用户名: 密码: 验证码:
低轨宽带卫星移动通信系统OFDM传输技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空天地一体化信息网络是当前通信领域的研究热点。低轨宽带卫星移动通信系统将随时随地为各种接入用户终端提供宽带服务,成为空天地一体化信息网络的重要组成部分。低轨宽带卫星移动通信系统信道具有频率选择性衰落特性、并且系统频带资源受限,因此需要通信链路所采用的传输技术不仅仅能够抗信道频率选择性衰落,而且具有较高的频带利用率。正交频分复用技术(Orthogonal Frequency Division Multiple, OFDM)是一种采用正交子载波进行信息传输技术,具有抗信道频率选择性衰落能力,并且具有较高的频带利用率;同时可以进行子载波灵活分配以实现低轨宽带卫星系统上、下行链路用户业务的非对称传输。因此研究低轨宽带卫星移动通信系统OFDM传输技术具有重要意义。
     在这样的背景下,本文针对低轨宽带卫星移动通信系统的OFDM传输技术进行研究,以下是研究的几个主要方面。
     第一,低轨宽带卫星移动通信系统的OFDM传输技术适用性研究。首先针对低轨宽带卫星系统的典型仿真场景信道统计特性进行描述,针对低轨宽带卫星的通信系统上、下行链路,分别采用DFT-S OFDM(Discrete Fourier Transformation Spread Orthogonal Frequency Division Multiple),OFDM建立链路模型。根据低轨宽带卫星移动通信信道特性,分析研究了上、下行链路DFT-S OFDM与OFDM传输体制抗信道多径衰落性能、多普勒频移下性能,峰均比(Peak to Average Power Ratio, PAPR)性能,及高斯白噪声(Additive White Gaussian Noise, AWGN)信道下性能。证明OFDM传输技术在低轨宽带卫星移动通信系统中具有适用性,从而为后面章节的低轨宽带卫星移动通信系统的OFDM传输技术研究奠定基础。
     第二,低轨宽带卫星系统DFT-S OFDM上行链路用户检测方法。针对传统单用户信号检测算法不能跟踪低轨宽带卫星时变信道,提出一种改进递归最小二乘(Recursive Least Squares, RLS)单用户信号检测算法;该算法能够对时变信道进行较好跟踪,以适应低轨宽带卫星系统信道的时变性。针对低轨宽带卫星移动通信系统上行链路的多用户由于频偏差异引入接入干扰,传统并行干扰消除(Parallel Interference Cancellation, PIC)算法或者串行干扰消除(Successive Interference Cancellation, SIC)算法干扰消除精度不高,迭代次数过多的问题,提出一种最优权值并行干扰消除(Optimal Weight Parallel Interference Cancellation, OWPIC)算法消除多用户接入干扰(Multi-user Access Interference, MUI),该算法干扰消除精度较高与迭代次数较低。
     第三,低轨宽带卫星系统OFDM下行链路信号检测方法。由于较大载波频偏破坏OFDM的子载波正交性而引入干扰,针对传统频偏干扰消除算法的复杂度过高,频偏消除范围有限,提出一种低复杂度的时频联合最小均方误差(Time and Frequency Domain Least Mean Square, TF-LMS)算法来消除频偏干扰。该算法对于较大频偏引入干扰有较好的消除性能。针对低轨宽带卫星服务诸如城区等信道多径衰落严重的场景,提出一种联合信道及载波频偏干扰消除的频域空间选择性期望最大化(Frequency Space Alternating Generalized Expectation Maximization, FSAGE)算法。该算法首先进行频域频偏预估计及预消除,然后进行联合信道及频偏干扰的精跟踪及消除。为了降低低轨宽带卫星移动通信系统传输信号的冗余信息,提高信号传输效率,提出一种级联的MCMA-RLS(Modified Constant Modulus and Recursive Least Squares Algorithm)用户信号盲检测算法。该算法无需采用训练序列并且收敛速度较快。
     第四,低轨宽带卫星OFDM系统资源分配方法。为了提高上行链路用户终端功率利用率,提出一种基于星上功率检测的用户功率控制算法,有效降低用户功率损耗。针对保证低轨宽带卫星服务不同用户业务的速率比例以及用户传输速率的最优化,提出一种低复杂度的均分联合功率、载波、比特资源分配算法。该算法首先在保证接入用户的速率比例的条件下,通过功率、子载波均分的方式降低资源分配的复杂度,并且在一定程度上满足用户传输速率最大化的需求。
     第五,低轨宽带卫星OFDM系统链路吞吐量分析。结合自适应调制编码(Adaptive Modulation and Coding, AMC)建立链路模型,对接入用户的链路吞吐量进行分析。通过与低轨宽带卫星多频时分多址接入(Muti-Frequency Time Division Multiple, MF-TDMA)通信系统的链路吞吐量进行比较,表明低轨宽带卫星OFDM系统具有更好的链路吞吐量性能。
Air-space-ground of integrated information communication network becomes focus field of research in the world communications technology. The broadband LEO satellite mobile communication system will play an important role in providing services to mobile terminal user anytime and anywhere, which becomes a significant component of the air-space-ground integrated information network. The broadband LEO satellite mobile confronts with the frequency selectivity channel fading characteristic, and bandwidth resources are inefficient. Therefore the special transmission technique which could not only counteract anti-channel frequency selective fading, but also has high bandwidth utilization efficiency is needed. OFDM (Orthogonal Frequency Division Multiplexing) is a multicarrier transmission technology, which could counteract the anti-channel frequency selective fading, and has high bandwidth utilization efficiency. Simultaneously subcarrier may be flexibly allocated to realize asymmetrical transmission for uplink, downlink of the broadband LEO satellite system. Therefore utilization of OFDM for broadband LEO satellite mobile communication to improve system performance is an important research topic.
