用户名: 密码: 验证码:
丹江口水库水滨带植被特征及其与环境因素的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水滨带是陆地生态系统与水生生态系统的过渡地带,是两大生态系统相互作用的桥梁和纽带。虽然水滨带在整个地球生态系统中只占很小比例,但是其在生态系统中发挥着重要的作用。水滨带植被具有保护水域生态安全、稳定堤岸和保持生境连通性等一系列重要的生态功能,是保护水质预防水体污染的最后一道生态屏障。由于各种因素的影响,世界范围内的水滨带植被都出现了严重退化的现象。丹江口水库(32。36'-33。48’N,110。59'-111。49’E)是我国南水北调中线工程的水源地。自1973年大坝建成,丹江口水库已运行了近40年。经过40年的自然演替,丹江口水库在最低水位140m和最高水位157m之间的区域,以及157m以上可能受到水淹影响的区域内形成了明显不同于陆生或水生植被的水滨带植被。2014年南水北调中线将开始运行,水库常水位会抬升到170m,现有的水滨带植被将被淹没,在更高的海拔区域上会形成新的水滨带。如何保护和恢复水滨带植被,使其充分发挥生态功能,对水源地的水质保护和南水北调中线工程的正常运行有着重要意义。探讨水滨带的植被特征及其与环境之间的关系对水滨带植被的保护和恢复有重要的理论和实践意义。本文以丹江口水库水滨带为研究对象,在植被生态学、恢复生态学、数量生态学及相关理论的指导下,在实地调查和室内实验的基础上,综合运用数量生态学和统计学的相关方法,分析丹江口水库水滨带的植被特征及其与环境的关系。研究结果表明:
     (1)丹江口水库水滨带维管植物共72科208属285种,其中蕨类植物3科3属3种,裸子植物2科3属4种,被子植物67科202属278种。从科的组成看,水库水滨带维管植物的组成表现出两个趋势,一方面物种向豆科(Leguminosae)、禾本科(Gramineae)和菊科(Compositae)这样的世界性大科集中,同时又向少种科和区域性单种科分散,反映出本区域维管植物大科少小科多的特点。从属的组成看,水滨带维管植物的优势属明显,同时区域性单种属数量多,说明水滨带生境条件复杂,高度异质性的环境为多种植物提供了生存条件。从植物区系类型组成上,以热带成分和温带成分为主,体现出丹江口水库处于亚热带向北温带过渡的区域。从生活型组成看,乔木35种,灌木49种,木质藤本7种,草本蕨类植物3种,一二年生草本植物73种,多年生草本植物118种。草本植物发达,是构建水滨带植物群落的主要建群种。
     (2)丹江口水库水滨带植被主要包括7种群落类型,分别是篇蓄群落、苘麻群落、细叶水芹群落、狗牙根群落、响叶杨群落、杜梨群落和侧柏群落。不同群落类型在物种组成、群落结构和生活型组成上差异较大。植物群落类型以草本植物群落为主,木本植物群落少数,反映水滨带恶劣的环境条件使植物群落结构逐渐趋于简单化。7种植物群落类型沿海拔和水淹影响梯度分布,不同群落类型之间有一定程度的重叠。植物群落在水滨带的分布呈现出植物群落从位于低海拔的一年生草本植物群落,到位于中海拔的多年生草本群落和灌丛群落,再过渡到位于高海拔的乔木群落。以草本植物群落为主,上部零星木本植物群落分布的空间格局形成了水滨带植被的总体外貌特征。
     (3)相对高程和水文因素是影响水滨带植被变化的主导因素,土壤属性也对水滨带植被变化产生一定影响,而地形因素如坡度和坡向对植被变化的影响较小。对单个环境因子对植被变化解释能力的分析表明,13个环境因子中年平均水淹时间对植被变化的影响最大,其次是相对高程、水淹频率、土壤有机质含量、土壤pH、土层厚度、土壤速效磷含量、土壤总氮含量、土壤速效氮含量、坡度、坡向、土壤总磷含量和土壤质地,解释能力依次降低。对地形、土壤和水文3类环境因素,土壤因素的植被变化解释能力大于地形因素,水文因素的解释能力最小。各类环境因素之间存在交互作用,地形、水文和土壤因素三者间的交互作用最大,其次是地形和水文因素、土壤和水位因素之间的交互作用,地形和土壤因素之间的交互作用最小。所收集的3类环境因素13个环境因子共解释了水滨带植被变化的21.99%,未解释部分为78.01%。
     (4)通过主成分分析和多元回归得到水滨带植物多样性与环境因素的回归模型,结果表明,与水滨带植物群落物种丰富度相关性较大的环境变量有坡向、土层厚度、坡度、相对高程和土壤速效氮含量;与水滨带植物群落物种多样性相关性较大的环境因子有土层厚度、坡向、土壤有机质含量、土壤速效氮含量和水淹频率。根据Pearson相关性检验,物种丰富度与相对高程、土壤质地、年平均水淹时间、坡向和土层厚度显著相关;物种多样性与土层厚度、土壤有机质含量、水淹频率和土壤速效氮含量显著相关。对单个环境因子对水滨带植物多样性的影响效应进行分析,其中物种丰富度与相对高程呈二次抛物线关系,与土壤质地呈三次抛物线关系,与年平均水淹时间呈三次抛物线关系,与土层厚度呈幂函数曲线关系;物种多样性与土层厚度呈幂函数曲线关系,与土壤有机质含量呈三次抛物线关系,与水淹频率呈指数曲线关系。
     (5)丹江口水库水滨带土壤种子库共有维管植物44种,隶属于20科38属。物种组成以草本植物为主,仅出现2种木本植物—白刺花(Sophora davidii)和假穸包叶(Discocleidion rufescens)。土壤种子库的平均密度为8950粒/m2,种予密度最大的是一年生草本植物。对不同水淹影响区域土壤种子库特征比较,发现水滨带土壤种子库的物种丰富度和利,了密度随着水淹影响程度的增强而增加。结果表明水淹影响造成的水滨带植被退化并不会严重影响其土壤种子库的储量,水滨带退化植被的恢复不受土壤种子库种子储量的限制。水滨带土壤种子库和地上植被在物种组成上存在显著差异,而且水淹影响对土壤种子库和地上植被之间的相似性有明显影响,中度淹没区土壤种子库和地上植被在物种组成上的差异最大,而永久淹没区土壤种子库和地上植被之间的差异最小。水滨带的土壤种子库与地上植被之间的相似性较低表明土壤种子库对于水滨带植被恢复的贡献有限,水滨带的植被恢复不能仅仅依靠土壤种子库。但水滨带的土壤种子库与地上植被之间有着非常密切的联系,证明了土壤种子库是水滨带植被恢复与重建的重要资源。通过对水滨带土壤种子库密度和环境关系的分析发现,与土壤种子库密度相关性较大的环境因子是地上植被盖度、土壤速效氮含量和土壤全磷含量。根据Pearson相关性检验,土壤种子库密度与土壤有机质含量、地上植被盖度、土壤速效氮含量、水淹干扰和土壤饱和含水量显著相关。水滨带土壤种子库密度与土壤饱和含水量呈线性增加趋势,与水淹影响因子呈指数曲线关系。
Riparian zone is the transition area between aquatic and terrestrial ecosystems located along rivers, streams as well as lakes, and it is the critical zone for the interaction between aquatic and terrestrial ecosystems. Although riparian zone is a small portion of the global ecosystem, it plays an important role in ecological system. Riparian vegetation performs important ecological functions in protecting water ecological security, stabilizing the bank, maintaining habitats connectivity and enhancing local biological diversity, which is the last defense against water pollution. However, riparian vegetation has been degraded severely throughout the world because of various factors. Danjiangkou Reservoir (32°36'-33°48'N,110°59'-111°49'E), located in Central China, is the water source for the Middle-Route of the South-to-North Water Transfer Project. Danjiangkou Reservoir has operated for almost40years since the dam was completed in1973. Through the natural ecological succession of40years, the riparian vegetation of Danjiangkou Reservoir is present distinctive characteristics in the area between the lowest water level of140m and the highest water level of157m, and the area above the highest water level which may be affected by elevated water level or flooding occasionally, which is distinctive form terrestrial and aquatic vegetation. The water transfer project will operate in2014, the normal water level of Danjiangkou Reservoir will be up to170m. Most of the existing riparian vegetation will been submerged, and the new riparian zone will been shaped at the higher elevation. How to protect and restore the riparian vegetation and giving full play to its ecological functions is significant to the protection of water quality and the normal operation of the Middle-Route of the South-to-North Water Transfer Project. Exploring the characteristics of the riparian vegetation and its relation to environment factors has important significance for conservation and restoration of riparian vegetation. In this paper, the characteristics of the riparian vegetation and its relation to environmental factors were analyzed based on field investigation and laboratory experiment. The main results are as follows:
     (1) There were285species in the riparian zone of Danjiangkou Reservoir, which belonged to208genera and72families. Among them there were3species,3genera and3families of pteridophyte,4species,3genera and2families of gymnospermae,278species,202genera and67families of angiosperm. Species composition of the riparian vegetation displayed two obvious trends in families, on the one hand the big world families, such as Leguminosae, Gramineae and Compositae took large proportion, on the other hand small families and regional single-species families also owned a certain proportion. It indicated that the characteristic in species composition of this area is few large families and some small families. In addition, the dominant genera were evident. And small genera and regional single-species genera also owned a large proportion. This indicated that the environmental conditions of the riparian zone were complex, and high environmental heterogeneity provided habitats for most species. The floristic analysis showed that tropic and temperate types were dominant, this indicated that the climate feature of Danjiangkou Reservoir was the transition from North Temperate Zone to subtropical zone. There were35trees,49shrubs,7woody vines,3herbaceous pteridophytes,73annual or biennial herbs and118perennial herbs. Herb species were the dominant groups, which were the major constructive species of the riparian vegetation.
