用户名: 密码: 验证码:
不同营养条件下萘和菲对小球藻的毒性效应及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水体富营养化加剧不仅会造成水华和赤潮,影响水体的生态系统和使用功能,也会影响污染物对水生生物的毒性。多环芳烃(Polycyclic Aromatic Hydrocarbons, PAHs)是一类在环境中普遍存在的具有三致效应的持久性有机污染物,研究水体富营养状态对PAHs的毒性效应,可为制定科学合理的水质标准提供理论依据。本文选择淡水和海水中分布都非常广泛的小球藻(Chlorella sp.)作为目标生物,研究了不同氮磷浓度水平及不同碳源条件下,萘和菲对小球藻的毒性效应及相关机理,取得了以下有价值的研究结果:
     (1)探明了开放体系不同营养条件下,萘对淡水蛋白核小球藻和海水普通小球藻的毒性效应及相关机理。富营养可增强萘对小球藻的毒性,但随着水体中萘的浓度降低,富营养条件下小球藻易从萘的胁迫中恢复。水体富营养条件下,低浓度萘(5和10 mg/L)可促进蛋白核小球藻的生长,高浓度萘(100 mg/L)则抑制其生长。富营养条件下萘毒性相对较大。经100 mg/L萘处理24小时后,富营养条件下蛋白核小球藻结构破坏严重,细胞膜和核膜溶解,细胞质聚集呈颗粒状,而贫营养条件小球藻具有完整的细胞核和核膜;经过100 mg/L萘处理7天后,富营养条件下蛋白核小球藻已从萘的毒害中恢复,具有典型、完整的细胞结构,贫营养条件下藻细胞结构破坏严重,细胞核不完整。
     (2)探明了密闭体系不同碳源条件下,萘对淡水蛋白核小球藻的毒性效应及相关机理。有机碳增强了萘和菲对小球藻的毒性。有机碳培养条件下PAHs对小球藻有更大的抑制率。添加碳源均加快小球藻的生长,使小球藻的蛋白核体积减小,叶绿素比值增大。有机碳培养条件下蛋白核小球藻淀粉粒增多,生长更快,生物量更大,对萘的代谢更快。经高浓度PAHs(萘20 mg/L,菲1.2 mg/L)染毒处理,无机碳培养条件与有机碳培养条件相比,小球藻细胞结构破坏较轻,其机理是:无机碳培养条件下的小球藻细胞壁增厚,阻碍了对萘的吸收,而PAHs的毒性主要是在代谢过程中产生的,小球藻对无机碳的利用需要消耗更多的能量,故用来代谢PAHs的能量就较少,毒性也就较弱。
Eutrophication could not only cause red tide and water bloom pollution, affecting the ecosystem and application of water bodies, but also affect the toxicity of pollutants. PAHs were a serious of persistent organic pollutants being ubiquitous in water. To study the effect of eutrophication on the toxicity of PAHs may give some references in setting the concentration criteria for the water quality standard in future.
     For their widely distributing in water body, Chlorella pyrenoidosa and Chlorella vulgaris were selected as target organism to study the toxicity of naphthalene and phenanthrene under different nutrient conditions, and relevant mechanism was discussed in this study. Some useful information was listed below:
     (1) The toxicity of naphthalene to freshwater C. pyrenoidosa and marine C. vulgaris under different nutrient conditions (N,P-enriched and N,P-starved condition) were studied in open system. For C. vulgaris, naphthalene inhibited the growth in all treated groups, and enriched medium enhanced the inhibitory rate. For C. pyrenoidosa, enriched N,P reduced the inhibitory rate at lower naphthalene initial concentration of 5 and 10 mg/L, but enhanced it at the higher concentration of 100 mg/L, at which more severe untrastructural damages were found than those under N,P-starved condition, involving partly or totally disappearance of nucleolus, nuclear and plasma membrane. MDA and chlorophyll contents showed that naphthalene was more toxicity in N,P-enriched condition compared to N,P-starved condition.
     (2) The toxicity of naphthalene and phenanthrene to freshwater C. pyrenoidosa under different condition of carbon resource (2 g/L NaHCO3 and glucose with same TC content) were studied in sealed system. Naphthalene and phenanthrene enhanced the inhibitory rate of C. pyrenoidosa in inorganic carbon (IC)-enriched medium compared to those in organic carbon (OC)-enriched medium. Supplement of OC enhanced the growth, chlorophyll content and chlorophyll a:b of C. pyrenoidosa compared to supplement of IC. Cell wall became thicker in IC-enriched medium, while starches increased obviously in OC-enriched medium. Naphthalene and phenanthrene both enhanced the accumulation of starches. Ultra-structure of C. pyrenoidosa showed that algal cells were destroyed more seriously in OC-enriched medium.20 mg/L naphthalene killed C. pyrenoidosa in OC-enriched medium while it didn't in IC-enriched medium.1.2 mg/L phenanthrene did not kill the algae in both IC and OC-enriched medium.