     In this dissertation, OFDM transmission technique for broadband LEO communication system is researched. The dissertation mainly focuses on the following aspects.
     Firstly, the applicability research of OFDM transmission technique based on broadband LEO satellite communication system. The channel statistical property of typical simulation scene for broadband LEO satellite has been described. DFT-S OFDM (Discrete Fourier Transformation Spread Orthogonal Frequency Division Multiple) transmission system for uplink broadband LEO satellite and OFDM transmission system for downlink broadband LEO satellite have been established. According to LEO satellite mobile channel characteristic, Analysis shows comparison of anti-muti channel fading, anti-Doppler shift, PAPR (Peak to Average Power Ratio), anti-AWGN (Additive White Gaussian Noise) channel based on DFT-S OFDM and OFDM transmission system separately. It proves that OFDM transmission technique is suitable for the broadband LEO satellite communication system, which is the key point for the following researches.
     Secondly, signal detecting algorithms have been researched for uplink broadband LEO satellite system. Because traditional detecting algorithm in frequency domain is not suitable for tracking channel, the improved RLS (Recursive Least Squares) algorithm for single user signal detecting has been proposed, which is quite suitable for tracking fast LEO satellite changing channel. In view of the multi-user interference caused by different frequency offsets for uplink LEO satellite, the precision of tradition PIC (Parallel Interference Cancellation) algorithm or the SIC (Successive Interference Cancellation) algorithm is not high, and the iterative numbers are excessively large, which is not suitable for the broadband LEO satellite. OWPIC algorithm has been proposed for cancelling multi-user interference, which simplifies the iterative step, improves the precision.
     Thirdly, signal detecting algorithms have been researched for downlink broadband LEO satellite system. The larger frequency offset destroys the orthogonality of sub-carrier and introduces interference. For the complexity of tradition cancellation algorithms is high, and frequency offset scope that can be captured is limited, TF-LMS (Time and Frequency Domain Least Mean Square) algorithm has been proposed to cancel the interference introduced by large frequency offset with low complexity. In view of serious multi-channel fading such as urban service scene for broadband LEO satellite, FSAGE (Frequency Space Alternating Generalized Expectation Maximization) algorithm is proposed to cancel the interference introduced by frequency offset and channel fading, which firstly estimates and pre-cancel the frequency offset, then tracks the disturbance introduced by both frequency offset and channel fading. In order to reduce redundant information and enhance the transmission efficiency for broadband LEO satellite communication system, MCMA-RLS (Modified Constant Modulus and Recursive Least Squares Algorithm) blind algorithm has been proposed, which does not need to use training sequence, and has fast convergence.
     Fourthly, resources allocation method for LEO satellite OFDM system. In order to enhance power utilization for uplink mobile user terminal, user power control algorithm with satellite power detecting has been proposed, which reduces the power loss effectively for users. In view of ratio proportion for different user terminals and optimizing transmission rate in downlink broadband LEO satellite transmission system, a low complexity average resource allocation algorithm united with power, sub-carrier, bit has been proposed, which firstly guarantees ratio proportion of user terminals with low complexity in average way, and fulfills the maximized rate in a certain extent.
     Fifthly, analysis of throughput of OFDM transmission technique for broadband LEO communication system has been given. Broadband LEO link transmission system has been firstly established combined with AMC (Adaptive Modulation and Coding), and performance of throughput for mobile user terminal has been shown. Compared with MF-TDMA transmission technique for broadband LEO communication system, OFDM is superior in broadband LEO satellite.