     (2) Seven plant community types were clearly identified in the riparian zone of Danjiangkou Reservoir. There were Polygonum aviculare community, Abutilon theophrasti community, Oenanthe dielsii var. stenophylla community, Cynodon dactylon community, Populus adenopoda community, Pyrus betulifolia community and Platycladus orientalis community. The riparian plant communities were dominated by herbaceous plant communities, with a small number of woody plant communities. It indicated that the severe environmental conditions of the riparian zone resulted in the simplification of vegetation structure. Seven plant community types distributed along the gradients of elevation and flooding influence, while there were some overlaps among different plant community types. Plant communities commonly displayed a distribution pattern with annual herbaceous species dominating the lower wet zones, perennial herbaceous species occupying the moderate elevation, larger shrubs appeared at the mid-up land, and trees occurring in the high zones where less prone to inundation. The total macroscopic feature of the riparian vegetation is herbaceous plant communities based with a few woody communities appearing at the upper land.
     (3) Height above water and hydrologic factors (flood duration and flood frequency) were significantly associated with the variation in species composition within the riparian vegetation. The soil property also had a strong influence on the characteristics of the riparian vegetation, while the topographic factor, slope and aspect, had a little influence on the riparian vegetation. There were respectively13environmental variables significantly explaining the variation of species composition, flood duration had the strongest explanatory power, followed by height above water, flood frequency, soil organic matter content, soil pH, soil thickness, soil available phosphorus content, soil total nitrogen content, soil available nitrogen content, slope, aspect, soil total phosphorus content and soil thickness, whose the explanatory power decreased successively. With regard to topographic, soil and hydrological factors, the explanatory power of soil factor was more than the explanatory power of topographic factor, and the explanatory power of hydrological factor was least. There were interactive effects among environmental factors, the interactive effect among topographic, soil and hydrological factors was largest, followed by the interactive effect between topographic and hydrological factors, the interactive effect between soil and hydrological factors. The interactive effect between topographic and soil factors was smallest. The collected environmental factors accounted for21.99%of the variation of the riparian vegetation, the unexplained portion accounted for78.01%.
     (4) Based on Principal Component Analysis and multiple regression, the regression models was obtained between plant diversity of the riparian vegetation and the environmental factors. The results indicated that there were greater correlation between the species richness and aspect, soil thickness, slope, height above water and soil available nitrogen content. And there were greater correlation between the species diversity and soil thickness, aspect, soil organic matter content, soil available nitrogen content and flood frequency. Based on Pearson correlation coefficient, the species richness correlated significantly with height above water, soil texture, flood duration, aspect and soil thickness, and to the significant correlate to the species diversity were soil thickness, soil organic matter content, flood frequency and soil available nitrogen content. Based on the analyses of the explanatory power of environmental variables respectively, the distribution discipline of species richness along the gradient of height above water was quadratic parabola, it along the gradient of soil texture was cubic parabola, it along the gradient of flood duration per year was cubic parabola, and it along the gradient of soil thickness was power function curve; The relationships between the species diversity and soil thickness was power function curve, the species diversity and soil organic matter content showed a cubic parabola relationship, and the distribution discipline of species diversity along the flood frequency was exponential curve.
     (5) There were44species in the soil seed bank of the riparian vegetation in Danjiangkou Reservoir, which belonged to38genera and20families. Herbs species were the dominant groups, and only two woody species appeared, Sophora davidii and Discocleidion rufescens. The average seed density of the soil seed bank was8950seeds/m2, and annual herbs had the greatest seed density. Comparing the quantitative characteristics of the soil seed banks from the different flood disturbance zone, it showed that the species richness and seed density of the soil seed bank were increased with the increase of flood disturbance. This result indicated that the vegetation degradation causing by flooding disturbance couldn't have a significant impact on the seed density of the soil seed bank in the riparian zone, and the restoration of seriously disturbed riparian vegetation was not seed-limited. The soil seed bank and aboveground vegetation were obviously different in the riparian zone, and the flood disturbance had obvious significance to the similarity between the soil seed bank and aboveground vegetation. The discrepancy between the soil seed bank and aboveground vegetation was greatest at the moderate inundated zone, and smallest at the permanent inundated zone. Low similarity between the soil seed bank and the aboveground vegetation in riparian land indicated that the soil seed bank played a minor role in contributing to the regeneration of vegetation, and the managers could not just rely on soil seed bank for vegetation restoration. However, the soil seed bank was closely connected with the aboveground vegetation and was an important source for vegetation regeneration and restoration. The relationships between the soil seed bank and the environmental factors were analyzed. The seed density of the soil seed bank was mainly influenced by the cover of the above-ground vegetation, soil available nitrogen content and soil total phosphorus content. Based on Pearson correlation coefficient, the seed density of the soil seed bank correlated significantly with soil organic matter content, the cover of the aboveground vegetation, soil available nitrogen content, flood disturbance and saturated moisture content of soil. The seed density of the soil seed bank revealed a linear increasing trend along the increase of saturated moisture content of soil, and the seed density of the soil seed bank and flood disturbance showed an exponential curve relationship.