引文
[1]Neff J M. Polycyclic Aromatic Hydrocarbons in the Aquatic Environment. Sources, Fates and Biological Effects [M]. London, Applied Science Publishers Ltd,1979
    [2]Krylov S N, Huang X D, Zeiler L F, Dixon D G., Greenberg B M. Mechanistic quantitative structure-activity relationship model for the photoinduced toxicity of polycyclic aromatic hydrocarbons:Ⅰ. Physical model based on chemical kinetics in a two-compartment system [J]. Environmental Toxicology and Chemistry,1997,16 (11):2283-2295
    [3]Blumer M. Polycyclic aromatic compounds in nature [J]. Scientific American, 1976,234(3):34-35
    [4]刘世亮,骆永明,曹志洪,丁克强,蒋先军.多环芳烃污染土壤的微生物与植物联合修复研究进展[J].土壤,2002,34(5):257-265
    [5]邓红梅.西江流域水体有机污染物及大分子有机质的研究[博士论文].广州,中国科学院广州地球化学研究所,2006
    [6]陆豪.杭州市空气中PAHs的污染特征及源汇机制[博士论文].杭州,浙江大学,2008
    [7]王静.杭州市空气中PAHs污染源及归宿研究[博士论文].杭州,浙江大学,2004
    [8]Weng M L, Zhu L Z, Yang K, Chen S G. Levels and health risks of carbonyl compounds in selected public places in Hangzhou, China [J]. Journal of Harzardus Materials.2009,164(2-3):700-706
    [9]De-Voogt P, Van-Hattum P B, Leonards P. Toxic effects of polycyclic aromatic hydroearbons in the guppy (Poecilia reticulale) [J]. Aquatic Toxicology,1991, 20:169-194
    [10]Braud-Grasset F, Baud-Grasset S, Safferman S I. Evaluation of the bioremediation of a contaminated soil with phytotoxicity tests [J]. Chemosphere, 1993,26(7):1365-1374
    [11]Lepsis J, Blanke M M. Environmental effects, phytotoxicity and breakdown of tar oil from impregnated tree stakes [C]. Proceedings of the Eighth International Symposium on Canopy, Rootstocks and Environmental Physiology in Orehard Systems. Book Series:Acta Hortieulturae,2007,732:653-657
    [12]Oleszezuk P. Phytotoxicity of municipal sewage sludge composts related to physico-chemical properties, PAHs and heavy metals [J]. Ecotoxicology and Environmental Safety,2008,69(3):496-505
    [13]Flocco C G, Lobalbo A, Carranza M P, Bassi M, Giulietti A M, Cormack W M. Some physiological, microbial, and toxicological aspects of the removal of phenanthrene by hydroponic cultures of alfalfa (Medicago sativa L.) [J]. International Journal of Phytoremediation,2002,4(3):169-186
    [14]刘建武,林逢凯,王郁.多环芳烃(萘)污染对水生植物生理指标的影响[J].华东理工大学学报.2002,28(5):520-524
    [15]Song Y F, Gong P, Zhou Q X. Phytotoxicity assessment of phenanthrene, pyrene and the mixtures by a soil-based seedling emergence test [J]. Journal of Environmental Sciences, 2005,17(4):580-583
    [16]Bennett A, Bianchi T S, Means J C, Carman Kevin R. The effects of polycyclic aromatic hydrocarbon contamination and grazing on the abundance and composition of microphytobenthos in salt marsh sediments (Pass Fourchon, LA)-I. A microcosm experiment [J]. Journal of Experimental Marine Biology and Ecology,1999,242:1-20
    [17]Rimet F, Ector L, Dohet A, Cauchie H M. Impacts of fluoranthene on diatom assemblages and frustule morphology in indoor microcosms [J]. Vie Et Milieu-Life and Environment,2004,54(2-3):145-156
    [18]Marwood C A, Smith R E H, Solomon K R, Charlton M N, Greenberg B M. Intact and photomodified polycyclic aromatic hydrocarbons inhibit photosynthesis in natural assemblages of Lake Erie phytoplankton exposed to solar radiation [J]. Ecotoxicology and Environmental Safety,1999,44:322-327
    [19]Duxbury C L, Dixon D G, Greenberg B M. Effects of simulated solar radiation on the bioaccumulation of polycyclic aromatic hydrocarbons by the duckweed Lemma gibba [J]. Environmental Toxicology and Chemistry,1997,16: 1739-1748
    [20]Kelly S A, Havrilla C M, Brady T C, Abramo K H, Levin E D. Oxidative stress in toxicology:established mammalian and emerging piscine model systems [J]. Environmental Health Perspective,1998,106:375-384
    [21]于娟,唐学玺,张培玉,董双林.CO2加富对两种海洋微绿藻的生长、光合作用和抗氧化酶活性的影响[J].生态学报,2005,25(2):197-202
    [22]周立明,孟祥红,肖慧,唐学玺.3种多环芳烃和UV-B辐射对3种赤潮微藻生长的作用[J].武汉大学学报(理学版),2006,52(6):773-777
    [23]Djomo J E, Dauta A, Ferrier V. Toxic effects of some major polyaromatic hydrocarbons found in crude oil and aquatic sediments on Scenedesmus subspicatus [J]. Water Research,2004,38(7):1817-1821
    [24]Hutchinson T C, Hellebust J A, Mackay D, Tam D, Kauss P. Relationship of hydrocarbon solubility to toxicity in algae, celluar membrane effects [C]. Oil Spill Conference American Petroleum Institute, Washington DC,1979,541
