米棒具有两端裸露,侧面包覆PVP的特点,为连接组装提供了条件,在柔性导体中应用提供了理论基础,但特定形貌的银纳米棒大规模可控制备是一个难点,其形成机理和调控仍然存在挑战。本论文制备了聚苯胺纳米结构(管、片、螺旋)和银纳米棒,解决了聚苯胺纳米结构控制和银纳米棒大规模制备的问题,阐明了它们的形成机理。具体内容如下:
     (1)本论文围绕聚苯胺纳米结构制备方法中存在的问题展开,研究了简单、有效构建多种形貌聚苯胺纳米结构的方法,提出了其形成机理。首次调控碳酸盐简便地合成出聚苯胺纳米结构,机理为碳酸盐与聚苯胺原位聚合产生的硫酸反应生成气泡,通过控制添加的碳酸盐种类和用量来控制气泡量,在无碳酸盐或用量较少时,能得到表面带有小棒的聚苯胺纳米管,当碳酸盐用量一定时,能得到表面光滑的聚苯胺纳米管,当碳酸盐用量较多时,由于产生气泡的微扰作用破坏了软模板胶束,得到聚苯胺纳米片。进一步添加不放出气泡的弱酸盐或调控体系的pH值,对聚苯胺纳米管影响较小,证明了气泡调控聚苯胺纳米结构的形成机理。
     (2)聚苯胺螺旋因其具有导电性和可伸缩性的潜能,在柔性导体中有着潜在的应用。但是先前在手性樟脑磺酸的作用下,制备网状结构螺旋型聚苯胺,非可分散的,在一维单根器件上的应用受到限制。本文采用界面聚合的方法,有效降低聚苯胺的二次生长速度,由于手性聚苯胺低聚物为水溶性的,能溶解在上层水相中,不会沉淀且能有效降低其聚集作用,生成可分散的聚苯胺螺旋结构。形成的机理是:手性樟脑磺酸与苯胺通过N-H氢键作用,同时手性碳的诱导使苯胺能有序地在聚苯胺低聚物同一侧面结合而形成了螺旋结构。邻氨基酚为苯胺的衍生物,带有活泼羟基,可以通过氧化聚合得到电活性高分子,为了能制备可伸缩的螺旋结构,先制备出聚邻氨基酚螺旋,使螺旋结构带有改性的羟基,为进一步改性引入热敏、气敏或光敏高分子材料提供条件,使其成为具有可伸缩性能应用到柔性导体中。在聚乙二醇的作用下,制备螺旋型聚邻氨基酚。其形成机理归结为聚乙二醇长链的柔顺性,邻氨基酚的刚性结构苯环在长链柔性分子上的堆积,形成微米螺旋结构。最后,对聚苯胺螺旋和聚邻氨基酚螺旋的FT-IR、UV-Vis、能谱分析和电性能等进行了表征。
     (3)常规使用乙二醇作为溶剂和还原剂,PVP作为盖帽剂,将AgNO3还原制取银纳米捧,AgNO3的浓度不能超过0.10M。本论文发现,在银晶种作用下,控制AgNO3和PVP的滴加速度,AgNO3的浓度可高达0.50M,制备出长度为2~15μm,直径为200~880nm的银纳米棒。研究了高浓度制备银纳米棒的影响因素,得到最佳的合成条件为:银晶种的浓度为6.54~9.81mM,AgNO3和PVP的滴加速度为0.30~0.43mL/min,PVP/AgNO3的摩尔比为1.1~1.4,搅拌速度为350rpm,反应温度为160℃。形成机理是:溶液中存在一定浓度和形貌的银晶种提供更多的表面积,能够增加被还原的银原子在银晶种上的生长速度,使得银结晶生长速度和溶液中高的硝酸银还原速度相匹配,由于PVP选择性覆盖在[100]面,银原子在[111]面沉积生长,能高效生成银纳米棒。对反应进行了放大,通过空间效应和速度匹配效应的原理来优化放大的反应条件,该方法在不引入其它金属或盐的条件下,能提高银纳米棒的产量,同时降低80%乙二醇的用量。
With the rapid development of society, the traditional conductive material cannot maintain both stability of electricity and properties of strength at the same time, so it is urgent to exploit flexible conductor to satisfy the needs of technology and industry. The conductor fillers are the primary and key material for preparing flexible conducto r. Low-dimensional conductive materials are better than traditional materials in the photoelectric, magnetic, catalytic, sensor field for its huge surface area and quantum effects. It plays an extremely important role in the field of nano-optoelectronic devices, sensors, nano-biotechnology, energy storage and conversion. Polyaniline has good characteristics of doping/dedoping protons regulation, environmental stability, convenient synthesis and facile materials. However, it is difficult to dissolve and melt. Difficult processing hinders the practical application of polyaniline. The nanotechnological synthesis of conductive polyaniline, can combine the electrical conductivity and nano-structure, and greatly improve the processing of the conducting polyaniline. Since nano-structural polyaniline has both advantages of low-dimensional materials and organic conductors, now it becomes a hot focus as a new kind of flexiable conductive material. Nano-silver receives increasing interest because of its high conductivity, unique physical and chemical properties. Recently, a facile method capable of massively synthesizing silver nanorods with high aspect ratios is strongly desired to provide support for their application in commercial areas. This paper deals with the problems of the low dimensional nano-structural polyaniline preparation and morphology control, convenient method for the highly efficient preparation of large amount of silver nanorods and their formation mechanism. The specific contents are as follows:
     (1)Through chemical oxidation polymerization of aniline using ammonium persulfate as oxidant in the presence of sodium dodecyl sulfonate (SDS) as soft template polyaniline nanotubes with small sticks on the surface was synthesized. However, polyaniline nanotubes with smooth surface was prepared by adding a certain amount of carbonate to the polymerization process. The effects of kind and dosage of carbonates on the nanostructures of the polyaniline product were investigated. The results showed that, with increasing the amount of gas bubbles evolved, nanostructure of polyaniline was transformed from the nanotubes with smaller nano-rods on the surface, to the nanotubes with smooth surface, or to nanoflakes, according to the amount of carbon dioxide gas evolved. However, the morphology of polyaniline nanomaterials was almost not affected by changing the pH value of the system or addition of other salt which cannot produce gas bubble in the polymerization system. Though the carbonates changed the nanostructures of polyaniline, the molecular structure and crystallinity of polyaniline remained unchanged. All these facts demonstrated that gas bubbles formed during the polymerization process have an important influence on the formation of nanostructure of polyaniline. The mechanism was suggested that the CO2bubbles generated by the reaction of the carbonate with the sulfuric acid formed in-situ in the polymerization process can control different nano-structures of polyaniline.