引文
1. 白宝伟,王海洋,李先源,冯义龙,智丽.三峡库区淹没区与自然消落区现存植被的比较.西南农业大学学报(自然科学版),2005,27(5):684-687
    2. 白福,李文鹏,黎志恒.黑河流域植被退化的主要原因分析.干旱区研究,2008,25(2):219-224
    3.包秀霞,易津,刘书润,吉木色,吉格吉德苏仁.不同放牧方式对蒙古高原典型草原土壤种子库的影响.中国草地学报,2010,32(5):66-72
    4.陈宝瑞,李海山,朱玉霞,李刚,辛晓平,张宏斌,周磊.呼伦贝尔草原植物群落空间格局及其环境解释.生态学报,2010,30(5):1265-1271
    5.陈亚宁,李卫红,陈亚鹏,徐长春,张丽华.新疆塔里木河下游断流河道输水与生态恢复.生态学报,2007,27(2):538-545
    6.陈亚宁,李卫红,陈亚鹏,赵锐峰,湾疆辉.新疆塔里木河下游断流河道输水的生态响应与生态修复.干旱区研究,2006,23(4):521-530
    7.陈亚宁,李卫红,徐海量,刘加珍,张宏峰,陈亚鹏.新疆塔里木河下游地下水位对植被的影响.地理学报,2003,58(4):542-549
    8.陈子珊,高甲荣,包昱峰,冯泽深.河溪利用方式对河岸带木本植物多样性的影响——以安达木河上游为例.水土保持研究,2008,15(4):189-191
    9.崔艳,王新平,潘颜霞,王正宁,戚鹏程.天然固定沙地不同微生境下土壤种子库差异.生态学报,2010,30(8):1981-1989
    10.邓红兵,王青春,王庆礼,吴文春,邵国凡.河岸植被缓冲带与河岸带管理.应用生态学报,2001,12(6):951-954
    11.邓红兵,王青春,代力民,王庆礼,王绍先.长白山北坡河岸带群落植物区系分析.应用生态学报,2003,14(9):1405-1410
    12.代力民,王青春,邓红兵,陈高,王庆礼.二道白河河岸带植物群落最小面积与物种丰富度.应用生态学报,2002,13(6):641-645
    13.高俊峰.北京东灵山地区人类活动对植物多样性分布的影响研究.[博士学位论文].北京:北京林业大学,2007
    14.何志斌,赵文智.黑河下游荒漠河岸林典型样带植被空间异质性.冰川冻土,2003,25(5):591-596
    15.侯志勇,陈心胜,谢永宏,李旭.洞庭湖湿地土壤种子库特征及其与地表植被的相关性.湖泊科学,2012,24(2):287-293
    16.江明喜,党海山,黄汉东,陶勇,金霞.三峡库区香溪河流域河岸带种子植物区系研究.长江流域资源与环境,2004,13(2):178-182
    17.江明喜,邓红兵,蔡庆华.神农架地区珍稀植物沿河岸带的分布格局及其保护意义.应用生态学报,2002,13(11):1373-1376
    18.江明喜,邓红兵,唐涛,蔡庆华.香溪河流域河岸带植物群落物种丰富度格局.生态学报,2002,22(5):630-635
    19.李丹艳,任海,王俊,李平衡,吴建平.火烧和植造桉林对南亚热带退化草坡土壤种子库的影响.生态环境学报,2009,18(1):255-262
    20.李冬,王青春,邓红兵.二道白河河岸带珍稀植物的分布格局.江西农业大学学报,2005,27(6):885-889
    21.李国庆,王孝安,郭华,朱志红.黄土高原马栏林区森林群落生态梯度分析.干旱区研究,2009,26(2):221-227
    22.李立平,安尼瓦尔·买买提,郭兆迪,海鹰,唐志尧.新疆山地针叶林植物物种组成与丰富度研究.干旱区研究,2011,28(1):40-46
    23.李璐.南水北调中线水源区多尺度生态环境综合评价.[博士学位论文].武汉:华中农业大学,2010
    24.李生,姚小华,任华东,张守攻.黔中石漠化地区不同土地利用类型土壤种子库特征.生态学报,28(9):4602-4608
    25.李锡文.中国种子植物区系的统计分析.云南植物研究,1996,18(4):363-384
    26.李小胜,陈珍珍.如何正确应用SPSS软件做主成分分析.统计分析,2010,27(8):105—108
    27.李志强,王明玖,陈海军,孙熙麟.短花针茅荒漠草原土壤种子库对不同放牧强度的响应.干旱区资源与环境,2010,24(6):184-188
    28.廖世纯,韦桥现,蔡健和,蒙炎成,高国庆,李扬瑞,张永祥.广西水库消落带植物群落调查.中国水土保持,2008,8:42-43
    29.刘华,蒋齐,王占军,潘占兵.不同封育年限宁夏荒漠草原土壤种子库研究.水土保持研究,2011,18(5):96-98
    30.刘加珍,陈亚宁,李卫红.塔里木河下游植物群落分布衰退演替趋势分析.生态学报,2004,24(2):379-383
    31.刘加珍,陈亚宁,李卫红,陈永金.荒漠河岸植被的受损过程与受损机理分析.地理学报,2006,61(9):946-956
    32.刘加珍,李卫红,吴纯渊,陈永金.荒漠河岸生态系统退化与物种多样性恢复研究.干旱区研究,2009,26(2):212-220
    33.刘文治,卜红梅,刘贵华,张全发.丹江口库区湿地植被对南水北调中线工程 响应研究.水土保持通报,2009,29(4):149-152
    34.刘文治,张全发,李天煜,李伟,吴文颖,刘贵华.丹江口库区湿地植被的数量分类和排序.武汉植物学研究,2006,24(3):220-224
    35.刘文治,张全发,刘贵华,李天煜,李伟,吴文颖.丹江口库区湿地水生维管束植物的区系研究.武汉植物学研究,2005,23(5):449-454
    36.刘学全,唐万鹏,崔鸿侠.丹江口库区主要植被类型水源涵养功能综合评价.南京林业大学学报(自然科学版),2009,33(1):59-63
    37.刘学全,唐万鹏,章建斌,涂光新,兰亚军,郑兰英.丹江口湖北库区水源涵养林改造技术研究.湖北林业科技,2006,5(11):3-6
    38.鲁如坤.土壤农业化学分析方法.南京:河海大学出版社,2000
    39.卢志军,李连发,黄汉东,陶敏,张全发,江明喜.三峡水库蓄水对消涨带植被的初步影响.武汉植物学研究,2010,3:303-314
    40.马克平.生物多样性的测度方法a多样性的测度方法(上).生物多样性,1994a,2(3):162-168
    41.马克平.生物多样性的测度方法a多样性的测度方法(下).生物多样性,1994b,2(4):231-239
    42.马旭东,张苏峻,苏志尧,区余瑞,刘刚.车八岭山地常绿阔叶林群落结构特征与微地形条件的关系.生态学报,2010,30(19):5151-5160
    43.苗莉云,王孝安,王志高.太自红杉群落物种多样性与环境因子的关系.西北植物学报,2004,24(10):1888-1894
    44.莫训强,李洪远,蔡拮,李端,郝翠,梁耀元.天津滨海盐碱湿地土壤种子库特征研究.环境科学与技术,2010,33(1):52-57
    45.任雪梅,杨达源,徐永辉,周彬.三峡库区消落带的植被生态工程.水土保持通报,2006,26(1):42-43
    46.任学敏,杨改河,王得祥,秦晓威,刘振学,赵双喜,白宇.环境因子对巴山冷杉一糙皮桦混交林物种分布及多样性的影响.生态学报,2012,32(2):605—613
    47.邵波,方文,王海洋.国内外河岸带研究现状与城市河岸林带生态重建.《西南农业大学学报(社会科学版)》,2007,5(6):43-46
    48.尚占环,任国华,龙瑞军.土壤种子库研究综述—规模、格局及影响因素.草业学报,2009,18(1):144-154
    49.尚宗波,高琼.流域生态学—生态学研究的一个新领域.生态学报,2001,3:468—473
    50.沈泽昊,张新时,金义兴.地形对亚热带山地景观尺度植被格局影响的梯度分 析.植物生态学报,2000,24(4):430-435
    51.沈泽吴,张新时.三峡大老岭地区森林植被的空间格局分析及其地形解释.植物学报,2000,42(10):1089-1095
    52.宋同清,彭晚霞,曾馥平,王克林,覃文更,谭卫宁,刘璐,杜虎,鹿士杨.木论喀斯特峰丛洼地森林群落空间格局及环境解释.植物生态学报,2010,34(3):298—308
    53.宋永昌.植被生态学.上海:华东师范大学出版社,2001
    54.苏延桂,李新荣,贾荣亮,潘颜霞.腾格里沙漠东南缘苔藓结皮对荒漠土壤种子库的影响.应用生态学报,2007,18(3):504-508
    55.孙建华,王彦荣,曾彦军.封育和放牧条件下退化荒漠草地土壤种子库特征.西北植物学报,2005,25(10):2035-2042
    56.孙荣,袁兴中,陈忠礼,张跃伟,刘红.三峡水库澎溪河消落带植物群落物种丰富度格局.环境科学研究,2010a,23(11):1382-1389
    57.孙荣,袁兴中,丁佳佳.三峡水库蓄水至156 m水位后白夹溪消落带植物群落生态学研究.湿地科学,2010,8(1):1-7
    58.孙荣,袁兴中,刘红,陈忠礼,张跃伟.三峡水库消落带植物群落组成及物种多样性.生态学杂志,2011a,30(2):208-214
    59.孙荣,刘红,丁佳佳,袁兴中.三峡水库蓄水后开县消落带植物群落数量分析.生态与农村环境学报,2011b,27(1):23-28
    60.涂建军,陈治谏,陈国阶,李德清.三峡库区消落带土地整理利用-—以重庆市开县为例.山地学报,2002,20(6):712—777
    61.万开元,潘俊峰,李儒海,王道中,汤雷雷,陈防.长期施肥对早地土壤杂草种子库生物多样性影响的研究.生态环境学报,2010,19(4):836-842
    62.王根绪,程国栋.江河源区的草地资源特征与草地生态变化.中国沙漠,2001,21(2):101-107
    63.王庆成,于红丽,姚琴,韩壮行,乔树亮.河岸带对陆地水体氮素输入的截流转化作用.应用生态学报,2007,18(11):2611-2617
    64.王青春,邓红兵,王庆礼.基于生物多样性保护的河岸带植被管理对策—以长白山二道白河为例.生态学杂志,2006,25(6):682-685
    65.王庆锁,王襄平,罗菊春,冯宗炜,李经天,马玉华,苏玉华.生态交错带与生物多样性.生物多样性,1997,5(2):126-131
    66.王应刚,张秋华,张峰,朱字恩.城市河流改造工程对河流生态系统野生维管植物的影响.植物生态学报,2007,31(3):451-456
    67.王勇,厉恩华,吴金清.三峡库区消涨带维管植物区系的初步研究.武汉植物 学研究,2002,20(4):265-274
    68.王勇,吴金清,黄宏文,刘松柏.三峡库区消涨带植物群落的数量分析.武汉植物学研究,2004,22:307-314
    69.王勇,刘义飞,刘松柏,黄宏文.三峡库区消落带植被重建.植物学通报,2005,22(5):513-522
    70.王增如,徐海量,尹林克,李吉玫,张占江,李媛.土壤种子库对漫溢区受损植被更新的贡献.应用生态学报,2008,19(12):2611-2617
    71.魏新增,何东,江明喜,黄汉东,杨敬元,喻杰.神农架山地河岸带中珍稀植物群落特征.武汉植物学研究,2009,27(6):607-616
    72.魏新增,黄汉东,江明喜,杨敬元.神农架地区河岸带中领春木种群数量特征与空间分布格局.植物生态学报,2008,32(4):825-837
    73.吴迪.丹江口库区植物多样性研究.[硕士学位论文].武汉:华中农业大学,2009
    74.吴征镒.中国植被.北京:科学出版社,1980
    75.吴征镒.中国植物志.北京:科学出版社,2004-2010
    76.吴征镒,孙航,周浙昆,李德铢,彭华.中国种子植物区系地理.北京:科学出版社,2011
    77.吴征镒,王荷生.中国自然地理.北京:科学出版社,1983
    78.吴征镒,周浙昆,李德铢,彭华,孙航.世界种子植物科的分布区类型系统.云南植物研究,2003,25(3):245-257
    79.吴征镒.《世界种子植物科的分布区类型系统》的修订.云南植物研究,2003,25(5):535-538
    80.吴征镒.中国种子植物属的分布区类型.云南植物研究,1991,13(增刊):1-139
    81.萧蒇,刘文治,刘贵华.丹江口库区滩涂与入库支流植被与土壤种子库:水传播潜力探讨.植物生态学报,2011,35(3):247-255
    82.徐文铎,何兴元,陈玮,张粤,李海梅,刘常富.沈阳市区植物区系与植被类型的研究.应用生态学报,2003,12:2095-2102
    83.辛晓平,高琼,李镇清,杨正宇.松嫩平原碱化草地植物群落分布的空间和环境因素分析.植物学报,1999,41(7):775-781
    84.颜兵文,彭重华,胡希军.河岸植被缓冲带规划及重建研究—以长株潭湘江河岸带为例.西南林学院学报,2008,28(1):57-60
    85.杨跃军,孙向阳,王保平.森林土壤种子库与天然更新.应用生态学报,2001,12(2):304-308
    86.应俊生.中国种子植物物种多样性及其分布格局.生物多样性,2001,9(4):393—398
    87.于顺利,蒋高明.土壤种子库的研究进展及若干研究热点.植物生态学报,2003,27(4):552-560
    88.曾立雄,黄志霖,肖文发,雷静品,潘磊.河岸植被缓冲带的功能及其设计与管理.林业科学,2010,46(2):128-133
    89.张力.SPSS在生物统计中的应用.厦门:厦门大学出版社,2008