    [25]Xu S Y, Chen Y. X, Wu W X. Protein changes in response to pyrene stress in maize(Zea mays L.) leaves [J]. Journal of Integrative Plant Biology,2007, 49(2):187-195
    [26]Bopp S K, Lettleri T. Gene regulation in the marine diatom Thalassiosira pseudonana upon exposure to poly cyclic aromatic hydrocarbons (PAHs) [J]. Gene,2007,396(2):293-302
    [27]Perona E, Marco E, Orus M I. Alteration of dinitrogen fixation and metabolism in cyanobacterium Anabaena PCC 7119 by phosphamidon [J]. Environmental and Botnay,1991,31(4):479-488
    [28]Tian S Z, Liu Z, Weng J, Zhang Y Y. Growth of Ghlorella vulgans in cultures with low concentration dimethoate as source of phosphorus [J]. Chemosphere, 1997,35(11):2713-2718
    [29]沈国兴,严国安,彭金良.农药对藻类的生态毒学研究Ⅱ[J].环境科学进展,1999,7(6):131-140
    [30]Wei L P, Yu H X, Sun Y, Fen J F, Wang L S. The effects of three sulfuronylurea herbicides and their degradation products on the green algae Chlorella Pyrenoidosa [J]. Chemosphere,1998,37 (4):747-751
    [31]唐学玺,李永棋.对硫磷对三角褐指藻核酸和蛋白质合成动态的影响[J].生态学报,2000,20(4):598-600
    [32]谢荣,唐学玺,李永棋.丙溴磷影响海洋微藻生长机理的初步研究[J].环境科学学报,2000,20(4):473-477
    [33]Mohapatra P K, Schubert H, Schiewer U. Effect of dimethoate on photosynthesis and pigment fluorescence of Synechocystis sp PCC 6803 [J]. Ecotoxicology and Enviromnental Safety,1997,36:231-237
    [34]Kong Q X, Zhu L L, Shen X Y. The toxicity of naphthalene to marine Chlorella vulgaris under different nutrient conditions [J]. Journal of Hazardous materials, 2010,178(1-3):282-286
    [35]Mohapatra P K, Mohanty R C. Growth pattern changes of Chlorella vulgaris and Anabaena doliolum due to toxicity of dimethoate and endosulfan. [J]. Bulletin of Environment Contamination and Toxicology,1992,49:576-581
    [36]Schoeny R, Cody T, Warshawsky D, Radike M. Metabolism of mutagenic poly cyclic aromatic hydrocarbons by photosynthetic algal species [J]. Mutation Research,1988,197:289-302
    [37]Lei A P, Hu Z L, Wong Y S, Tam N F Y. Removal of fluoranthene and pyrene by different microalgal species [J]. Bioresource Technology,2007,98 (2): 273-280.
    [38]Cerniglia C E, Gibson D T, Van Baalen C. Algal oxidation of aromatic hydrocarbons:formation of 1-naphthol from naphthalene by Agmenellum quadruplicatum strain PR-6 [J]. Biochemical and Biophysical Research Communications,1979,88:50-58
    [39]Cerniglia C E, Gibson D T, Van Baalen C. Oxidation of naphthalene by cyanobacteria and microalgae [J]. Journal of General Microbiology,1980a,116: 495-500
    [40]Cerniglia C E, Van Baalen C, Gibson D T. Metabolism of naphthalene by cyanobacterium, Oscillatona sp, strain JCM [J]. Journal of General Microbiology,1980b,116:485-494
    [41]Narro M L, Cerniglia C E, Van Baalen C, Gibson D T. Evidence of NIH shift in naphthalene oxidation by the marine cyanobacterium, Oscillatoria species strain JCM [J]. Applied Environmental Microbiololgy,1992a,58:1360-1363
    [42]Narro M L, Cerniglia C E, Van Baalen, Gibson D T. Metabolism of phenanthrene by the marine cyanobacterium Agmenellum quadruplicatum, strain PR-6 [J]. Applied Environmental Microbiololgy,1992b,58:1351-1359
    [43]Warshawsky D, Radike M, Jayasimbulu K, Cody T. Metabolism of benza[a]pyrene by a dioxygenase enzyme system of the freshwater green alga Selanastum capricornutum [J]. Biochemical and Biophysical Research Communications,1988,152:479-484
    [44]Warshawsky D, Keenan TM, Reilman R, Cody TE & Radike MJ. Conjugation of benzo[a]pyrene metabolites by the freshwater green alga Selenastrum capricornutum [J]. Chemico-Biological Interactions,1990,73:93-105
    [45]Hong Y W, Yuan D X, Lin Q M, Yang T L. Accumulation and biodegradation of phenanthrene and fluoranthene by the algae enriched from a mangrove aquatic ecosystem [J]. Marine Pollution Bulletin,2008,56 (8):1400-1405
    [46]Ueno R, Ureno N, Wada S. Synergistic effect of cell immobilization in polyurethane foam and use of thermotolerant strain on mixed hydrocarbon substrate by Prototheca zopfii [J]. Fisheries Science,2006,72:1027-1033
    [47]Ueno R, Wada S, Ureno N. Repeated batch culture of hydrocarbon-degrading, micro-algal strain Prototheca zopfii RND16 immobilized in polyurethane foam [J]. Canadian Journal of Microbiology,2008,54:66-70
    [48]章俭,夏春谷.芳香烃双加氧酶的结构与功能研究[J].化学进展,2004,16(1):116-122