引文
[1]国家自然科学基金委员会资助项目计划书.空天地一体化信息网络的基础理论及关键技术研究[S]. 2005: 1-5.
    [2] Ajibesin A A, Bankole F O, et al. A Review of Next Generation Satellite Networks: Trends and Technical Issues[J]. AFRICON, 2009, 1:7.
    [3]王景良.第3、4代移动通信卫星的发展趋势和特点[J].国际太空, 2008, 9: 32-36
    [4]王晓海.天基综合信息网络的发展及应用[J].数字通信世界. 2007, 10: 32~34
    [5]蒋春芳,卫星频率及轨道资源管理探究[J].中国无线电, 2007, 1: 26-29
    [6] Kandeepan S, Reisenfeld S. Fast Doppler tracking DSP-based Earth station modem for LEO satellite applications[C]. IEEE International Conference on Intelligent Signal Processing and Communication Systems. 2004: 332 - 337.
    [7] Hara S, Prasad R. Multicarriers Techniques for 4G Mobile Communications[M]. Boston, Mass: Artech House, 2003.
    [8] Y.Qi, T.Yan. et al. Experimental Demonstration and Numerical Simulation of 107Gb/s High Spectral Efficiency Coherent Optical OFDM[J]. Lightwave Technology. 2008, 27(3): 168-176.
    [9] Jian Z H, Le D R, et al. Spectral Efficiency Analysis in OFDM and OFDM/OQAM Based Cognitive Radio Networks[C]. IEEE International Conference on Vehicular Technology, 2009:1-5.
    [10] Liang RG, Ning Z H, et al. SNR Estimation Algorithm Based on the Preamble for OFDM Systems in Frequency Selective Channels[J]. IEEE Tansactions on Communications, 2009, 57(8): 2230-2234.
    [11]常江,吕晶等.铱系统概况[J].数字通信世界, 2007(11):82-85.
    [12]张更新,于永.全球星系统概况[J].数字通信世界2007(12): 82-85.
    [13]刘进军.开启另一个通信时代[J].卫星技术. 2009(9): 43-47.
    [14]甘仲民,张更新.卫星通信技术的新发展[J].通信学报, 2006, 27(8): 2-10.
    [15] P.Fraise, B.Coulomb, et al. SkyBridge LEO Satellites: Optimized for Broadband Communications in the 21st Century[C]. IEEE International Conference on Aerospace, 2000, 1:241-251.
    [16] Weinstein S B, Ebert P M. Data Transmission by Frequency Division Multiplexing Using the Discrete Fourier Transform[J]. IEEE Transactions on Communications, 1971, 19(5): 628-634.
    [17] Frederiksen F B, Prasad R. An Overview of OFDM and Related Techniques Towards Development of Future Wireless Multimedia Communications[C]. IEEE International Conference on Radio and Wireless, 2002:19-22.
    [18] Dong W X. OFDM and Its Application to 4G[C]. IEEE International Conference on Wireless and Optimal Communications, 2005:69-106.
    [19] Weinstein S B. The History of Orthogonal Frequency-Division Multiplexing[J]. Communications Magazine, IEEE, 2009, 47(11):26-35.
    [20] Fadhil H A. The Application of OFDM in Digital Multimedia Broadcasting[C]. IEEE International Conference on Electronic Design, 2008:1-5.
    [21] Prasad N, Wang S Q, Wang X D. Efficient receiver algorithms for DFT-spread OFDM systems[J]. IEEE Transactions on Wireless Communications, 2009 , 8(6): 3216 - 3225
    [22] 3rd Generation Partnership Project. Physical layer aspects for evolved universal terrestrial radio access (E-UTRA): 3GPP TR 25.814 (V7.1.0). [S]. 3GPP, 2006.
    [23] Deneire L, Gyselinckx B, Engels M. Training Sequence Versus Cyclic Prefix: a New Look on Single Carrier Communication[J]. IEEE Communications Letters. 2001, 5(7): 292 - 294.
    [24] Zeng Yonghong, Tung Sang. Pilot Cyclic Prefixed Single Carrier Communication: Channel Estimation and Equalization[J]. IEEE Signal Processing Letters. 2005, 12 (1): 56 - 59.
    [25]杜岩,张永生,王新征.基于辅助数据的SC-FDE系统频域LS信道估计[J].电子与信息学报. 2007(4): 954 - 958.
    [26]施婷婷,周世东,姚彦.单载波频域均衡系统的一种新型导频方案[J].电子学报. 2004, (12): 109 - 113.
