用户名: 密码: 验证码:
钛合金干式磨抛加工技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛合金具有比强度高、耐热性和耐蚀性好等优良性能,在许多工业领域特别是航空航天领域得到越来越广泛的应用。同时,钛合金的热导率低、弹性模量小、化学活性高,易导致工件磨抛表面烧伤和砂轮磨损,钛合金干式磨抛加工作为钛合金大型结构件内外型面的终加工工序对零件表面质量有着决定性的影响。因此开展高锋利度静电植砂砂带、超硬磨料砂轮干式磨抛钛合金加工技术以及固体润滑技术研究,将有助于改善钛合金干式磨抛加工性能,提高钛合金零件表面质量、提升钛合金加工水平,并促进钛合金磨抛工具的开发及应用。
     本文完成的主要研究工作包括:
     (1)研制了一套砂带干式磨抛加工试验系统。采用夹丝热电偶测温方法对砂带干式磨抛钛合金工件表面温度进行了测量,研究了磨抛条件与工件表层温度、磨抛力和表面完整性等之间的关系,分析了锆刚玉砂带磨抛钛合金的磨粒磨损特征。设计开发了一套可控制加工用量的页轮/砂轮磨抛加工试验系统。研究了带柄页轮干式磨抛钛合金的工件表层温度、材料去除量、页轮磨损以及加工表面完整性等情况。设计了石墨固体润滑剂在磨粒表面的制备工艺,成功制备了石墨涂附带柄页轮,并分析了石墨含量与带柄页轮工件表层温度和表面粗糙度之间的关系。研究了钹形页轮恒力干式磨抛钛合金的表面粗糙度和材料去除量的变化情况。
     (2)为提高砂轮回转精度,设计了砂轮柄与砂轮体组合式磨抛砂轮,通过控制磨粒的尺寸大小、磨粒的等高性和出露高度等,成功制备了新型单层钎焊立方氮化硼(CBN)砂轮,砂轮表面磨粒有序排布,磨粒具有良好的等高性和较大的出露高度。完成了干式磨抛钛合金试验研究。成功制备了石墨固体润滑剂涂附单层CBN砂轮,并分析了石墨含量与单层CBN砂轮工件表层温度和表面粗糙度的关系。
     (3)提出了自润滑多层钎焊砂轮的概念,即在多层钎焊砂轮基体内加入固体润滑剂来改善其加工性能。阐明了多层钎焊砂轮自润滑机理,综合液相烧结与钎焊的工艺优势成功制备了自润滑多层钎焊金刚石和CBN砂轮。砂轮强度满足使用要求,金刚石砂轮空隙结构分布均匀,CBN砂轮中的石墨呈游离态均匀分布。完成了多层钎焊超硬磨料砂轮和碳化硅砂轮干式磨抛钛合金的加工性能及表面完整性对比研究。
     (4)针对大型钛合金结构型面和平面结构的磨抛要求,优化选择了磨抛工具和磨抛用量,并完成了干式磨抛验证试验及结果分析。结果表明:工件表面质量达到了零件加工要求。
Titanium alloys have more and more applications in many industrial fields especially in aeronautics and astronautics in virtue of their high specific strength, good corrosion resistance and high thermal stability. However, titanium alloys are well known as a kind of difficult to machine material, due to its low thermal conductivity, small elastic module, and high chemical activity. Dry grinding and polishing as the key process of lager structure workpiece of titanium alloys has the decisive influence to the components surface quality. Because of the tools performance and the grinding parameters significantly influence the cost, efficiency and surface integrity, it is significant to develop the innovative belt, cubic boron nitride (CBN) abrasives grinding wheel at the same tine to evaluate the performance of grinding tools with solid lubricants were add into tools improve its machining grindability and ground surface quality for titanium alloys.
     The main contents in this paper are as follows:
     (1)The equipment was developed to employ belt in the grinding and polishing of titanium alloys. Grinding temperature was measured by a constantan-workpiece thermal couple. The influences of different parameters on grinding force and temperature by belt dry grinding are studied. This could provide a theoretical basis for the feasibility of machining titanium alloys with belt. The effects of grinding parameters and belt wear status on the surface integrity were investigated. The paper develops the equipment employs flap wheel in the grinding and polishing of titanium alloys, the equipment was to simulate flap wheel hand-held machining to study the grinding ability of flap wheel. The influence of different parameters on machining ability, flap wear, and grinding temperature were studied with flap wheel by dry grinding. Graphite is chosen to prepare the solid lubricant with the binder. Solid lubricant technology has been studied with the grinding flap wheels coated by solid lubricant. Comparative experiments with grinding flap wheels in different solid lubricant parameters were conducted. And the influence of different parameters on grinding temperature and surface roughness were studied.