    [49]周鑫淼,陈洁君,耿立召,李丹花,陈明,林敏.邻苯二酚2,3-双加氧酶的结构和功能研究进展[J].生物技术通报,2007,4:51-54
    [50]Cerniglia C E, Gibson D T, Van Baalen C. Aromatic hydrocarbon oxidation by diatoms isolated from the Kachemak Bay region of Alaska [J]. Journal of General Microbiology,1982,128:987-990
    [51]Denissenko M F, Pao A, Tang M. Preferential formation of benzo (a) pyrene adducts at lung cancer mutational hotspots in P53 [J]. Science,1996,274: 430-432
    [52]Peters C A, Knightes C D, Brown D G. Long-term composition dynamics of PAH-containing NAPLs and implications for risk assessment [J]. Environmental Science and Technology,1999,33(24),4499-4507
    [53]Carls M G, Holland L, Larsen M, Collier T K, Scholz N L, Incardona J P. Fish embryos are damaged by dissolved PAHs, not oil particles [J]. Aquatic Toxicology,2008,88(2):121-127
    [54]Wodzinski R S, Bertolini D. Physical state in which naphthalene and bibenzyl are utilized by bacteria [J]. Applied Microbiology,1972,23:1077-1081
    [55]Wodzinski R S, Coyle J E. Physical state of phenanthrene for utilization by bacteria [J]. Applied Microbiology,1974,27:1081-1084
    [56]Sikkema J, de Bont J A M, Poolman B. Mechanisms of membrane toxicity of hydrocarbons [J]. Microbiology and Molecular Biology Reviews,1995,59(2): 201-222
    [57]Jentsch A B. Uber die Einwirkung des Leuchtgases und seiner Bestandteile auf Bakterien und Schimmelpilze [J]. Zentralbl. Bakteriol. Parasitenkd. Infektionskr.Hyg.Abt.1921,53:130-131
    [58]Arfsten D P, Schaeffer D J, Mulveny D C. The effects of near ultraviolet radiation on the toxic effects of polycyclic aromatic hydrocarbons in animals and plants:a review [J]. Ecotoxicology and Environment Safety,1996,33:1-24
    [59]Huang X D, Dixon D G, Greenberg B M. Impacts of UV radiation and photomodification on the toxicity of PAHs to the higher plant Lemna gibba (Duckweed) [J]. Environmental Toxicology Chemistry,1993,12:1067-1077
    [60]Huang X D, Dixon D G, Greenberg B M. Increased polycyclic aromatic hydrocarbon toxicity following their photomodification in natural sunlight: Impacts on the duckweed Lemna gibba L. G-3 [J]. Ecotoxicology and Environmental Safety,1996,32 (2):194-200
    [61]Shimada T, Nakamura S I. Cytochrome P-450-mediated activation of procarcinogens and promutagens to DNA-damaging products by measuring
    expression of umu gene in Salmonella typhimurium TA 1535/pSK 1002 [J]. Biochemical Pharmacology,1987,36:1979-1987
    [62]Wuertz S, Miller C E, Pfister R M, Cooney J J. Tributyltin-resistant bacteria from estuarine and freshwater sediments [J]. Applied and Environment Microbiology,1991,57(10):2783-2789
    [63]Warshawsky D, Cody T, Radike M, Reilman R, Schumann B, LaDow K, Schneider J. Biotransformation of benzo[a]pyrene and other polycyclic aromatic hydrocarbons and heterocyclic analogs by several green algae and other algal species under gold and white light [J]. Chemico-Biological Interactions,1995,97:131-148
    [64]Dijkman N A, van Vlaardingen P L A, Admiraal W A. Biological variation in sensitivity to N-heterocyclic PAHs; effects of acridine on seven species of micro-algae [J]. Environmental Pollution,1997,95 (1):121-126
    [65]Lei A P. Toxicity of pyrene and its bioconcentration and metabolism by microalgae [D]. Hong Kong:City University of Hong Kong,2003
    [66]Lei A P, Wong Y S, Tam F Y. Removal of pyrene by different microalgal species [J]. Water Science and Technology,2002,46(11-12):195-201
    [67]Haritash A K, Kaushik C P. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs):A review [J]. Journal of Hazardous Materials,2009, 169:1-15
    [68]Schutzendubel A, Majcherczyk A, Johannes C, Huttermann A. Degradation of fluorene, anthracene, phenanthrene, fluoranthene, and pyrene lacks connection to the production of extracellular enzymes by Pleurotus ostreatus and Bjerkandera adusta [J]. International Biodeterioration & Biodegradation,1999, 43:93-100
    [69]Herman D C, Inniss W E, Mayfield C I. Impact of volatile aromatic hydrocarbons, alone and in combination, on growth of the freshwater alga Selenastrum capricornutum [J]. Aquatic Toxicology,1990,18(2):87-100
    [70]Dean-Ross D, Moody J, Cerniglia C E. Utilisation of mixtures of Polycyclic aromatic hydrocarbons by bacteria isolated from contaminated sediment [J].