    90.张玲,李广贺,张旭.土壤种子库研究综述.生态学杂志.2004,23(2):114-120
    91.张庆,牛建明,Buyantuyev Alexander.丁勇,康萨如拉,王凤兰,张艳楠,杨艳,韩砚君.内蒙古短花针茅群落数量分类及环境解释.草业学报,2012,21(1):83-92
    92.张文辉,卢涛,马克明,周建云,刘世梁.岷江上游干旱河谷植物群落分布的环境与空间因素分析.生态学报,2004,24(3):552-559
    93.张智婷,宋新章,肖文发,高宝嘉,郭忠玲.长白山森林不同演替阶段采伐林隙土壤种子库特征.应用生态学报,2009,20(6):1293-1298
    94.赵广琦,崔心红,张群,朱义.河岸带植被重建的生态修复技术及应用.水土保持研究,2010,1:23-29
    95.赵凌平,程积民,万惠娥.土壤种子库研究进展.中国水土保持科学.2008,6(5):112-118
    96.赵警卫,胡彬.河岸带植被对非点源氮、磷以及悬浮颗粒物的截留效应.水土保持通报,2012,32(4):51-55
    97.周睿,胡玉酷,熊颖,王辉,葛剑平,毕晓丽.岷江上游河岸带土地覆盖格局及其生态学解释.植物生态学报,2007,31(1):2-10
    98. Abella S R, Covington W W. Vegetation-environment relationships and ecological species groups of an Arizona Pinus ponderosa landscape, USA. Plant Ecology,2006, 185:255-268
    99. Albrecht H, Eder E, Langbehn T, Tschiersch C. The soil seed bank and its relationship to the established vegetation in urban wastelands. Landscape and Urban Planning,2011,100:87-97
    100.Ali M M. Plant functional types in Lake Nubia in relation to physiogeographic factors. Limnologica,2003,33:305-315
    101.Ali M M. Shoreline vegetation of Lake Nubia, Sudan. Hydrobiologia,2006,570: 101-105
    102.Andersson E, Nilsson C, Johansson M E. Effects of river fragmentation on plant dispersal andriparian flora. Regulated Rivers:Research & Management,2000,16(1): 83-89
    103.Andersson E, Nilsson C. Temporal variation in the drift of plant litter and propagules in a small boreal river. Freshwater Biology,2002,47:1674-1684
    104.Ashton P M S, Harris P G, Thadani R. Soil seed bank dynamics in relation to topographic position of a mixed-deciduous forest in southern New England, USA. Forest Ecology and Management,1998,111:15-22
    105.Assaeed A M, Al-Doss A A. Siuk seed bank of a desert range site infested with Rhazya stricta in Raudhat al-Khafsm, Saudi Arabia. Arid Land Research and Management,2002,16:83-95
    106.Bay R F, Sher A A. Success of Active Revegetation after Tamarix Removal in Riparian Ecosystems of the Southwestern United States:A Quantitative Assessment of Past Restoration Projects. Restoration Ecology,2008,16(1):113-128
    107.Beauchamp V B, Stromberg J C. Changes to herbaceous plant communities on a regulated desert river. River Research and Applications,2008,24:754-770
    108.Bejarano M D, Marchamalo M, de Jalon D G, del Tanago M G. Flow regime patterns and their controllingfactors in the Ebro basin (Spain). Journal of Hydrology,2010, 385(1-4):323-335
    109.Bekker R M, Verweij G L, Smith R E N, Reine R, Bakker J P, Schneider S. Soil seed bank in European grasslands:does land use affect regeneration perspectives? Journal of Applied Ecology,1997,34:1293-1310
    11O.Blom C W P M, Voesenek L A C J. Flooding:the survival strategies of plants. Trends in Ecology & Evolution,1996,11:290-295
    111.Boedeltje G, Bakker J P, Bekker R M, Van Groenendael J M, Soesbergen M. Plant dispersal in a lowland stream in relation to occurence and three specific life-history traits of the species in the species pool. Journal of Ecology,2003,91:855-866
    112.Borcard D, Legendre P, Drapeau P. Partialling out the spatial component of ecological variation. Ecology,1992,73:1045-1055
    113.Bornette G, Amoros C. Disturbance regimes and vegeta-tion dynamics:role of floods in riverine wetlands. Journal of Vegetation Sciences,1996,7:615-622
    114.Bossuyt B, Honnay O. Can the seed bank be used for ecological restoration? An overview of seed bank characteristics in European communities. Journal of Vegetation Science,2008,19:875-884
    115.Boudell J A, Link S O, Johansen JR. Effect of soil microtopography on seed bank distribution in the shrub-steppe. Western North American Naturlalist,2002,62:14-24
    116.Boudell J A, Stromberg J C. Propagule banks:potential contribution to restoration of an impounded and dewatered riparian ecosystem. Wetlands,2008,28:656-665
    117.Brinkmann K, Patzelt A, Dickhoefer U, Schlecht E, Buerkert A. Vegetation patterns and diversity along an altitudinal and a grazaing gradient in the Jabal al Akhdar mountain range of northern Oman. Journal of Arid Environment,2009,73: 1035-1045
    118.Britton D L, Brock M A. Seasonal germination from wetland seed banks. Marine Freshwater Research,1994,45:1445-1458
    119.Brooker R W. Plant-plant interactions and environmental change. New Phytologist, 2006,171 (2):271-284
    120.Burkart M. River corridor plants (Stromtalpflanzen) in Central European lowland:a review ofa poorly understood plant distribution pattern. Global Ecology and Biogeography,2001,10(5):449-468
    121.Burley S T, Harper K A, Lundholm JT. Vegetation composition, structure and soil properties across coastal forest-barren ecotones. Plant Ecology,2010,211:279-296
    122.Burton M L, Samuelson L J. Influence of urbanization on riparian forest diversity and structurein the Georgia Piedmont, US. Plant Ecology,2008,195(1):99-115
    123.Capon S J, Brock M A. Flooding, soil seed bank dynamics and vegetation resilience of a hydrologically variable desert floodplain. Freshwater Biology,2006,51:206-223
    124.Capon S J. Flood variability and spatial variation in plant community composition and structure on a large arid floodplain. Journal of Arid Environment,2005,60: 283-302
    125.Capon S J. Plant community responses to wetting and drying in a large arid floodplain. River Research and Applications,2003,19:509-520
    126.Casanova M T, Brock M A. How do depth, duration and frequency of flooding influence the establishment of wetland plant communities? Plant Ecology,2000,147: 237-250
    127.Chambers J C. Seed movements and seedling fates in disturbed sagebrush steppe ecosystems:Impactions for restoration.Ecological Applications,2000,10(5): 1400-1413
    128.Chaturvedi R K, Raghubanshi A S, Singh J S. Effect of small-scale variations in environmental factors on the distribution of woody species in tropical deciduous forests of Vindhyan Highlands, India. Journal of Botany,2011:1-10