    [27] Ding Z, Li Y. On Channel Identification Based on Second-order Cyclic Spectra[J]. IEEE Transactions on Signal Processiong, 1994, 42(5): 1260 - 1264.
    [28] Moulines E, Duhamel P, Cardoso J. Subspace Methods for the Blind Identification of Multichannel FIR Filters[J]. IEEE Transactions on Signal Processiong. 1995, 43(2): 516 - 525.
    [29]李军,廖桂生.单载波频域均衡系统的时域盲信道估计方法[J].西安电子科技大学学报2006, (2): 75 - 79.
    [30]李军,廖桂生,郭庆华.利用补零的单载波分块传输盲信道估计方法[J].电子与信息学报. 2005, 27(9): l446 - l449.
    [31] António G, Rui D, Nelson E. On Frequency-Domain Equalization and Diversity Combining for Broadband Wireless Communications[J]. IEEE Transactions on Communications. 2003, 51(7): 1029 - 1033.
    [32] Zhu Y, Letaief K B. Single Carrier Frequency Domain Equalization with Time Domain Noise Prediction for Wideband Wireless Communications[J]. IEEE Transactions on Wireless Communications. 2006, 5(12): 3548 - 3557.
    [33] Liu Z Q. Maximum Diversity in Single-Carrier Frequency-Domain Equalization[J]. IEEE Transactions on Information Theory. 2005, 51(8): 2937 - 2940.
    [34] Gao X Q, Jiang B, You X H, et al. Efficient Channel Estimation for MIMO Single-Carrier Block Transmission With Dual Cyclic Timeslot Structure[J]. IEEE Transactions on Communications. 2007, 55(11): 2210 - 2223.
    [35] Hyung G M, Lim J S, David J. Goodman. Single carrier FDMA for uplink wireless transmission[J]. IEEE Transactions on Vehicular Technology. 2006, 1(3): 30 - 38.
    [36] Karakaya B, Arslan H, Curpan H A. Channel Estimation for LTE Uplink in High Doppler Spread[C]. IEEE International Conference on Wireless Communications and Networking Conference. 2008: 1126 - 1130.
    [37] Cao Z R, Tureli U, Yao Y D. Analysis of two receiver schemes for interleaved OFDMA uplink[C]. IEEE International Conference on Signals, Systems and Computers, 2002, 2:1818 - 1821.
    [38] Huang M, Chen X, Zhou S, et al. Iterative ICI cancellation algorithm for uplink OFDMA system with carrier-frequency offset[C]. IEEE International Conference on Vehicular Technology, 2005, 3:1613 - 1617.
    [39] Choi J H, Lee C, Jung H W, et al. Carrier frequency offset compensation for uplink of OFDM-FDMA systems [J]. IEEE Transactions on Communications Letters, 2000, 4(12):414 - 416.
    [40] Pun M O, Morelli M, Kuo C J. Iterative Detection and Frequency Synchronization for OFDMA Uplink Transmissions[J]. IEEE Transactions on Wireless Communications, 2007, 6(2): 629 - 639.
    [41] Fantacci R, Marabissi D, Papini S. Multiuser Interference Cancellation Receivers for OFDMA Uplink Communications with Carrier Frequency Offset[C]. IEEE International Conference on Globecom'04, 2004, 5:2808 - 2812.
    [42] Trajkovic V D, Rapajic P B, Kennedy R A. Adaptive ordering for imperfect successive decision feedback multiuser detection[J]. IEEE Transactions on Communications, 2008, 56(2): Page(s): 173 - 176.
    [43] Tevfik Y, Huseyin A. Carrier frequency offset compensation with successive cancellation in uplink OFDMA systems[J]. IEEE Transactions on Wireless Communications, 2007, 6(10):3546 - 3551.
    [44] Hou S W, Ko C. Intercarrier Interference Suppression for OFDMA Uplink in Time and Frequency Selective Rayleigh Fading Channels[C]. IEEE International Conference on Vehicular Technology, 2008:1438 - 1442.
    [45] Sreedhar D, Chockalingam A. MMSE Receiver for Multiuser Interference Cancellation in Uplink OFDMA[C]. IEEE International Conference on Vehicular Technology, 2006,5: 2125 - 2129.
    [46] Marabissi D, Fantacci R, Papini S. Robust Multiuser Interference Cancellation for OFDM Systems With Frequency Offset[J]. IEEE Transactions on Wireless Communications, 2006, 5(11): 3068 - 3076.
    [47] Raghunath R, Chockalingam A. SIR Analysis and Interference Cancellation in Uplink OFDMA with Large Carrier Frequency and Timing Offsets[C] IEEE International Conference on Wireless Communications and Networking, 2007:996 - 1001.