    Fems Microbiology Ecology.2002,41:1-7
    [71]Bouchez M, Blanchet D, Vandecasteele J P. Degradation of poly cyclic aromatic hydrocarbons by pure starins and by defined strain associations:inhibition phenomena and co-metabolism [J]. Applied Microbiology and Biotechnology, 1995,43:156-164
    [72]Stringfellow W T, Aitken M D. Competitive metabolism of naphthalene, methylnphthalenes, and fluorene by phenanthrene-degrading Pseudomonas [J]. Applied and Environmental Microbiology,1995,61:357-362
    [73]McNally D L, Mihelcic J R, Lueking D R. Biodegradation of mixtures of poly-cyclic aromatic hydrocarbons under aerobic and nitrate-reducing conditions [J]. Chemosphere,1999,38 (6):1313-1321
    [74]Yuan S Y, Shiung L C, Chang B V. Biodegradation of polycyclic aromatichydro carbons by inoculated microorganisms in soil [J]. Bulletin of Environmental Contamination and Toxicology,2002,69:66-73
    [75]Carmichael L M, Pfaender F K. The effect of inorganic and organic supplements on the microbial degradation of phenanthrene and pyrene in soils [J]. Biodegradation,1997,8:1-13
    [76]Cerniglia C E. Fungal metabolism of polycyclic aromatic hydrocarbons:past, present and future applications in bioremediation [J]. Journal of Industrial Microbiology & Biotechnology,1997,19:324-333
    [77]Liebe B, Fock H P. Growth and adaptation of the green alga Chlamydomonas reinhardtii on diesel exhaust particle extracts [J]. Journal General Microbiology, 1992,138:973-978
    [78]Arfsten D P, Schaeffer D J, Mulveny D C. The effects of near ultraviolet radiation on the toxic effects of polycyclic aromatic hydrocarbons in animals and plants:a review [J]. Ecotoxicology and Environmental Safety,1996,33: 1-24
    [79]Gala W R, Giesy J P. Photo-induced toxicity of anthracene to the green alga, Selenastrum capricornutum [J]. Archives of Environmental Contamination and Toxicology,1992,23:316-323
    [80]Grote M, Schuurmann G, Altenburger R. Modeling photoinduced algal toxicity of polycyclic aromatic hydrocarbons [J]. Environmental Science and Technology,2005,39:4141-1449
    [81]Pelletier E, Sargian P, Payet J, Demers S. Ecotoxicological effects of combined UVB and organic contaminants in coastal waters:A review [J]. Photochemistry and Photobiology,2006,82:981-993
    [82]Petersen D G, Retchenberg F, Dahllof I. Phototoxicity of pyrene affects benthic algae and bacteria from the arctic [J]. Environmental Science and Technology, 2008,42(4):1371-1376
    [83]Chen C Y, Yan Y K, Yang C F. Toxicity assessment of polycyclic aromatic hydrocarbons using an air-tight algal toxicity test [J]. Water Science and Technology,2006,54(11-12):309-315
    [84]Tukaja Z, Aksmann A. Toxic effects of anthraquinone and phenanthrenequinone upon Scenedesmus strains (green algae) at low and elevated concentration of CO2 [J]. Chemosphere,2007,66(3):480-487
    [85]Hutchinson G E. Eutrophication:The scientific background of a contemporary practical problem [J]. American Scientist,1973,61:269-279
    [86]刘春光,王雯,庄源益.湖泊富营养化控制理论与技术[J].干旱环境监测,2004,18(1):16-19
    [87]杨祯奎.水域的富营养化及其防治对策[M].北京:中国环境科学出版社,1987
    [88]张开翔.湖泊人为富营养化[J].海洋湖泊通报,1992,23(1):87-97
    [89]金相灿,刘鸿亮,屠清瑛.中国湖泊富营养化[M].北京:中国环境科学出版社,1990,343-372
    [90]刘建康.湖泊与水库富营养化防治的理论和实践[M].北京:科学出版社,2003
    [91]李大成,吕锡武,纪荣平.受污染湖泊的生态修复[J].电力环境保护,2006,22(1):47-49
    [92]宋金明.中国近海生物地球化学[M].济南:山东科技出版社,2004,12-91
    [93]张凌,陈繁荣,殷克东,张德荣,杨永强,吕莹.珠江口和邻近海域沉积有机质的来源及其沉积通量的时空变化[J].环境科学研究,2009,8(22):875-881
    [94]江莉,张业明,曹刚,郝龙,林安,甘复兴.富营养化东湖水中COD与TOC的相关性研究[J].环境科学与技术,2007,30(10):37-39
    [95]夏斌,张龙军,桂祖胜,江春波.海河流域的富营养化状况及污染物入海通量[J].中国海洋大学学报,2006,36(增Ⅱ):33-38
    [96]谢礼国,郑怀礼.湖泊富营养化的防治对策研究[J].世界科技研究与发展,2004,26(2):7-11
    [97]陈峰,姜悦.微藻生物技术[M].中国轻工业出版社,北京,1999
    [98]刘学铭,梁世中.小球藻的保健和药理作用[J].中草药,1999,(5):385-386