     (2)Helical polyaniline nanostructure was synthesized in the presence of dextral camphor sulfonic acid. However, the helical polyaniline is a network structure. According to the application, which is limited in the low dimensional single device. Mono-disperse helical polyaniline nano-fiber was synthesized in a two-phase solution of water-organic solvent by interfacial polymerization method, which can effectively reduce the rate of its secondary growth. Dissolution of polyaniline in the upper aqueous layer can effectively reduce its aggregation or deposition. The formation mechanism is that through interaction of N-H hydrogen bond between camphor sulfonic acid and aniline, aniline can orderly combine and form at the same side of the oligomer, due to the induction of chiral carbon. Furthermore the helical poly(o-aminophenol) a hydroxyl derivative of polyaniline, was synthesized in the presence of polyethylene glycol. The formation mechanism is attributed to the role of long-chain flexible polyethylene glycol, benzene ring accumulation in long-chain flexible molecules and formation of micro-helical structure. The FT-IR, UV-Vis, elemental analysis and electrical properties of the helical polyaniline and helical poly(o-aminophenol) were measured.
     (3)It was reported that using ethylene glycol as solvent and reductant, polyvinyl pyrrolidone(PVP) as capping agent, silver nanorods was prepared by reducing silver nitrate, but the concentration of AgNO3was not exceed0.10M. In this paper, under the action of appropriately preformed silver crystal seeds and controlled addition rates of silver nitrate and PVP solution, silver nanorods with length of2-15μm and diameter of200-880nm can be obtained in high concentration of AgNO3as0.50M. Through study of the effects of various factors on the nanostructure of silver, the favorable conditions are:appropriately preformed seeds concentration at6.54-9.81mM, addition rate of AgNO3solution at0.30-0.43mL/min and molar ratio of PVP/AgNO3at1.1-1.4, the stirring speed was350rpm and the reaction temperature was160℃. The mechanism of preparing silver nanorods in high concentration was suggested as follows:When the AgNO3concentration was high, in the presence of a certain concentration of silver seeds (multiply twinned particles of decahedral shape), which can increase the growth rate of silver atoms on the seeds, due to the existence of more surface area of the silver seeds, thus making the crystal growth rate match the high reduction rate of AgNO3by ethylene glycol. With the help of the capping action of PVP on facets [100] and silver growth on facets [111], silver nanorods were produced. This method without using other metal or salt can not only improve yield of silver nanorods, but can also save80%dosage of glycol.
引文
[1]Iijima S. Helical microtubules of graphitic carbon [J]. Nature,1991,354(6348):56-58.
    [2]Hu J T, Odom T W, Lieber C M. Chemistry and physics in one dimension:Synthesis and properties of nanowires and nanotubes [J]. Acc Chem Res,1999,32:435-445.
    [3]Wang S, He Y, Fang X, et al. Structure and field-emission properties of sub-micrometer-sized tungsten-whisker arrays fabricated by vapor deposition [J]. Advanced Materials,2009,21:2387-2392.
    [4]Shirakawa H, Louis E J, MacDiarmid A G, et al. Synthesis of Electrically Conducting Organic Polymers:Halogen Derivatives of Polyacetylene (CH)x [J]. J. Chem. Soc. Chem. Comm,1977,17:578-579.
    [5]Schmidt M, Kusche R, Issendorff B V, et al. Irregular variations in the melting point of size-selected atomic clusters [J]. Nature,1998,393(6682):238-240.
    [6]Zhang Y, Ago H, Liu J. The synthesis of In, In2O3 nanowires and In2O3 nanoparticles with shape-controlled [J]. J. Crys. Growth,2004,264(1-3):363-368.
    [7]Choi S H, Wang K L, Leung L S, et al. Fabrication of bismuth nanowires with a silver nanocrystal shadowmask [J]. Journal of Vacuum Science and Technology, Part A:Vacuum, Surfaces and Films,2000,18(41):1326-1328.
    [8]Wang Y, Duan X, Cui Y, et al. Gallium nitride nanowire nanodevices [J]. Nano Lett.,2002, 2(2):101-104.
    [9]Chung S W, Yu J Y, Heath J R. Silicon nanowire devices [J]. Appl. Phys. Lett.,2000,76 (15):2068-2070.