    [48] Movahedian M, Ma Y, Tafazolli R. Iterative carrier frequency offset estimation and compensation for OFDMA uplink[C] IEEE International Conference on Personal, Indoor and Mobile Radio Communications, 2008:1 - 5.
    [49] Durand, C, Durnez, F, Sehier, P. Multiuser detection for a multimedia LEO satellite system[C]. IEEE International Conference on Universal Personal Communications. 1998, 1: 653 - 657.
    [50] Beaulieu N.C, Tan P. On the effects of receiver windowing on OFDM performance in the presence of carrier frequency offset[J]. IEEE Transactions on Wireless Communications, 2005, 6(1):202 - 209.
    [51] Weeraddana P, Rajatheva N, Minn H. Probability of Error Analysis of BPSK OFDM Systems with Random Residual Frequency Offset[J]. IEEE Transactions on Communications, 2005, 57(1):106 - 116.
    [52] Huang D, Letaief K B. An interference cancellation scheme for carrier frequency offsets correction in OFDMA systems[J]. IEEE Transactions on Wireless Communications, 2005, 53(7): 1155 - 1165.
    [53] Yong S, Xiong Z, Wang X, EM-based iterative receiver design with carrier-frequency offset estimation for MIMO OFDM systems[J]. IEEE Transactions on Communications, 2005, 53(4):581 - 586.
    [54] Sheng H W, Chen B S. ICI cancellation for OFDM communication systems in time-varying multipath fading channels[J]. IEEE Transactions on Wireless Communications, 2005, 4(5): 2100 - 2110.
    [55] Lashkarian, N, Kiaei, S. Class of cyclic-based estimators for frequency-offset estimation of OFDM systems [J], IEEE Transactions on Communications, 2000, 48(12):2139 - 2149.
    [56] Krongold, B.S. Analysis of Cyclic-Prefix Correlation Statistics and their Use in OFDM Timing and Frequency Synchronization [C]. IEEE International Conference on Signals, Systems and Computers, 2005:1466 - 1470.
    [57] Stoica, P, Soderstrom T. Statistical analysis of MUSIC and subspace rotation estimates of sinusoidal frequencies[J], IEEE Transactions on Signal Processing, 1991, 39(8):1836 - 1847.
    [58] Visser M A, Zong P P, Bar-Ness Y. A novel method for blind frequency offset correction in an OFDM system [C]. IEEE International Conference on Personal, Indoor and Mobile Radio Communications, 1998(2): 816 - 820
    [59] Chiavaccini E, Vitetta G M. Maximum-likelihood frequency recovery for OFDM signals transmitted over multipath fading channels[J], IEEE Transactions on Communications, 2004, 52(2): 244 - 251.
    [60] Merli F Z, Vitetta G M. Blind Feedforward Frequency Estimation for OFDM Signals Transmitted over Multipath Fading Channels[J]. IEEE Transactions on Wireless Communications, June 2007, 6(6):2055 - 2059.
    [61] Kuang L L, Ni Z Y, Lu J H, et al. A time-frequency decision-feedback loop for carrier frequency offset tracking in OFDM systems[J], IEEE Transactions on Wireless Communications, 2005 4(2): 367 - 373.
    [62] Ylioinas J, Juntti M. EM Based Iterative Receiver for Joint Decoding and Channel Parameter Estimation in Space-Frequency Turbo Coded OFDM[C]. IEEE International Conference on Personal, Indoor and Mobile Radio Communications, 2006: 1 - 5.
    [63] Ma X, Kobayashi H, Schwartz C. EM-Based Channel Estimation Algorithms for OFDM[J]. Eurasip Journal on Applied Signal Proeessing, 2004(10):1460-1477.
    [64] Mazet L, Buzenac S V, Courville D, et al. An EM based semi-blind channel estimation algorithm designed for OFDM systems [C]. IEEE International Conference on Signals, Systems and Computers.2002, 2: 1642 - 1646.
    [65] Jain S, Gupta P, Mehra D K. EM-MMSE based Channel Estimation for OFDM Systems[C]. IEEE International Conference on Industrial Technology, 2006: 2598 - 2602.
    [66] Ocloo J M, Alberge F, Duhamel P. Semi-blind channel estimation for OFDM systems via an EM-MAP algorithm[C]. IEEE International Conference on Signal Processing, 2005: 605 - 609
    [67] Lee J H, Han J C, Kim S C. Joint carrier frequency synchronization and channel estimation for OFDM systems via the EM algorithm[J]. IEEE Transactions on Vehicular Technology, 2006, 55(1):167 - 172.
    [68] Feder M, Weinstein E. Parameter estimation of superimposed signals using the EM algorithm[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1988, 36(4): 477 - 489.