    [99]张大兵,吴庆余.小球藻细胞的异养转化[J].植物学通报,1996,32(2):140-144
    [100]Bold H C, Wynne M J. Introduction to the algae:structure and reproduction, (2nd ed) [M]. Englewood Cliffs, NJ:Prentice-Hall Inc.1985
    [101]Vyas A P, Verma J L, Subrahmanyam V N. A review on FAME production processes [J]. Fuel,2010,89:1-9
    [102]Ginzburg B Z. Liquid fuel (oil) from halophilic algae:A renewable source of non-polluting energy [J]. Renewable Energy,1993,3:249-252
    [103]Aksmann A, Tukaj Z. The effect of anthracene and phenanthrene on the growth, photosynthesis and SOD activity of green alga Scenedesmus armatus depend on the PAR irradiance and CO2 Level [J]. Archives of Environmental Contamination and Toxicology,2004,47,177-184
    [104]Miao A J, Wang W X. Cadmium toxicity to two marine phytoplankton under different nutrient conditions [J]. Aquatic Toxicology,2006,78:114-126
    [105]Riedel G F, Sanders J G, Breitburg D L. Seasonal variability in response of estuarine phytoplankton communities to stress:linkage between toxic trace elements and nutrient enrichment [J]. Estuaries and Coasts,2003,26:323-338
    [106]Rijstenbil J W, Dehairs F, Ehrlich R, Wijnholds J A. Effect of the nitrogen status on copper accumulation and pools of metal-binding peptides in the planktonic diatom Thalassiosira pseudonana [J]. Aquatic Toxicology,1998,42:187-209
    [107]Halling-S(?)rensen B, Nyholm N, Kusk K O, Jacobsson E. Influence of nitrogen status on the bioconcentration of hydrophobic organic compounds to Selenastrum capricornutum [J]. Ecotoxicology and Environmental Safety,2000, 45:33-42
    [108]Vysotskaya N A, Bortun L N. The mechanism of radiation induced hemolytic substitution of condensed aromatic hydrocarbons in aqueous solutions [J]. Radiation Physics and Chemistry,1984,23(6):731-738
    [109]Zepp R G, Hoigne J, Bader H. Nitrate-induced photooxidation of trace organic-chemical in water [J]. Environmental Science and Technology,1987, 21(5):443-450
    [110]Jaiswal P, Kashyap A K. Isolation and characterization of mutants of two diazotrophic cyanobacteria tolerant to high concentrations of inorganic carbon [J]. Microbiological Research,2002,157(2):83-92
    [111]Miyachi S, Tsuzuki M, Maruyama I. Effects of CO2 concentration during growth on the intracellular structure of Chlorella and Scenedesmus (Chlorophyta) [J]. Journal of Phycology,1986,22:313-319
    [112]Tsuzuki M, Gantar M, Aizawa K. Ultrastructure of Dunaliella tertiolecta cells grown under low and high CO2 concentrations [J]. Plant Cell Physiology,1986, 27:737-739
    [113]夏建荣,高坤山.不同CO2浓度下培养的蛋白核小球藻细胞结构的变化[J].武汉植物学研究,2002,20(5):403-404
    [114]Kuchitsu K, Tsuzuki M, Miyachi S. Polypeptide composition and enzyme activities of the pyrenoid and its regulation by CO2 concentration in unicellular green algae [J]. Canadian Journal of Botany-revue,1991,69:1062-1069
    [115]Borkhsenious O N, Mason C B, Moroney J V. The intracellular localization of ribulose-1,5-bisphosphate carboxylase/oxygenase in Chlamydomonas reinhardtii [J]. Plant Physiology,1998,116:1585-1591
    [116]岳国峰,王金霞,朱明远,周百成.藻类无机碳营养的研究进展(Ⅰ)-研究起 源及研究方法[J].海洋科学,2003a,27(5):15-18
    [117]Beer S, Rehnberg J. The acquisition of inorganic carbon by the seagrass Zostera marina [J]. Aquatic Botany,1997,56:277-283
    [118]Bjork M, Weil A, Semest S. Photosynthetic utilization of inorganic carbon by seagrass from Zanzibar, East Africa [J]. Marine Biology,1997,129:363-366
    [119]岳国峰,王金霞,朱明远,周百成,藻类无机碳营养的研究进展(Ⅱ)-藻类利用无机碳的机理及其调节[J].海洋科学,2003b,27(6):31-34
    [120]支彦丽,金相灿,钟远,李贺,刘春光,戴树桂,庄源益.淡水绿藻的光合碳酸氢盐利用探讨[J].环境科学学报,2008,28(8):1519-1525
    [121]郑爱榕,李文权,曲琳,陈清花.营养盐对螺旋藻脂肪酸组成和含量的影响[J].台湾海峡,2001,20(增):52-56
    [122]张海滨,孙世春,麦康森,梁英.微藻异养培养技术的研究进展[J].海洋湖沼通报,2000,3:51-59