    [10]Smith D P E. Quantum point contact switches [J]. Science,1995,269(5222):371-373.
    [11]Choish, Wang K L, Leung M S, et al. Fabrication of bismuth nanowires with a silver nanocrystal shadowmask [J]. Journal of Vacuum Science & Technology A,2000,18(4): 1326-1328.
    [12]Lee Y H, Choi C H, Jang Y T, et al. Tungsten nanowires and their field electron emission properties [J]. Applied Physics Letters,2002,81(4):745-747.
    [13]Zhou J, Deng S Z, Gong L, et al. Growth of large-area aligned molybdenum nanowires by high temperature chemical vapor deposition:synthesis, growth mechanism, and device application [J]. Journal of Physical Chemistry B,2006,110(21):10296-10302.
    [14]Jana N R, Gearheart L, Murphy C J. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio [J]. Chemical Communications,2001,(7):617-618.
    [15]Mohamed M B, Volkov V, Link S, et al. The "lighting" gold nanorods:Fluorescence enhancement of over a million compared to the gold metal [J]. Chemical Physics Letters, 2000,317(6):517-523.
    [16]Kind H, Yan H, Yang P, et al. Nanowire ultraviolet photodetectors and optical switches [J]. Adv. Mater.,2002,14(2):158-160.
    [17]秦润华.一维磁纳米线阵列的制备及其应用[J].微纳电子技术,2006,43(8):372-376.
    [18]Walter E C, Penner R M, Liu H, et al. Sensors from electrode posited metal nanowires [J]. Surface and Interface Analysis,2002,34(1):409-412.
    [19]Bunker B C, Rieke P C, Tarasevich B J, et al. Ceramic thin-film formation on functionalized interfaces through biomimetic processing [J]. Science,1994,264:48-55.
    [20]Li D, Kaner R B. Shape and aggregation control of nanoparticles:Not shaken, not stirred [J].Journal of the American Chemical Society,2006,128:968-975.
    [21]Tran H D, Wang Y, D'Arcy J M, et al. Toward an understanding of the formation of conducting polymer nanofibers [J]. ACS Nano,2008,2:1841-1848.
    [22]Yu Y J, Ouyang C, Gao Y, et al. Synthesis and characterization of cabon nanotube/polypyrrole core-shell nanocomposites via in situ inverse microemulsion [J]. Polymer Science Part A.Polymer Chemistry,2005,43:6105-6115.
    [23]Huang J X, Virji S, Weiller B H, et al. Polyaniline nanofibers:Facile synthesis and chemical sensors [J]. Journal of the American Chemical Society,2003,125:314-315.
    [24]Chiou N R, Epstein A J. Polyaniline nanofibers prepared by dilute polymerization [J]. Advanced Materials,2005,17:1679-1683.
    [25]Huang J X, Kaner R B. Nanofiber formation in the chemical polymerization of aniline:A mechanistic study [J]. Angewandte Chemie International Edition,2004,43:5817-5821.
    [26]Duvail J L, Long Y Z, Cuenot S, et al. Tuning electrical properties of conjugated polymer nanowires with the diamter [J]. Applied Physics Letters,2007,90:102114-3.
    [27]Martin C R. Nanomaterials:A membrane-based synthetic approach [J]. Science,1994,266: 1961-1966.
    [28]殷广明,邓启刚,毕野,等.模板合成H4PMo11VO40/聚苯胺纳米线列阵及其聚合机理探讨[J].高分子学报,2008(5):430-433.
    [29]Liu L, Zhao C J, et al. Characteristics of polypyrrole (PPy) nano-tubules made by templated ac electropolymerization [J]. European Polymer Journal,2005,41:2117-2121.
    [30]Zhang Z M, Wei Z X, Wan M X, et al. Nanostructures of polyaniline doped with inorganic acids [J]. Macromolecular,2002,35:5937-5942.
    [31]Li J B, Jia Q M, Zhu J W, et al. Interfacial polymerization of morphologically modified polyaniline:From hollow microspheres to nanowires [J]. Polymer International,2008,57: 337-341.
    [32]米红宇,张校刚,吕新美.种子模板法制备镍盐掺杂聚吡咯纳米纤维及其电化学电容性质[J].高分子材料科学与工程,2008,24(3):155-158.
    [33]Tran H D, Wang Y, D'Arcy J M, et al. Toward an understanding of the formation of conducting polymer nanofibers [J]. ACS Nano,2008,2:1841-1848.
    [34]Huang J X, Virji S, Weiller B H, et al. Polyaniline nanofibers:Facile synthesis and chemical sensors [J]. Journal of the American Chemical Society,2003,125:314-315.
    [35]Chiou N R, Epstein A J. Polyaniline nanofibers prepared by dilute polymerization [J]. Advanced Materials,2005,17:1679-1683.
    [36]Subramania A, Devi S L. Polyaniline nanofibers by surfactant assisted dilute polymerization for supercapacitor applications [J]. Polymers for Advanced Technologies, 2008,19:725-727.
    [37]Huang J X, Kaner R B. Nanofiber formation in the chemical polymerization of aniline:A mechanistic study [J]. Angewandte Chemie International Edition,2004,43:5817-5821.
    [38]Gupta V, Miura N. High performance electrochemical supercapacitor from electrochemically synthesized nanostructured polyaniline [J]. Materials Letters,2006,60: 1466-1469.
    [39]Liang L, Liu J, Windisch CF, et al. Direct assembly of large arrays of oriented conducting polymer nanowires [J]. Angewandte Chemie International Edition,2002,41:3665-3668.