    [69] Ma X Q, Kobaya S H, Schwartz, S.C. Joint frequency offset and channel estimation for OFDM[C]. IEEE International Conference on Global Telecommunications, 2003, 3: 15 - 19.
    [70] Pun M O, Tsai S H, Kuo C C J. An EM-based joint maximum likelihood estimation of carrier frequency offset and channel for uplink OFDMA systems[C]. IEEE International Conference on Vehicular Technology, 2004, 1:598 - 602.
    [71] Mo R H, Chew Y H, Ko C C, etal. An EM-Based Semiblind Joint Channel and Frequency Offset Estimator for OFDM Systems Over Frequency-Selective Fading Channels[J]. IEEE Transactions on Vehicular Technology, 2008, 57(5): 3275 - 3282.
    [72] Morelli M, Sanguinetti L. Estimation of channel statistics for iterative detection of OFDM signals[J]. IEEE Transactions on Wireless Communications, 2005, 4(4):1360 - 1365.
    [73] Xu P, Wang J K, Qi F. A novel EM-based MAP channel estimation for MIMO-OFDM systems[C]. IEEE International Conference Networking, Sensing and Control 2010: 58 - 61.
    [74] Roman T, Koivunen V. Subspace method for blind CFO estimation for OFDM systems with constant modulus constellations[C]. IEEE International Conference on Vehicular Technology, 2005: 1253 - 1257.
    [75] Yang F, Li K. The Performance analysis of the blind minimum output variance estimator for carrier frequency offset in OFDM systems[J]. Eurasip Applied Signal Processing, 2006, 24(10):1-8.
    [76] Yao Y, Giannakis G B. Blind carrier frequency offset estimation in SISO, MIMO, and multiuser OFDM system[J]. IEEE Transactions on Communications, 2005, 53(1):173-183
    [77] Chung W Z, Johnson C R. Blind Carrier Frequency Offset Synchronization for OFDM Systems based on High Order Statistics[C]. IEEE International Conference on Information Science and Systems, Princeton, America, 2002:624 - 629.
    [78] Liu Y, Mikhael W. Blind carrier frequency offset estimation for OFDM systems based on kurtosis[C]. IEEE International Conference on Circuits and Systems, 2005. 127 - 130.
    [79] Ma X, Giannakis G B, Barbarossa S. Nondata-aided carrier offset estimators for OFDM with null subcarriers: Identiability Algorithms and Performance[J]. IEEE Transactions on Areas Communication, 2004, 19(12):2504-2511.
    [80] Huang D, Letaief. K. B. Carrier frequency offset estimation for OFDM systems using null subcarriers[J]. IEEE Transactions on Communication, 2006, 54(5):813-822
    [81] Zhu J, Lee W. Carrier frequency offset estimation for OFDM systems with null subcarriers[J]. IEEE Transactions on VT, 2006, 55(5):1677-1690.
    [82] Bolcskei H. Blind estimation of symbol timing and carrier frequency offset in wireless OFDM systems[J]. IEEE Transactions on Communications, 2001 49(6):988 - 999.
    [83] Chen Biao, Wang Hao. Blind estimation of OFDM carrier frequency offset via over sampling [J]. IEEE Transactions on Signal Processing, 52(7):2047 - 2057.
    [84] Liu H, Tureli U. A high-efficiency carrier estimator for OFDM communications [J], IEEE Transactions on Communications Letters, 1998, 2(4):104 - 106.
    [85] Ma X L, Tepedelenlioglu C, Giannakis G B, et al. Non-data-aided carrier offset estimators for OFDM with null subcarriers: identifiability, algorithms, and performance [J], IEEE Journal on Selected Areas in Communications, 2001 19(12):2504 - 2515.
    [86] Luise M, Marselli M, Reggiannini R. Low-complexity blind carrier frequency recovery for OFDM signals over frequency-selective radio channels[J]. IEEE Transactions on Communications, July 2002 50(7):1182 - 1188.
    [87] Zander J. Performance of optimum transmitter power control in cellular radio systems[J]. IEEE Transactions on Vehicular Technology, 1992, 41(1): 57 - 62.
    [88] Zander J. Transmitter power control for co-channel interference management in cellular radio systems. in 4 th WINLAB workshop on 3rd generation wireless information networks,l993,546-557.
    [89] Tiong S K, Eng K S, Ismail M. Capacity improvement through adaptive power control in CDMA system[C]. IEEE International Conference on Telecommunication Technology, 2003: 137 - 140.