    129.Clark C M, Cleland E E, Collins S L, Fargione J E, Gough L, Gross K L, Pennings S C, Suding K N, Grace J B. Environmental and plant community determinants of species loss following nitrogen enrichment. Ecology Letters,2007,10(7):596-607
    130.Clarke K R. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology,1993,18:117-143
    131.Clewell A F, Aronson J. Motivations for the restoration of ecosystems. Conservation Biology,2006,20:420-428
    132.Davis M A, Grime J P, Thompson K. Fluctuating resources in plant communities:a general theory of invisibility. Journal of Ecology,2000,88(3):528-536
    133.Desalegn W, Beierkuhnnlein C. Plant species and growth from richness along altitudinal gradients in the southwest Ethiopian highlands, Journal of Vegetation Science,2010,21:617-626
    134.Dreber N, Oldeland J, van Rooyen G M W. Species, functional groups and community structure in seed banks of the arid Nama Karoo:Grazing impacts and implications for rangeland restoration. Agriculture, Ecosystems and Environment, 2011,141:399-409
    135.Dufrene M, Legendre P. Species assemblages and indicator species:the need for a flexible asymmetrical approach. Ecological monographs,1997,67:345-366
    136.Dynesius M, Jansson R, Johansson M E, Nilsson C. Intercontinental similarities in riparian-plant diversity and sensitivity to river regulation. Ecological Applications, 2004,14(1):173-191
    137.Dynesius M, Nilsson, C. Fragmentation and flow regulation of river systems in the northern third of the world. Science,1994,266:753-762
    138.Fenner M, Thompson K. The Ecology of Seeds. UK:Cambridge University Press, 2005
    139. Fernandez-Alaez C, Fernandez-Alaez M, Garcfa-Criado F. Spatial distribution pattern of the riparian vegetation in a basin in the NW Spain. Plant Ecology,2005,179: 31-42
    140.Foxcroft L C, Parsons M, McLoughlin C A, Richardson D M. Patterns of alien plant distribution in a riverlandscape following an extreme flood. South African Journal of Botany,2008,74(3):463-475
    141.Friedman J M, Osterkamp W R, Scott M L, Auble G T. Downstream effects of dams on channel geometry and bottomland vegetation:regional patterns in the Great Plains. Wetlands,1998,18:619-633
    142.Galatowitsch S M, Richardson D M. Riparian scrub recovery after clearing of invasive alien trees in headwater streams of the Western Cape. Biological Conservation,2005,122:509-521
    143.Gonzalez-Andujar J L. A matrix model for the population dynamics and vertical distribution of weed seed banks. EcologicalModelling,1997,97:117-120
    144.Goodson J M, Gurnell A M, Angold P G, Morrissey I P. Evidence for hydrochory and the deposition of viable seeds within winter flow-deposited sediments:the river Dover, Derbyshire, UK. River Research and Applications,2003,19:317-334
    145.Greet J, Webb J A, Cousens R D. The importance of seasonal flow timing for riparian vegetation dynamics:a systematic review using causal criteria analysis. Freshwater Biology,2011,56:1231-1247
    146.Gregory S V, Swanson F J, McKee W A, Cummins K W. An Ecosystem Perspective of Riparian Zones:Focus on links between land and water. BioScience,1991,41(8): 540-550
    147.Grime J P. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. American Naturalist,1977, 111:1169-1194
    148.Grubb P J. The maintenance of species-richness in plant communities:the importance of the regeneration niche. Biological reviews,1997,52:107-145
    149.Grytnes J A, Vetaas O R. Species-richness and altitude, a comparison between simulation models and interpolated plant species richness along the Himalayan altitudinal gradient, Nepal. The American Naturalist,2002,159:294-304
    150.Grytnes J A. Ecological interpretations of the mid-domain effect. Ecology Letters, 2003a,6:883-888
    151.Grytnes J A. Species-richness patterns of vascular plants along seven altitudinal transects in Norway. Ecography,2003b,26:291-300
    152.Guo Q F, Rundel P W, Goodall D W. Structure of desert seed banks:Comparisons across four North American desert sites. Journal of Arid Environments,1999,42:1-14
    153.Hammer (?), Harper D A T, Ryan P D. PAST:Paleontological statistics software package for education and data analysis. Palaeontologia Electronica,2001,4(1):9
    154.Hampe A, Arroyo J. Recruitment and regeneration in populations of an endangered SouthIberian Tertiary relict tree. Biological Conservation,2002,107(3):263-271
    155.He M Z, Zheng J G, Li X R, Qian Y L. Environmental factors affecting vegetation composition in the Alex Plateau, China. Journal of Arid Environment,2007,69: 473-489
    156.Helfield J M, Capon S J, Nilsson C, Jansson R, Palm D. Restoration of rivers used for timber floating:effects on riparian plant diversity. Ecological Applications,2007,17: 840-851
    157.Hill N M, Keddy P A, Wisheu I C. A hydrological model for predicting the effects of dams on the shoreline vegetation of lakes and reservoirs. Environmental Management, 1998,22:723-736
    158-Hill N M, Keddy P A. Prediction of rarities from habitat variables:coastal plain plants on Nova Scotian lakeshores. Ecology,1992,73:1852-1859
    159.Holmes P M, Esler K J, Richardson D M, Witkowski E T F. Guidelines for improved management ofriparian zones invaded by alien plants in South Africa. South African Journal of Botany,2008,74(3):538-552
    160.Hood G A, Bayley S E. A comparison of riparian plant community response to herbivoryby beavers(Castor canadensis) and ungulates in Canada's boreal mixed-wood forest. ForestEcology and Management,2009,258:1979-1989
    161.James C S, Capon S J, White M G, Raybury S C, Thorns M C. Spatial variability of the soil seed bank in a heterogeneous ephemeral wetland system in semi-arid Australia. Plant Ecology,2007,190:205-217