    [40]Ghenaatian H R, Mousavi M F, Kazemi S H, et al. Electrochemical investigations of self-doped polyaniline nanofibers as a new electroactive material for high performance redox Supercapacitor [J]. Synthetic Metals,2009,159:1717-1722.
    [41]Zhou H H, Chen H, Luo S L, et al. The effect of the polyaniline morphology on the performance of polyaniline supercapacitors [J]. Journal of Solid State Electrochemistry, 2005,9:574-580.
    [42]TSujino K, Matsumura M. Boring deep cylindrical nanoholes in silicon using silver nano particles as a catalyst [J]. Advanced Materials,2005,17(8):1045-1047.
    [43]Mi C H, Cao Y X, Zhang X G, et al. Synthesis and characterization of LiFePO4/(Ag+C) composite cathodes with nano-carbon webs [J]. Powder Technology,2008,181(3): 301-306.
    [44]Hu X, Chan C T. Photonic crystals with silver nanowires as a near-infrared superlens [J]. Applied Physics Letters,2004,85(9):1502-1522.
    [45]Lok C N, Ho C M, Chen R, et al. Proteomic analysis of the mode of antibacterial action of silver nanoparticles [J]. Journal of Proteome Research,2006,5(4):916-924.
    [46]Madassi S, Bassa A, Vinetsky Y, et al. Silver nanoparticles as pigments for water-based ink-jet inks [J]. Chemistry of Materials,2003,15(11):2208-2217.
    [47]Chen C, Wang L, Li R, et al. Effect of silver nanowires on electrical conductance of system composed of silver particles [J]. Journal of Materials Science,2007,42(9):3172-3176.
    [48]Kim F, Song J H, Yang P. Photochemical synthesis of gold nanorods [J]. Journal of the American Chemical Society,2002,124(48):14316-14317.
    [49]Muniz-Miranda M. On the occurrence of the central line(-1025 cm-1)in the SERS spectra of pyridine adsorbed on silver hydrosols [J]. Chemical physics Letters,2001,340(5-6): 437-443.
    [50]杨丰帆,孙建生,徐勤涛,等.Ag纳米线的合成及应用研究进展[J].材料导报,2008,22:90-95.
    [51]Ditlbacher H, Hohenau A, Wagner D, et al. Silver nanowires as surface plasmon resonators [J]. Physical Review Letters,2005,95:257403-257406.
    [52]Jana N R, Gearheart L, Murphy C J M. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio [J]. Chemical Communication,2001, (7):617-618.
    [53]Tsuji M, Matsumoto K, Miyamae N, et al. Rapid preparation of silver nanorods and nanowires by a microwave polyol method in the presence of Pt catalyst and Polyvinylpyrrolidone [J]. Crystal Growth & Design,2007,7(2):311-320.
    [54]Tsuji M, Matsumoto K, Jiang P, et al. Roles of Pt seeds and chloride anions in the preparation of silver norods and nanowires by microwave polyol method [J]. Colloids and Surfaces A:Physico chemical and Engineering Aspects,2008,316(1-3):266-277.
    [55]Jiu J, Murai K, Kim D, et al. Preparation of Ag nanorods with high yield by polyol process [J]. Materials Chemistry and Physics,2009,114 (1):333-338.
    [56]Shi Y, Lv L, Wang H. A facile approach to synthesize silver nanorods capped with sodium tripolyphosphate [J]. Materials Letters,2009,63(30):2698-2700.
    [57]Zhu Y, Wang X, Guo W, et al. Sonochemical synthesis of silver nanorods by reduction of sliver nitrate in aqueous solution [J]. Ultrasonics Sonochemistry, ultsonch.2010.01.003: 675-679.
    [58]Wei G, Zhou H, Liu Z, et al. One-step synthesis of silver nanoparticles, nanorods, and nanowires on the surface of DNA network [J]. The Journal of physical Chemist B,2005, 109(18):8738-8743.
    [59]Sun Y, Yin Y, Mayers B T, et al. Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and Poly(Vinyl Pyrrolidone) [J]. Chemistry of Materials,2002,14(11):4736-4745.
    [60]Reyes-Gasga J, Eleehiguerra J L, Liu C, et al. On the structure of nanorods and nanowires with pentagonal cross-sections [J]. Journal of Crastal Growth,2006,286(1):162-172.
    [61]Zhang W C, Wu X L, Chen H T, et al. Self-organized formation of silver nanowires, nanocubes and bipyramids via a solvothermal method [J]. Acta Materialia,2008,56(11): 2508-2513.
    [62]Gou L, Chi Para M, Zaleski J M. Convenient, rapid synthesis of Ag nanowires [J]. Chemistry of Materials,2007,19(7):1755-1760.
    [63]Xu X J, Fei G T, Wang X W, et al. Synthetic control of large-area, ordered silver nanowires with different diameters [J]. Materials Letters,2007,61(16):19-22.
    [64]Cui S, Liu Y, Yang Z, et al. Construction of silver nanowires on DNA template by an Electrochemical technique [J]. Materials and Design,2007,28(3):722-725.
    [65]Wang Z, Liu J, Chen X, et al. A simple hydrothermal route to large-scale synthesis of uniform Silver nanowires [J]. Chemistry-A European Journal,2005,11(1):160-163.
    [66]Zhao Q, Qiu J, Zhao C, et al. Synthesis and formation mechanism of silver nanowires by a templateless and seedless Method [J]. Chemistry Letters,2005,34(1):30-31.