    [90] Lee I H, Kim D W. Power Cost of Mobility in Cellular Systems with Closed-Loop power control[C]. IEEE International Conference on Wireless Communications and Networking. 2005, 2:1150 - 1154.
    [91]林黄娜,蒋铃鸽,何晨.一种基于导频功率控制的WCDMA移动台分配策略[J].上海交通大学学报, 2007, 41(6): 899 - 906.
    [92] Anpalagan A, Subramaniam M. On the integrated transmit power control and base station assignment in reverse links of cellular CDMA networks[J]. IEEEInternational Conference on Spread Spectrum Techniques and Applications, 2004: 227-231.
    [93] Tsai C S, Su S L. An efficient power allocation strategy for low Earth-orbit satellite communication systems[C]. IEEE International Conference on Communication Systems, 2002, 2: 701 - 705.
    [94] Stojanovic M, Chan V. Adaptive power and rate control for satellite communications in Ka band[C]. IEEE International Conference on Communications, 2002, 5: 2967 - 2972.
    [95]王宇飞,康健,刘义. Ka波段卫星通信上行链路功率控制算法[J].吉林大学学报,2006,24(5):484 - 487.
    [96]钟怀东,徐慨,侯柳英. Ka频段卫星通信上行链路自适应功率控制[J].计算机工程,2009,35(10):107-109.
    [97] Li W Z, Dubey V K. Choi L L. A new generic multistep power control algorithm for the LEO satellite channel with high dynamics[J]. IEEE Transactions on Communications Letters, 2001, 5(10): 399 - 401.
    [98] Zihua G, Letaief K B. Adaptive open loop power control and impact on the Erlang capacity of LEO satellite CDMA systems[C]. IEEE International Conference on Vehicular Technology Conference, 2000, 2: 1591 - 1595.
    [99] Xiao W M, Honig M L. Forward-link performance of satellite CDMA with linear interference suppression and one-step power control [J]. IEEE Transactions on Wireless Communications, 2002, 1(4): 600 - 610.
    [100] Monk A M, Milstein L B. Open-loop power control error on a land mobile satellite link[C]. IEEE International Conference on Universal Personal Communications, 1994: 440 - 444.
    [101] Li W Z; Choi L L; Dubey V K. The integration of power control and turbo coding in Ka-band CDMA based LEO satellite system[C]. IEEE International Conference on Vehicular Technology, 2001, 2: 1333 - 1337.
    [102] Jang J, Lee K B. Transmit power adaptation for multiuser OFDM systems[J]. IEEE Journal on Selected Areas in Communications, 2003 , 21(2): 171 - 178.
    [103] Rhee W, Cioffi J M. Increase in capacity of multiuser OFDM system using dynamicsubchannel allocation[C]. IEEE International Conference on Vehicular Technology, 2000 ,2: 1085 - 1089.
    [104] Shen Z, Andrews J G, Evans B L. Adaptive resource allocation in multiuser OFDM systems with proportional rate constraints[J]. IEEE Transactions on Wireless Communications, 2005, 4(6): 2726 - 2737.
    [105]丁乐,殷勤业,邓科等.一种无线OFDM系统中的高效功率和比特分配算法[J].电子与信息学报, 2007, 29 (7): 1537 - 1541.
    [106] Vogel W J, Goldhirsh J. Fade measurements at L-band and UHF in mountainous terrain for land mobile satellite systems[J]. IEEE Transactions on Antennas and Propagation. 1988, 36(1): 104 - 113.
    [107] M. Patzold. Modeling Fading Channels[J]. John Willey & Sons, Ltd. 2002: 55-134.
    [108] Lutz E, Werner M, Jahn A. Satellite Systems for Personal and Broadband Communication Germany[J]. Sprionger-Verlag Berlin Heideberg. 2000: 216~218
    [109] Priyanto B E, Codina H, Rene, S, et al. Initial Performance Evaluation of DFT-Spread OFDM Based SC-FDMA for UTRA LTE Uplink[C]. IEEE International Conference on Vehicular Technology, 2007: 3175 - 3179.
    [110] Zhang X P, Kim J S, Ryu H G. Multi-Access Interference in LTE uplink with multiple Carrier Frequency Offsets [C]. IEEE International Conference on Wireless Communications & Signal Processing. 2009: 1 - 4.
    [111] Raghunath K, Chockalingam A. SC-FDMA Versus OFDMA: Sensitivity to Large Carrier Frequency and Timing Offsets on the Uplink[C]. IEEE International Conference on Global Telecommunications. 2009: 1 - 6.
    [112] Yan D Q, Bai W L, Xiao Y, et al. Multiuser interference suppression for uplink interleaved FDMA with carrier frequency offset[C]. IEEE International Conference on Wireless Communications & Signal Processing, 2009: 1 - 5.