    [123]Lee J S, Kim D K, Lee J P, Park S K, Koh J H, Cho H S, Kim S W. Effect of SO2 and NO on growth of Chlorella sp. KR-1 [J]. Bioresource Technology, 2002,82:1-4
    [124]吴庆余,匡梅,Grant N G.小球藻两个品与色素差异系在自养与异养条件下的生长能荷与色素差异[J].植物生理学报,1992,18(3):293-299
    [125]Chen F, Zhang Y M, Guo S Y. Growth and phycocynain formation of Spirulina platensis in photoheterotrophic culture [J]. Biotechnology Letters,1996,18(5): 603-608
    [126]孙茜.有机碳源和植物生长调节剂对铜绿微囊藻生长及产毒的影响[硕士学位论文].武汉,华中师范大学,2006
    [127]吴庆余.自养小球藻转化为异养代谢生长后细胞的超微结构与相关生化组成[J].南京大学学报,1993,29(4):622-630
    [128]Stadnichuk I N, Rakhimberdieva M G, Bolychevtseva Y V, Yurina N P, Karapetyan N V, Selyakh I O. Inhibition by glucose of chlorophyll a and phycocyanobilin biosynthesis in the unicellular red alga Galdieria partita at the stage of coproporphyrinogen III formation [J]. Plant Science,1998,136: 11-23
    [129]Maskaoui K, Zhou J L, Hong H S, Zhang Z L. Contamination by polycyclic aromatic hydrocarbons in the Jiulong River Estuary and Western Xiamen Sea, China [J]. Environmental Pollution,2002,118:109-122
    [130]Smith V H, Schindler D W. Eutrophication science:where do we go from here [J]. Trends in Ecology,2009,24:201-207
    [131]Chen J M, Ma J M, Cao W, Wang P W, Tong S M, Sun Y Z. Sensitivity of green and blue-green algae to methyl tert-butyl ether [J]. Journal of Environmental Sciences,2009,21:514-519
    [132]Debenest T, Pinelli E, Coste M, Silvestre J, Mazzella N, Madigou C, Delmas F. Sensitivity of freshwater periphytic diatoms to agricultural herbicides [J]. Aquatic Toxicology,2009,93:11-17
    [133]Qian H F, Chen W, Li J J, Wang J, Zhou Z, Liu W P, Fu Z W. The effect of exogenous nitric oxide on alleviating herbicide damage in Chlorella vulgaris [J]. Aquatic Toxicology,2009a,92:250-257
    [135]Hodges D M, DeLong J M, Forney C F, Prange R K. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds [J]. Planta,1999,207:604-611
    [136]Ljunggren J, Haggstrom L. Specific growth rate as a parameter for tracing growth-limiting substances in animal cell cultures [J]. Journal of Biotechnology, 1995,42:163-175
    [137]Li X F, Cullen W R, Reimer K J, Le X C. Microbial degradation of pyrene and characterization of a metabolite [J]. Science of the Total Environment,1996,177: 17-29
    [138]Foyer C H, Noctor G. Oxygen processing in photosynthesis:regulation and signaling [J]. New Phytologist,2000,146:359-388
    [139]Calabrese E J. Paradigm lost, paradigm found:The reemergence of hormesis as a fundamental dose response model in the toxicological sciences [J]. Environmental Pollution,2005,138:378-411
    [140]王翠红,徐建红.固定化藻菌系统处理含酚废水[J].水处理技术,2000,26:236-239
    [141]Furbank R T, Foyer C H, Walker D A. Regulation of photosynthesis in isolated spinach chloroplasts during orthophosphate limitation [J]. Biochimica et Biophysica Acta,1987,894:552-561
    [142]Gibson D T, Subramanian V. Microbial degradation of aromatic hydrocarbons [M]. In:D.T. Gibson (Ed.), Microbial Degradation of Organic Compounds, Marcel Dekker, New York,1984:181-252
    [143]Soto C, Hellebust J A, Hutchinson, T C. Effect of naphthalene and aqueous crude oil extracts on the green flagellate Chlamydomonas angulosa. Ⅰ. Growth [J]. Canadian Journal of Botany,1975,53:109-117
    [144]Wood A M. Chlorophyll a:b ratio in marine planktonic algae [J]. Journal of Phycology,1979,15:330-332
    [145]Appenroth K J, Keresztes A, Sarvari E, Jaglarz A, Fischer W. Multiple effects of chromate on Spirodela polyrhiza:electron microscopy and biochemical investigations [J]. Plant Boilogy,2003,5:315-323
    [146]Oguntimehin I, Nakatani N, Sakugawa H. Phytotoxicities of fluoranthene and phenanthrene deposited on needle surfaces of the evergreen conifer, Japanese red pine (Pinus densiflora Sieb. et Zucc.) [J]. Environmental Pollution,2008, 154:264-271