    [67]Mdluli P S, RevaPrasadu N. An improved N, N-dimethylformamide and Polyvinyl Pyrrolidone approach for the synthesis of long sliver nanowires [J]. Journal of Alloys and compounds,2009,469(1-2):519-522.
    [68]Zou K, Zhang X H, Duan X F, et al. Seed-mediated synthesis of silver nanostructures and polymer/silver nanocables by UV irradiation [J]. Journal of Crystal Growth,2004,273(12): 285-291.
    [69]Wei G, Nan C, Yu D. Large-scale self-assembled Ag nanotubes [J]. Tsing hua Science& Technology,2005,10(6):736-740.
    [70]Park J H, Oh S G, Jo B W. Fabrication of silver nanotubes using functionalized silica rod as templates [J]. Materials Chemistry and physics,2004,87(2-3):301-310.
    [71]Gao P, Zhan C, Liu M. Controlled synthesis of double-and multiwall silver nanotubes with template organogel from a bolaam Phiphile [J]. Langmuir,2006,22(2):775-779.
    [72]Wang Y, Chen P, Liu M. Synthesis of hollow silver nanostructures by a simple strategy [J]. Nanotechnology,2008,19(4):045607.
    [73]Bai J, Qin Y, Jiang C, et al. Polymer-controlled synthesis of silver nanobelts and hierarchical nanocolulmns [J]. Chemistry of Materials,2007,19(14):3367-3369.
    [74]Tao F, Wang Z, Chen D, et al. Synthesis of silver dendritic hierarchical structures and transformation into silver nanobelts through an ultrasonic process [J]. Nanotechnology, 2007,18(29):295602.
    [75]Liu B, Luo W, Zhao X. A facile synthesis of ordered ultra long silver nanobelts [J]. Materials Research Bulletin,2009,44(3):682-687.
    [76]Wiley B J, Wang Z, Wei J, et al. Synthesis and electrical characterization of silver nanobeams [J]. Nano Letter,2006,6(10):2273-2278.
    [77]Gamier F, Hajlaoui R, Yassar A, et al. All-polymer field-effect transistor realized by printing techniques [J]. Science 265, (1994):1684-1686.
    [78]Takanori Fukushima, Takuzo Aida. Ionic Liquids for soft functional materials with carbon nanotubes [J]. Chem. Eur. J.2007,13:5048-5058.
    [79]Tsuyoshi Sekitani, Hiroyoshi Nakajima, Hiroki Maeda, et al. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors [J]. Nature materials, 2009,8(6):494-499.
    [80]Kyoung-Yong Chun, Youngseok Oh, Jonghyun Rho, et al. Highly conductive, printable and stretchable composite films of carbon nanotubes and silver [J]. Nature nanotechnology. 12/2010,5(12):853-857.
    [81]Thomas Steen Hansen, Keld West, Ole Hassager, et al. Highly stretchable and conductive polymer material made from poly(3,4-ethylene dioxythiophene) and polyurethane elastomers [J]. Adv.Funct.Mater.2007,17:3069-3073.
    [82]Joanna Tsang, Sarah Leung, Xiao M T, et al. Effect of fabrication temperature on strain-sensing capacity of polypyrrole-coated conductive fabrics [J]. Polymer International 2007,56:827-833.
    [83]Yuji Hiroshige, Makoto Ookawa, Naoki Toshima. High thermoelectric performance of poly (2,5-dimethoxyphenylenevinylene) and its derivatives [J]. Synthetic Metals 2006,156: 1341-1347.
    [84]Thomas Steen Hansen, Ole Hassager, Niels B, et al. Micropatterning of a stretchable conductive polymer using inkjet printing and agarose stamping [J]. Synthetic Metals 2007, 157:961-967.
    [85]Mario G, Urdaneta, Remi Delille, Elisabeth Smela. Stretchable Electrodes with High Conductivity and Photo-Patternability [J]. Adv. Mater.2007,19:2629-2633.
    [86]Li Zhong, Yang Dayong, Liu Xing, et al. Substrate-Induced Controllable Wrinkling for Facile Nanofabrication [J]. Macromol. Rapid Commun.2009,30:1549-1553.
    [87]Dong Choon Hyun, Geon Dae Moon, et al. Repeated Transfer of colloidal Patterns by Using Reversible Buckling Process [J]. Adv. Funct. Mater.2009,19:2155-2162.
    [88]Dahl-Young Khang, John A.Rogers, Hong H. Lee. Mechanical Buckling:Mechanics, Metrology, and Stretchable Electronics [J]. Adv. Funct. Mater.2009,19:1526-1536.
    [89]Bowden, N., Brittain, S., Evans, A.G, et al. Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer [J]. Nature,1998,39:146-149.
    [90]Zhang L J, Peng H, Sui J, et al. Polyaniline nanotubes doped with polymeric acids [J]. Current Applied Physics.2008, (8):312-315.
    [91]Tang Q W, Wu J H, Sun X M, Layer-by-layer self-assembly of conducting multilayer film from poly (sodium styrenesulfonate) and polyaniline [J]. Journal of colloid and interface science,2009,337(1):155-161.
    [92]Chang H X, Yuan Y, Shi N, Electrochemical DNA biosensor based on conducting polyaniline nanotube array [J]. Analytical Chemistry,2007,79(13):5111-5115.
    [93]Patil S S, Koiry S P, Aswal D K et al. Promising field emission characteristics of polyaniline nanotubes [J]. Journal of the electrochemical society,2011,158(6):E63-E66.