    [113] Li M Q, Zhang W J. A novel method of carrier frequency offset estimation for OFDM systems[J]. IEEE Transactions on Consumer Electronics, 2003, 49(4): 965 - 972.
    [114] Chen P, Kobayashi H. Maximum likelihood channel estimation and signal detection for OFDM systems[C]. IEEE International Conference on ICC, 2002, 3: 1640 - 1645.
    [115] Nakamura M, Itami M, Itoh K, et al. A study on an MMSE ICI canceller for OFDM under Doppler-spread channel[C]. IEEE International Conference on Personal, Indoor and Mobile Radio Communications, 2003,2: 236 - 240.
    [116] Chen Y K, Lee H C, You J J, et al. Less Complexity Successive Interference Cancellation for OFDM System[C]. IEEE International Conference on Personal, Indoor and Mobile Radio Communications, 2007, 2:1 - 5.
    [117] Xu B, Yang C Y, Mao S Y. A multi-carrier detection algorithm for OFDM systems without guard time [C]. IEEE International Conference on Communications, 2003(5): 3377 - 3381.
    [118] Hwang S U, Lee J H, Seo J. Low Complexity Iterative ICI Cancellation and Equalization for OFDM Systems Over Doubly Selective Channels[J]. IEEE Transactions on Broadcasting, 2009, 15(1):132– 139.
    [119] Park J H, Whang Y, Kim K S. Low Complexity MMSE-SIC Equalizer Employing Time-Domain Recursion for OFDM systems[J]. IEEE Transactions on Signal Processing Letters, 2008, 15(2):633 - 636.
    [120] Panayrc E, Senol, H, Poor H V. Joint data detection and channel estimation for OFDM systems in the presence of very high mobility[C]. IEEE International Conference on Personal, Indoor and Mobile Radio Communications, 2009: 461 - 465.
    [121] Lee J H, Kim S C. Residual frequency offset compensation using the approximate SAGE algorithm for OFDM system[J]. IEEE Transactions on Communications, 2006, 54(5): 765 - 769.
    [122] Lee J H, Kim S C. Time and Frequency Synchronization for OFDMA Uplink System using the SAGE algorithm[J]. IEEE Transactions on Wireless Communications, 2007, 6(4): 1176 - 1181.
    [123] Oh K N, Chin Y O. Modified Constant Modulus Algorithm: Blind Equalization and Carrier Phase Recovery algorithm[C]. IEEE International Conference on Communications, 1995: 498-502.
    [124] Banovic K, Abdel-Raheem E, Youssif M. Joint MCMA and DD blind equalization algorithm with variable-step size[C]. IEEE International Conference on Electro/Information Technology, 2009: 174 - 177.
    [125] 3rd Generation Partnership Project. On selecting optimal power control parameters for E-UTRA uplink, R4-060914[S]. 3GPP, 2006.
    [126] 3rd Generation Partnership Project. Evolved Universal Terrestrial Radio Access (E-UTRA), Radio Frequency (RF) System Scenarios. 3GPP TS 36.213[S]. 3GPP, 2008.
    [127] Motorola. Uplink Power Control for E-UTRA. 3rd Generation Partnership Project. R1-063063[S]. 2006.
    [128] Ericsson. Uplink Power Control for E-UTRA. 3rd Generation Partnership Project. R1-070475[S].2007.
    [129] Ericsson. Uplink Power Control for E-UTRA. 3rd Generation Partnership Project. R1-063139[S]. 2006.
    [130] Shen Z, Andrews J G, Evans B L. Optimal power allocation in multiuser OFDM systems[C]. IEEE International Conference on Global Telecommunications, 2003, 1: 337 - 341.
    [131]赵铁. LTE空中接口物理层过程浅析[J].电信技术, 2009,9:81 - 83.
    [132]张晓. 3GPPLTE部分关健技术研究及系统级仿真验证[D].硕士论文,武汉理工大学学硕士论文, 2008.
    [133]孙超. E3G系统下行链路的系统级仿真平台实现以及关键技术研究[D].硕士论文,北京邮电大学, 2009.
    [134]陈伟,孙引,李云洲等.基于Matlab的LTE系统级仿真平台的建立[J].通信技术, 2010, 5(43): 170 - 173.
    [135]汪海明,艾萨.图玛拉.多载波通信系统仿真中的EESM和MI - ESM方法[J].电讯技术, 2006, 1: 26- 30.
    [136] 3rd Generation Partnership Project. Physical layer procedures for evolved universal terrestrial radio access (E-UTRA). 3GPP TS 36.213[S]. 3GPP, 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700