    [147]Puckett K J, Nieboer E, Flora W P, Richardson D H S. Sulphur dioxide:its effect on photosynthesis 14C fixation in lichens and suggested mechanisms of phytotoxicity [J]. New Phytologist,1973,72:141-154
    [148]Bricker T M, Newman D W. Changes in the chlorophyll-protein and electron transport activities of soybean cotyledon chloroplast during senescence [J]. Photosynthesis,1982,16:239-244
    [149]Bidwell R G S. Plant Physiology, second ed [M]. Macmillan, London,1979
    [150]Ball S G, Dirick L, Decq A, Martiat J C, Matagne R F. Physiology of starch storage in the monocellular alga Chlamydomonas reinhardtii [J]. Plant Science, 1990,66:1-9
    [151]Nishikawa K, Yamakoshi Y, Uemura I, Tominaga N. Ultrastructural changes in Chlamydomonas acidophila (Chlorophyta) induced by heavy metals and polyphosphate metabolism [J]. Fems Microbiology Ecology,2003,44:253-259
    [152]Morlon H, Fortin C, Floriani M, Adam C, Garnier-Laplace J, Boudou A. Toxicity of selenite in the unicellular green alga Chlamydomonas reinhardtii: comparison between effects at the population and sub-cellular level [J]. Aquatic Toxicology,2005,73:65-78
    [153]Wong D, Oliveira L. Effects of selenite and selenate toxicity on the ultrastructure and physiology of three species of marine microalgae [J]. Canadian Journal of Fisheries and Aquatic Sciences,1991,48:1201-1211
    [154]Vega J M, Garbayo I, Dominguez M J, Vigara J. Effect of abiotic stress on photosynthesis and respiration in Chlamydomonas reinhardtii:Induction of oxidative stress [J]. Enzyme and Microbial Technology,2006,40:163-167
    [155]Gibson D T, Zylstra G J, Chauhan S. Biotransformations catalyzed by toluene dioxygenase from Pseudomonas putida F1, In:Silver S, A.M. Chakrabarty, B. Iglewski, S. Kaplan (Eds.), Pseudomonas:Biotransformations, Pathogenesis, and Evolving Biotechnology[M]. American Society for Microbiology, Washington, DC,1990,121-132
    [156]Patel T R, Gibson D T. Purification and properties of (+)-c/s-naphthalene dihydrodiol dehydrogenase of Pseudomonas putida [J]. Journal of Bacteriology, 1974,119:879-888
    [157]Nyholm N, A mathematical model for microbial growth under limitation by conservative substrates [J]. Biotechnology and Bioengineering,1976,18: 1043-1056
    [158]Khozin-Goldberg I, Cohen Z. The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus [J]. Phytochemistry,2006,67:696-701
    [159]Girotti A W. Photosensitized oxidation of membrane lipids:reaction pathways, cytotoxic effects, and cytoprotective mechanisms [J]. Journal of Photochemistry and Photobiology B:Biology,2001,63:103-113
    [160]Fogg G E, Thake B. Algal Cultures and Phytoplankton Ecology [M]. The University of Wisconsin Press, Madison,1987,79-80
    [161]Aloice W M, Tatsuya N. Effect of glucose loading on the growth behavior of Chlorella vulgaris and heterotrophic bacteria in mixed culture [J]. Water Research,1994,28(5):1001-1008
    [162]Khan K A, Suidan M T, Cross W H. Anaerobic activated carbon filter for the treatment of phenol-bearing waste water [J]. Water Pollute Control Federation, 1981,1519-1552
    [163]Morita E, Kuroiwa H, Kuroiwa T. High localization of ribulo se-1,5-b isphosphate acrboxylase/oxygenase in the pyrenoids of Chlamydomonas reinhardtii (Chlorophyta), as revealed by cryo-fixation and immunologold electron microsopy [J]. Journal of Physiology,1997,33:68-72
    [164]Mohapatta P K, Sehubert H, Schiewer U. Eeffet of dimethoate on photosynthesis and pigmentfluorescence of Synehtoeystissp PCC 6803 [J]. Ecotoxieology and Enviromnental Safety,1997,36:231-237

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700