    [94]Dhand, Chetna, Das Maumita, Datta Monika, Recent advances in polyaniline based biosensors [J]. dibosensors & bioelectronics,2011,26:2811-2821.
    [95]Dhawale D.S, Vinu A, Lokhande C D, stable nanostructured polyaniline electrode for supercapacitor application, Electrochimica Acta,2011,56:9482-9487.
    [96]Liao Y Z, Yu D G, Wang X, Carbon nanotube-templated polyaniline nanofibers:synthesis, flash welding and ultrafiltration membranes, Nanoscale,2013,5:3856-3862.
    [97]Cho M S, Choi H J, Ahn W S. Enhanced electrorheology of conducting polyaniline confined in MCM-41 channels [J]. Langmuir,2004,20:202-207.
    [98]Zhou C Q, Han J, Song G Q, et al. Polyanline structures synthesized in aqueous solutions: Micromatsofnanofibers[J].Macromolecules,2007,40(20):7075-7078.
    [99]Jang S Y, Seshadri V,Khil M S, welded electrochromic conductive polymer nanofibers by electrostatic spinning, Advanced materials,2005,17:2177-2180.
    [100]Li W, Wang H L, Oligomer-Assisted Synthesis of Chiral Polyanline Nanofibers[J]. J. AM. Chem. Soc,2004,126 (8):2278-2279.
    [101]Zhou C Q, Han J, Guo R. Dilute anionic surfactant solution route to polyaniline rectangular sub-microtubes as a novel nanostructure [J]. J. Phy. Chem. B,2008, (112):5014-5019.
    [102]Wei Z X, Charl F. J, Faul. Aniline oligomers-Architecture, function and new opportunities for nanostructured materials [J]. Macromol.Rapid Commun.2008, (29):280-292.
    [103]Zhang L X, Zhang L J, Wan M X. Molybdic acid doped polyaniline micro/nanostructures via a self-assembly process [J]. European Polymer Journal.2008,(44):2040-2045.
    [104]Wang Y, Chen W, Zhou D S, et al. Synthesis of conducting polymer spiral nanostructures using a surfactant crystallite template [J]. Macromol Chem Phys.2009, (210):936-941.
    [105]Petrov, Petar, Mokreva, Paylina, et al.. Colloidal aqueous dispersion of polyaniline nanotubes grafted non-covalently with poly(ethylene oxide)-block-poly(acrylic acid) copolymer [J]. Colloid and Polymer Science,2008,286(6-7):691-697.
    [106]Wu Tzong Ming, Lin, Yen Wen. Synthesis and characterization of hollow polyaniline microtubes and microbelts with nanostructured walls in sodium dodecyl sulfate micellar solutions [J]. Polymer Engineering and Science,2008,48(4):823-828.
    [107]Youn-Gyu Han, Takafumi Kusunose, Tohrili Sekino. Facile one-pot synthesis and characterization of novel nanostructured organic dispersible polyaniline [J]. Journal of Polymer Science:part B:Polymer Physics,2009, (47):1024-1029.
    [108]P. Anilkumar, M. Jayakannan. Divergent nanostructures from identical ingredients:Unique amphiphilic micelle template for polyaniline nanofibers, tubes, rods, and spheres [J]. Macromolecules,2008,41(20):7706-7715.
    [109]Tong G X, Guan J G, Xiao Z D, et al. In situ generated H2 bubble-engaged assembly:A one-step approach for shape-controlled growth of Fe nanostructures [J]. Chem. Mater,2008, 20(10):3535-3539.
    [110]Mazur, Maciej. Preparation of three-dimensional polymeric structures using gas bubbles as templates [J]. J. Phys. Chem. C.2008, (112):13528-13534.
    [111]Zhou C Q, Han J, Guo R, Synthesis of polyaniline hierarchical structures in a dilute SDS/HC1 solution:Nanostructure-covered rectangular tubes [J]. Macromolecules,2009, 42(4):1252-1257.
    [112]Gong J, Yang J H, Cui X J. Photoelectric properties of material of N,N-bis(4-aminophenyl)-1,4-quinonenediimine doped with heteropolyacid [J]. Synthetic metals,2002,129(1):15-18.
    [113]Gong J, Yu J Z, Chen Y G. Gas-solid phase method to synthesize polyaniline doped with heteropoly acid [J]. Materials letters,2002,57:765-770.
    [114]Yang G C, Pan Y, Gao F M. A novel photochromic PVA fiber aggregates contained H4SiW12O40 [J]. Materials letters,2005,59(4):450-455.
    [115]Wei Z X, Zhang Z M, Wan M X. Formation mechanism of self-assembled polyaniline micro/nanotubes [J]. Langmuir.2002,18(3):917-931.
    [116]Stejskal Jaroslav, Riede A, Hlavata D, et al. The effect of polymerization temperature on molecular weight, crystallinity, and electrical conductivity of polyaniline [J]. Synthetic Metals,1998,96(1):55-61.
    [117]Zhou C Q, Han J, Guo R. Dilute anionic surfactant solution route to polyaniline rectangular sub-microtubes as a novel nanostructure [J]. J.Phys Chem. B,2008, (112):5014-5019.
    [118]MacDiarmid A.G, Chang J.C, Halpern M, et al. [J]. Cryst Liq Cryst,1985, (121):187-194.
    [119]Li W G, Bailey J A, Wang H L. Toward optimizing synthesis of nanostructured chiral polyaniline [J]. Polymer 2006,47:3112-3118.