    162 Janssens F, Peeters A, Tallowin J R B, Bakker J P, Fillat F, Oomes M J M. Relationship between soil chemical factors and grassland diversity. Plant Soil,1998, 202:69-78
    163 Jansson R, Nilsson C, Dynesius M, Andersson E. Effects of river regulation on river-margin vegetation:a comparison of eight boreal rivers. Ecological Applications, 2000,10:203-224
    164.Jansson R, Nilsson C, Renofalt B. Fragmentation of riparian floras in rivers with multiple dams. Ecology,2000b,81:899-903
    165.Jansson R, Zinko U, Merritt D M, Nilsson C. Hydrochory increases riparian plant species richness:acomparison between a free-flowing and a regulated river. Journal of Ecology,2005,93(6):1094-1103
    166.Johansson M E, Nilsson C. Responses of riparian plants to flooding in free-flowing and regulated boreal rivers:an experimental study. Journal of Applied Ecology,2002, 39:971-986
    167.Keddy P A, Reznicek A A. Great Lakes vegetation dynamics:the role of fluctuating water levels and buried seeds. Great Lakes Research,1986,12:26-36
    168.Kinley T A, Newhouse N J. Relationship of riparian reserve zone width to bird density and diversity in southeastern British Columbia. Northwest Science,1997,71 (2):75-86
    169.Kinloch J E, Friedel M H. Soil seed reserves in arid grazing lands of central Australia. Part 1:Seed bank and vegetation dynamics. Journal of Arid Environments,2005,60 (1):133-161
    170.Kown G J, Lee B A, Nam J M, Kim J G. The relationship of vegetation to environmental factors in Wangsuk stream and Gwarim reservoir in Korea:II. Soil environments. Ecological Research,2007,22:75-86
    171.Langendoen E J, Lowrance R R, Simon A. Assessing the impact of riparian processes onstreambank stability. Ecohydrology,2009,2(3):360-369
    172.LaPaix R, Freedman B. Vegetation Structure and Composition within Urban Parks of Halifax Regional Municipality, Nova Scotia, Canada. Landscape and Urban Planning, 2010,98:124-135
    173.Lee B A, Kwon G J, Kim J G. The relationship of vegetation and environmental factors in Wangsuk Stream and Gwarim Reservoir:I. Water Environments. The Korean Journal of Ecology,2005,28:365-373
    174.Leps J, Smilauer P. Multivariate Analysis of Ecological Date using CANOCO. Cambridge University Press, Cambridge, MA.2003
    175.Lichter J. Primary succession and forest development on coastal lake Michigan sand dunes. Ecological Monographs,1999,68:487-510
    176.Liu W Z, Zhang Q F, Liu G H. Seed banks of a river-reservoir wetland system and theirimplications for vegetation development. Aquatic Botany,2009,90(1):7-12
    177.Lomolino M V. Elevation gradients of species-richness, historical and prospective views. Global Ecology and Bio geography,2001,10:3-13
    178.Lu Z J, Li L F, Jiang M X, Huang H D, Bao D C. Can the soil seed bank contribute to revegetation of the drawdown zone in the Three Gorges Reservoir Region? Plant Ecology,2010,209:153-165
    179.Lyon J, Gross N. Patterns of plant diversity and plant-environmental relationships across three riparian corridors. Forest Ecology and Management,2005,204:267-278
    180.Mallik A U, Richardson JS. Riparian vegetation change in upstream and downstream reachesof three temperate rivers dammed for hydroelectric generation in British Columbia, Canada.Ecological Engineering,2009,35(5):810-819
    181.Martin T J, Ogden J. The seed ecology of Ascarina lucida:A rare New Zealand tree adapted to disturbance. New Zealand Journal of Botany,2002,40 (3):397-404
    182.Matus G, Papp M, Tothmeresz B. Impact of management on vegetation dynamics and seed bank formation of inland dune grassland in Hungary. Flora,2005,200:296-306
    183.McCully P. Silenced Rivers. The Ecology and Politics of Large Dams. Zed Books, London.1996
    184.McCune B, Mefford M J. PC-ORD:Multivariate Analysis of Ecological Data, Version 5.0. MjM Software Design, Gleneden Beach, Oregeon, USA.1999
    185.McGraw J B, Vavrek M C. The role of buried viable seeds in Arctic and alpine plant communities. Ecology of Soil SeedBanks. New York:Academic Press,1989,91-106
    186.Mejias J A, Arroyo J, Maralon T. Ecology and biogeography of plant communities associated with the post Plio-Pleistocene relict Rhododendron ponticum subsp. baeticum in southern Spain. Journal of Biogeography,2007,34(3):456-472
    187.Meng B, Wang J F. A review on the methodology of scaling with geo-data. Acta Geographica Sinica,2005,60(2):277-288
    188.Merritt D M, CooperD J. Riparian vegetation and channel change in response to river regulation:a comparative study of regulated and unregulated streams in the Green River Basin, USA. Regulated Rivers:Research and Management,2000,16:543-564
    189.Merritt D M, Wohl E E. Plant dispersal along rivers fragmented by dams. River Research and Application,2006,22(1):1-26
    190.Merritt D M, Wohl E E. Processes governing hydrochory along rivers:hydraulics, hydrology, and dispersal phenology. Ecological Applications,2002,12(4):1071-1087
    191.Middleton B A. Soil seed banks and the potential restoration of forested wetlands after farming. Journal of Applied Ecology,2003,40:1025-1034
    192.Moerke A H, Lamberti G A. Restoring stream ecosystems:lessons from a Midwestern State. Restoration Ecology,2004,12:327-334
    193.Moggridge H L, Gurnell A M. Hydrological controls on the transport and deposition of plantpropagules within riparian zones. River Research and Applications,2010, 26(4):512-527
    194.Montreuil O, Merot P, Marmonier P. Estimation of nitrate removal by riparian wetlands andstreams in agricultural catchments:effect of discharge and stream order. Freshwater Biology,2010,55(11):2305-2318
    195.Murray B R, Rice B L, Keith D A, MyerscoughP J, Ho well J, Floyd A G, Mills K,Westoby M. Species in the tail of rank-abundance curves. Ecology,1999,80: 1806-1816
    196.Naiman R J, Decamps H. The ecology of interfaces:riparian zones. Annual review of ecology and systematics,1997,28:621-658