    [120]Pornputtkul Y, Kane-Maguire L A P, Innis P C, et al. Asymmetric proliferation with optically active polyanilines [J]. Chem Commun 2005:4539-4541.
    [121]Yan Yong, Yu Zai, Wei Yong, et al. Helical polyaniline nanofibers induced by chiral dopants by a polymerization process [J]. Adv. Mater.2007,19:3353-3357.
    [122]Arnab Dawn, Arun K., Nandi. Biomolecular hybrid of a conducting polymer with DNA: Morphology, structure, and doping behavior [J]. Macromolecular Bioscience 2005,5(5): 441-450.
    [123]Hatano T, Bae A H, et al. Helical superstructure of conductive polymers as created by electrochemical polymerization by using synthetic lipid assemblies as a template [J]. Angewandte Chemie-International Edition.2004,43(4):465-469.
    [124]Ashraf S A, L. Kane-Maguire A P, et al. Influence of the chiral dopant anion on the generation of induced optical activity in polyanilines [J]. Polymer 1997,38:2627-2631.
    [125]Lu X F, Yu Y H, et al. Poly (acrylic acid)-guided synthesis of helical polyaniline microwires [J]. Polymer.2005,46(14):5329-5333.
    [126]Li J, Zhu L H, Luo W, Liu Y, et al. Correlation between one-directional helical growth of polyaniline and its optical activity [J]. J. Phys. Chem. C 2007,111:8383-8388
    [127]Yan Y, Deng K, Yu Z, et al. Tuning the supramolecular chirality of polyaniline by methyl substitution [J]. Angew. Chem. Int. Ed.2009,48:2003-2006.
    [128]Xu L B, Chen Z W, et al. Electrochemical synthesis of perfluorinated ion doped conducting polyaniline films consisting of helical fibers and their reversible switching between superhydrophobicity and superhydrophilicity [J]. Macromolecular Rapid Communications. 2008,29 (10):832-838.
    [129]Yan L F, Tao W. Synthesis of achiral PEG-PANI rod-coil block copolymers and their helical superstructures [J]. Journal of polymer science part A-polymer chemistry,2008,46, 12-20.
    [130]Sakai R, Satoh T, et al. Macromolecular helicity induction for novel optically inactive poly (phenyl isocyanate) bearing crown ether based on the host-guest complexation [J]. Macromolecules.2003,36(10):3709-3713.
    [131]Zhang W, Shiotsuki Masashi, Masuda Toshio. A helical poly(macromonomer) consisting of a polyacetylene main chain and polystyrene side chains [J]. Macromol. Rapid commun. 2007,28:1115-1121.
    [132]Giseop Kwak, Masashi Minakuchi, Toshikazu Sakaguchi, et al. Alkyl Side-Chain Length Effects on Fluorescence Dynamics, lamellar layer structures, and optical anisotopy of poly(diphenylacetylene) derivatives [J]. Macromolecules 2008,41:2743-2746.
    [133]Ma H R, Guan J G, Yuan R Z. Self-assembly morphologies and electrorheological properties of (polyaniline-polethylene glycol) polyaniline triblock copolymers [J]. International Journal of Modern Physics B,2007,21:4961-4966.
    [134]Pacholski C, Kornowski A, Weller H. Self-assembly of ZnO:From nanodots to nanorods [J]. Angew. Chem. Int. Ed.2002,41:1188-1191.
    [135]Novotny C J, Yu E T, Yu P K L. InP nanowire/polymer hybrid photodiode [J]. Nano Lett. 2008,8:775-779.
    [136]Inguanta R, Piazza S, Sunseri C. Template electrosynthesis of aligned Cu2O nanowires: Part I. Fabrication and characterizaion [J].Electrochim. Acta 2008,53:6504-6512.
    [137]Zhang J P, Day C S, Carroll D L. Controlled growth of novel hyper-branched nanostructures in nanoporous alumina membrane [J]. Chem. Commun.2009,45: 6937-6939.
    [138]Sun X M, Zaric S, Daranciang D K, et al. Optical properties of ultrashort semiconducting single-walled carbon nanotube capsules down to sub-10 nm [J]. J. Am. Chem. Soc.2008, 130:6551-6555.
    [139]Peng H, Wei Z, Xu L, et al. Temperature dependence of Si nanowire morphology [J].Adv. Mater.2001,13:317-320.
    [140]Zhang L, Zhang Y. Fabrication and magnetic properties of Fe3O4 nanowire arrays in different diameters [J]. J. Magn. Mater.2009,321:L15-L20.
    [141]Reyes-Gasga J, Elechiguerra J L, Liu C, et al. On the structure of nanorods and nanowires with pentagonal cross-sections [J]. J. Cryst. Growth 2006,286:162-172.
    [142]Skrabalak S E, Wiley B J, Kim M, et al. On the polyol synthesis of silver nanostructures: Glycolaldehyde as a reducing agent [J]. Nano Lett.2008,8:2077-2081.
    [143]Goh Madeline Shuhua, Lee Yih Hong, pedireddy Srikanth, A chemical route to increase hot spots on silver nanowires for surface-enhanced raman spectroscopy application [J]. Langmuir,2012,28,14441-14449.
    [144]Caswell K K, Bender C M, Murphy C J. Seedless, surfactantless wet chemical synthesis of silver nanowires [J]. Nano Lett.2003,3:667-669.
    [145]Mdluli P S, Revaprasadu N. An improved N, N-dimethylformamide and polyvinyl pyrrolidone approach for the synthesis of long silver nanowires [J]. J. Alloys Compd.2009, 469:519.
    [146]Wang Z H, Liu J W, Chen X G, et al. A simple hydrothermal route to large-scale synthesis of uniform silver nanowires [J]. Chem. Eur. J.2005,11:160-163.
    [147]Xu J, Hu J, Peng C J, et al. A simple approach to the synthesis of silver nanowires by hydrothermal process in the presence of Gemini surfactant [J]. J. Colloid Interf. Sci.2006, 298:689-693.
    [148]Zhou Y, Yu S, Wang C, et al. A novel ultraviolet irradiation photoreduction technique for the preparation of single-crystal Ag nanorods and Ag dendrites [J]. Adv. Mater.1999,11: 850-852.
    [149]Zou K, Zhang X H, Duan X F, et al. Seed-mediated synthesis of silver nanostructures and polymer/silver nanocables by UV irradiation [J]. J. Cryst. Growth.2004,273:285-291.
    [150]Mazur M. Electrochemically prepared silver nanoflakes and nanowires [J]. Electrochem. Commun.2004,6:400-403.
    [151]Huang L M, Wang H T, Wang Z B, et al. Nanowire arrays electrodeposited [J]. Adv. Mater. 2002,14:61-64.
    [152]Braun E, Eichen Y, Sivan U, et al. DNA-templated assembly and electrode attachment of a conducting silver wire [J]. Nature 1998,391:775-778.
    [153]Keren K, Krueger M, Gilad R, et al. Sequence-specific molecular lithography on single DNA molecules [J]. Science 2002,297:72-75.
    [154]Berchmans S, Nirmal R G, Prabaharan G., et al. Templated synthesis of silver nanowires based on the layer-by-layer assembly of silver with dithiodipropionic acid molecules as spacers [J]. J. Colloid Interf. Sci.2006,303:604-610.
    [155]Kong L B, Lu M, Li M K, et al. Morphology of platinum nanowire array electrodeposited within anodic aluminium oxide template characterized by atomic force microscopy [J]. J. Mater. Sci. Lett.2003,22:701-702.
    [156]Akhbari K, Morsali A. Silver nanofibers from the nanorods of one-dimensional organometallic coordination polymers [J]. Cryst Eng Comm,2010,12:3394-3396.
    [157]Sun Y, Xia Y. Shape-controlled synthesis of gold and silver nanoparticles [J]. Science.2002, 298:2176-2179.
    [158]Sun Y, Yin Y, Mayers B T, et al. Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone) [J]. Chem. Mater. 2002,14:4736-4745.
    [159]Wiley B J, Sun Y G, Xia Y N. Polyol synthesis of silver nanostructures:Control of product morphology with Fe(Ⅱ) or Fe(Ⅲ) species [J]. Langmuir 2005,21:8077-8080.
    [160]Korte K E, Skrabalak S E, Xia Y N. Rapid synthesis of silver nanowires through a CuCl-or CuCl2- mediated polyol process [J]. J. Mater. Chem.2008,18:437-441.
    [161]Lofton C, Sigmund W. Mechanisms controlling crystal habits of gold and silver colloids [J]. Adv. Funct. Mater.2005,15:1197-1208.
    [162]Guo L F, Chipara M, Zaleski J M. Convenient, rapid synthesis of Ag nanowires [J]. Chem. Mater.2007,19 (7):1755-1760.
    [163]Lu Y C, Chou K S, Nogami M. Process window for the synthesis of Ag wires through polyol process [J]. Materials Chemistry and Physics 2009,116:1-5.
    [164]Breuer O, Sundararaj U. Big returns from small fibers:A review of polymer/carbon nanotube composites [J]. Polym. Compos.2004,25:630-645.
    [165]Shaffer M S P, Windle A H. Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites [J]. Adv. Mater.1999,11:937-941.
    [166]Grujicic M, Cao G, Roy WN. A computational analysis of the percolation threshold and the electrical conductivity of carbon nanotubes filled polymeric materials [J]. J. Mater. Sci. 2004,39:4441-4449.
    [167]Chimentao R J, Medina F, Fierro J L G, et al. Styrene epoxidation over cesium promoted silver nanowires catalysts [J]. J. Mol. Catal. A:Chem.2006,258:346-354.
    [168]Kirm R J I, Medina F, Rodriguez X, et al. Different morphologies of silver nanoparticles as catalysts for the selective oxidation of styrene in the gas phase [J]. Chem. Commun.2004, 7:846-847.
    [169]Gelves G A, Lin B, Sundararaj U, et al. Low electrical percolation threshold of silver and copper nanowires in polystyrene composites [J]. Adv. Funct. Mater.2006,16:2423-2430.
    [170]Zhang W J, Chen P, Gao Q S, et al. High-concentration preparation of silver nanowires: Restraining in situ nitric acidic etching by steel-assisted polyol method [J]. Chem. Mater. 2008,20:1699-1704.
    [171]段君元,尺寸与形貌可控的低维银纳米结构的制备[D][硕士论文].武汉:武汉理工大学,2009.
    [172]Deivaraj T C, Lala N L, Lee J Y. Solvent-induced shape evolution of PVP protected spherical silver nanoparticles into triangular nanoplates and nanorods [J]. Journal of Colloid and Interface Science 2005,289:402-409.
    [173]Kerker M, Siiman O, Wang D S. Surface enhanced Ranman scattering(SERS) of citrate ion adsorbed on colloidal silver [J]. J. Phys.Chem.1984,88:3186.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700