    197.New T, Xie Z. Impacts of large dams on riparian vegetation:applying global experience to the case of China's Three Gorges Dam. Biodiversity Conservation, 2008,17:3149-3163
    198.Nicol J, Ganf G G. Water regimes, seedling recruitment and establishment in three wetland plant species. Marine and freshwater research,2000,51:305-309
    199.Niggemann M, Jetzkowitz J, Brunzel S, Wichmann M C, Bialozyt R. Distribution patterns of plants explained by human movement behavior. Ecological Modelling, 2009,220(9):1339-1346
    200.Nilsson C, Berggrea K. Alterations of riparian ecosystems caused by river regulation. Bioscience,2000,50(9):783-793
    201.Nilsson C, Brown R L, Jansson R, Merritt D M. The role of hydrochory in structuring riparian andwetland vegetation. Biological Reviews,2010,85(4):837-858
    202.Nilsson C, Ekblad A, Dynesius M, Backe S, Gardfjell M, Carlberg B, Hellqvist S, Jansson R. A comparison of species richness and traits ofriparian plants between a main river channel and its tributaries. Journal of Ecology,1994,82(2):281-295
    203.Nilsson C, Ekblad A, Gardfjell M, Carlberg B. Long-term effects of river regulation on river margin vegetation. Journal of Applied Ecology,1991,28:963-987
    204.Nilsson C, Grelsson G, Johansson M, Sperens U. Patterns of plant species richness along riverbanks. Ecology,1989,70(1):77-84
    205.Nilsson C, Jansson R, Zinko U. Long-term responses of river-margin vegetation to water-level regulation. Science,1997,276:798-800
    206.Nilsson C, Jansson R. Floristic differences between riparian corridors of regulated and free-flowing boreal rivers. Regulated Rivers:Research and Management,1995, 11(1):55-66
    207.Nilsson C, Svedmark M. Basic principles and ecological consequences of changing water regimes:riparian plant communities. Environment Management,2002,30(4): 468-480
    208.Olano J M, Caballero I, Laskurain N A, Loidi J, Escudero A. Seed bank spatial pattern in a temperate secondary forest. Journal of Vegetation Science,2002,13(6): 775-784
    209.Osawa T, Mitsuhashi H, Ushimaru A. River confluences enhance riparian plant species diversity. Plant Ecology,2010,209:95-108
    210 .Oswald A, Ransom J K. Striga control and improved farm productivity using crop rotation. Crop Protection,2001,20:113-120.
    211.Paine L K, Ribic C A. Comparison of riparian plant communities under four land management systems in southwestern Wisconsin. Agriculture, Ecosystems and Environment,2002,92(1):93-105
    212.Parker V T, Kelly V R. Seed banks in California chaparral and other Mediterranean climate shrublands. Ecology of Soil Seed Banks. New York:Academic Press,1989, 231-255
    213.Pekrum C, Lane P W, Lutman P J W. Modelling seedbank dynamics of volunteer oilseed rape (Brassica napus). Agricultrual Systems,2005,84:1-20
    214.Pennington D N, Hansel J R, Gorchov D L. Urbanization and riparian forest woody communities:Diversity, composition, and structure within a metropolitan landscape. Biological Conservation,2010,143(1):182-194
    215.Peterson J E, Baldwin A H. Seedling emergence from seed banks of tidal freshwater wetlands:response to inundation and sedimentation. Aquatic Botany,2004,78: 243-254
    216.Pinke G, Karacsony P, Crucz B, Botta-Dukat Z, Lengyel A. The influence of environmental, management and site context on species composition of summer arable weed vegetation in Hungary. Applied Vegetation Science,2012,15:136-144
    217.Plassmann K, Brown N, Jones M L M, Edwards-Jones G. Can soil seed banks contribute to the restoration of dune slacks under conservation management? Applied Vegetation Science,2009,12:199-210
    218.Poff N L, Olden J D, Merritt D M, Pepin D M. Homogenization of regional river dynamics by damsand global biodiversity implications. Proceedings of the National Academy of Sciences ofthe United States of America,2007,104(14):5732-5737
    219.Prach K, Bartha S, Joyce C B, Pysek P, van Diggelen R, Wiegleb G. The role of spontaneous succession in ecosystem restoration:a perspective. Applied Vegetation Science,2001,4:111-114
    22O.Prins N, Holmes P M, Richardson D M. A reference framework for the restoration of riparian vegetation in the Western Cape, South Africa, degraded by invasive Australian Acacias. South African Journal of Botany,2005,70:767-776
    221.Rad J E, Shafiei A B. The distribution of ecological species groups in Fagetum communities of Caspian forests:Determination of effective environmental factors. Flora,205,11:721-727
    222.Revenga C, Brunner J, Henninger N, Kassem K, Payne A. Pilot Analysis of Global Ecosystems. Freshwater Systems. World Resources Institute, Washington, DC.2000
    223.Rice K. Impacts of seed banks on grassland community structure and population dynamics. Ecology of Soil Seed Banks. NewYork:Academic Press,1989,211-230
    224.Richardson D M, HolmesP M, Esler K J, Galatowitsh S M, Stromberg J C, Kirkman S P, Pysek P, Hobbs R J. Riparian vegetation:degradation, alien plant invasions, and restoration prospects. Diversity and Distribution,2007,13(1):126-139
    225.Richardson J S, Taylor E, Schluter D, Pearson M, Hatfield T. Do riparian zones qualify as critical habitat forendangered freshwater fishes? Canadian Journal of Fisheries and Aquatic Sciences,2010,67(7):1197-1204
    226.Riis T, Hawes I. Relationship between water level fluctuations and vegetation diversity in shallow water of New Zealand lakes. Aquatic Botany,2002,74:133-148
    227.Roberts H A. Seed banks in soils:reserves of viable seeds present in the soil and on its surface. Advances in Applied Biology,1981,6:1-55.
    228.Roberts J. Riverbanks, plants and water management.1-7. In:Roberts, J.& Oliver, R., The Murrumbidgee, Past and Present. CSIRO Water Resources, Griffith.1994
    229.Rodewald A D, Bakermans M H. What is the appropriate paradigm for riparian forest conservation? Biological Conservarion,2006,128(2):193-200.
    230.Roem W J, Berendse F. Soil acidity and nutrient supply ratio as possible factors determining changes in plant species diversity in grassland and heathland communities. Biological Conservation,2000,92:151-161
    231.Sabo J L, Sponseller R, Dixon M, Gade K, Harms T, Heffernan J, Jani A, Katz G, Soykan C, Watts J, Welter J. Riparian zones increase regional species richness byharboring different, not more, species. Ecology,2005,86(1):56-62
    232.Sang W G. Plant diversity patterns and their relationships with soil and climate factors along an altitudinal gradient in the middle Tianshan Mountain area, Xinjiang, China, Ecological Research,2009,24:303-314
    233.Sarah J. Effects of water level and phosphorus enrichment on seedling emergence from marsh seed banks collected from northern Beliza. Aquatic Botany,2004,79: 311-323
    234.Sarr D A, Hibbs D. Multiscale controls on woody plant diversity in western Oregon riparian forests. Ecological Monographs,2007,77(2):179-201
    235.Schnitzler A, Haleb B W, Alsumc E M. Examining native and exotic species diversity in European riparian forests. Biological Conservation,2007,138:146-156
    236.Shaukat S S, Siddiqui I A. Spatial pattern analysis of seeds of an arable soil seed bank and its relationship with above-groundvegetation in an arid region. Journal of Arid Environments,2004,57:311-327
    237.Sieben E J J, Mucina L, Boucher C. Scaling hierarchy of factors controlling riparian vegetation patterns of the Fynbos Biome at the Western Cape, South Africa. Journal of Vegetation Science,2009,20:17-26
    238.Silvertown J W. Introduction to Plant Population Ecology. New York:Longman Group Limited,1982
    239.Simon A, Collison A J C. Quantifying the mechanical and hydrologic effects of riparianvegetation on streambank stability. Earth Surface Processes and Landforms, 2002,27(5):527-546
    240.Simpson R L, Lerck M A, Parker V T. Ecology of Soil Seed Banks. New York: Academic Press,1989
    241.Smith S M, McCormick P V, Leeds J A, Garrett P B. Constraints of seed bank species composition and water depth for restoring vegetation in the Florida Everglades, USA. Restoration Ecology,2002,10:138-145
    242.Strayer D L, Beighley R E, Thompson L C, Brooks S, Nilsson C, Pinay G, Naiman R J. Effects of land cover on stream ecosystems:roles of empirical models and scaling issues. Ecosystems,2003,6(5):407-423
    243.Stromberg J C, Tiller R, Richter B. Effects of groundwater decline on riparian vegetation of semiarid regions:the San Pedro, Arizona. Ecological Applications, 1996,6(1):113-131
    244.Stromberg J C. Growth and survivorship of Fremont cottonwood, Goodding wilow and salt cedar seedlings after large floods in central Arizona. Western North American Naturalist,1997,57(3):198-208
    245.Sturtevant B R. A model of wetland vegetation dynamics in simulated beaverimpoundments. Ecological Modeling,1998,112:195-225
    246.Suding K N, Gross K L, Houseman G R. Alternative states and positive feedbacks in restoration ecology. Trends in Ecology & Evolution,2004,19,46-53
    247.Sunil C, Somashekar R K, Nagaraja B C. Riparian vegetation assessment of Cauvery River Basin of South India, Environmenta Monitor Assessment,2010,170:545-553.
    248.Suzuki W, Osumib K, Masaki T, Takahashi K, Daimaru H, Hoshizaki K. Disturbance regimes and community structures of a riparian and an adjacent terrace stand in the Kanumazawa Riparian Research Forest, northern Japan. Forest Ecology and Management,2002,157:285-301
    249.Sweeney B W, Czapka S J, Yerkes T. Riparian forest restoration:increasing success by reducing plant competition and herbivory. Restoration Ecology,2002,10:392-400
    250.Symonides E. Seed bank in old-field successional ecosystems. Ekologia Polska, 1986,34:3-29
    251.Tabacchi E. Structural variability and invasions of pioneer plant communities in riparian habitats of the middle Ardour River (SW France). Canadian Journal of Botany,1995,73:33-44
    252.Takahashi M, Nakamura F. Impacts of dam-regulated flows on channel morphology and riparian vegetation:a longitudinal analysis of Satsunai River, Japan. Landscape and Ecological Engineering,2011,7:65-77
    253.Tealdi S, Camporeale G, Ridolfi L. Modeling the impact of river damming on riparian vegetation. Journal of Hydrology,2011,396:302-312
    254.ter Braak C J F, Smilauer P. CANOCO reference manual and CanoDraw for windows user's guide:software for canonical community ordination (version 4.5). Micro-computer Power, Ithaca.2002.
    255.Thompson K, Grime J P. Seasonal variation in the seed banks of herbaceous species in ten contrasting habitats. Journal of Ecology,1979,67:893-922
    256.Thompson K. The occurrence of buried viable seeds in relation to environmental gradients. Journal of Biogeography,1978,5:425-430
    257.Toner M, Keddy P. River hydrology and riparian wetlands:a predictive model for ecological assembly. Ecological Applications,1997,7:236-241
    258.Utrilla V R, Brizuelac M A, Cibils A F. Structural and nutritional heterogeneity of riparian vegetation in Patagonia (Argentina) in relation to seasonal grazing by sheep. Journal of Arid Environments,2006,67:661-670
    259.Van den Brink F W B, van der Velde G, Bossman W W, Coops H. Effects of substrate parameters on growth responses of eight helophyte species in relation to flooding. Aquatic Botany,1995,50:79-97
    260.Vecrin M P, Grevilliot F, Muller S. The contribution of persistent soil seed banks and flooding to the restoration of alluvial meadows. Journal of Nature Conservation,2007, 15:59-69
    261.Venable D L, Brown J S. The selective interactions of dispersal, dormancy, and seed size as adaptations for reducing risk in variable environments. American Naturalist, 1988,131:360-384
    262. Vetaas O R, Grytnes J A. Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Global Ecology and Biogeography,2002,11:291-301
    263.Warr S J, Thompson K, Kent, M. Seed banks as a neglected area of biogeographic research:a review of literature and sampling techniques. Progress in Physical Geography,1993,1:329-347
    264.Washitani I. Plant conservation ecology for management and restoration of riparian habitats of lowland Japan. Population Ecology,2001,43:189-195
    265.Wei X, Jiang M, Huang H, Yang J, Yu J. Relationships between environment and mountain riparian plant communities associated with two rare tertiary-relict tree species, Euptelea pleiospermum (Eupteleaceae) and Cercidiphyllum japonicum (Cercidiphyllaceae). Flora,2010,205:841-852
    266.White E, Tucker N, Meyers N, et al. Seed dispersal to revegetated isolated rainforest patches in North Queensland. Forest Ecology and Management,2004,192(2-3): 409-426
    267.Wilcox D A, Meeker J E. Disturbance effects on aquatic vegetation in regulated and unregulated lakes in northern Minnesota. Canadian Journal of Botany,1991,69: 1542-1551
    268.Williams L, Reich P, Capon SJ, Raulings E. Soil seed banks of degraded riparian zones in southeastern Australia and their potential contribution to the restoration of understory vegetation. River Research and Applications,2008,24:1002-1017
    269.Willms W D, Quinton D A. Grazing effects on germinable seeds on the fescue prairie. Journal of Range Management,1995,48:423-430
    270.Wisheu I C, Keddy P A. Seed banks of a rare wetland plant community:distribution patterns and effects of human-induced disturbance. Journal of Vegetation Science, 1991,2:181-188
    271.Yang J, Dilts T, Condon L, Turner P, Weisberg P. Longitudinal-and transverse-scale environmental influences on riparian vegetation across multiple levels of ecological organization. Landscape Ecology,2011,26:381-395
    272.Yu S, Bell D, Stemberg M, Kutiel P. The effect of microhabitats on vegetation and its relationships with seedings and soil bankin a Mediterranean coastal sand dune community. Journal of Arid Environments,2008,72:2040-2053
    273.Zare S, Jafari M, Tavili A, Abbasi H, Rostampour M. Relationship between environmental factors and plant distribution in arid and semiarid area (Case study: Shahriyar Rangrlands, Iran). American-Eurasian Journal of Agriculture and Environment Science,2011,10(1):97-105

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700