     (2)The innovative monolayer brazed cubic boron nitride (CBN) grinding wheels with rhythmed grain distribution were designed and fabricated accronding to the requirements of brazing technique to reliaze the grinding and polishing of titanium alloys. Moreover, on the basis of determined the suitable brazing process, the machining process of the grinding wheel with structural components mainly controlling the rotary accuracy of the wheel and the equal height characteristics of grains was effectively controlled, this kind of ordered-grained CBN grinding wheels which has been applied ground applied to titanium alloys was successfully developed. The grinding performance has been evaluated in the dry grinding process of the titanium alloys. Comparative experiments with grinding CBN wheels in different machining parameters were conducted. And the influence of different parameters on grinding temperature, wheel wear and surface intergrity were studied. The CBN grinding wheels with solid lubricant were prepared successfully. Meanwhile, the grinding temperature and the ground surface of the solid lubricant tools were evaluated.
     (3)The innovative thought of the grinding wheel and increasing solid lubricant was proposed in order to reduce the intensity of heat source, and thus two new grinding wheels are developed and their performance of dry grinding titanium alloys were evaluated. Multi-layer brazing diamond and CBN grinding wheel were prepared successfully. The strength of grinding wheel meets the application requirements, the gap structure of diamond grinding wheel was well distributed, the graphite of CBN grinding wheel was evenly distributed in the free state, brazing achieved between binder and abrasive. The effects of grinding parameters status on the machining ablity and surface integrity were investigated on dry grinding by super abrasive grinding wheels and SiC wheel.
     (4) According to the actual processing requirements, the representative lager structural components of titanium alloys was ground and polished with the combination optimization process to verify the result. Finally, the good surface quality was obtained.
引文
[1]任敬心,康仁科.难加工材料的磨抛.北京:国防工业出版社,1999
    [2] Jain R K, Jain V K. Specific energy and temperature determination in abrasive fIow machining process. International Journal of Machine Tool & Manufacture, 2001, 41(12):1689~1704
    [3] Suzuki K, Uematsu T and Ohashi H, et al. Development of a new mechanochemical polishing method with a polishing film for ceramic round bars. 1991, Annals of the The International Academy for Production Engineering , 339~342
    [4] Jain R K, Jain V K, Dixit P M. Modeling of material removal and surface roughness in abrasive flow machining Process. International Journal of Machine Tools & Manufacture 1999, 39(12):1903~1923
    [5]杨遇春.钛-跨入新千年的金属巨人.中国工程科学,2002,(03) :21~31
    [6]逯福生,贾翃,何瑜,等.世界钛工业现状及今后发展趋势.钛工业进展, 2001,5: 1~5
    [7] Ezugwu O and Wang Z M. Titanium alloys and their machinability-a review. Journal of Materials Processing Technology, 1997, 68(3):262~274
    [8]张喜燕,赵永庆,白晨光.钛合金及应用.北京:化学工业出版社,2005.4
    [9] Vassel A and Guedou J Y, Aero-Engines applications: present and future, 9th World Conference on Titanium, 1999
    [10]曹春晓.我国航空用钛合金面临的21世纪的挑战,钛工业进展,1995,5:1~5
    [11]李明怡.航空用钛合金结构材料,世界有色金属,2000,6:17~20
    [12]唐建设.钛合金磨抛烧伤机理、改善措施及其预报的研究,[博士学位论文].南京:南京航空航天大学,1989
    [13]中国航空材料手册编辑委员会编.中国航空材料手册.北京:中国标准出版社,2001
    [14]张研,任延华.难加工材料磨抛中的砂轮粘附及其抑制措施.航空制造技术,2001,(6):51~54
    [15]侯世香,刘献礼.干式切削技术的发展现状.机械工程师,2000,7:37~38
    [16]李伯民,赵波.现代磨抛技术.机械工业出版社,2003:100~110
    [17]任敬心,康仁科,吴小玲,等.钛合金的磨抛烧伤和磨抛裂纹.制造技术与机床,2000,10:40-42
    [18]陈明.难加工材料成形磨抛烧伤的研究,[博士学位论文].南京:南京航空航天大学,1993
    [19]陈芨熙,顾新建.新的制造战略─绿色制造.中国机械工程,1997,8(3):94~97
    [20]刘飞,张华,岳红辉.绿色制造─现代制造业的可持续发展模式.中国机械工程,1998,9(6):76~79
    [21]贾晓鸣,王宝中.绿色切削加工技术分析.润滑与密封,2002(6):83~85
    [22]郑祝堂.论绿色切削加工技术.新疆石油学院学报,2001,13(2):63~66
    [23]刘光复,刘志峰,李钢.绿色设计与绿色制造.北京,机械工业出版社,2000
    [24]王文光.德国大力开展重视环保的生产加工及技术研究.工具展望,1997,2: 3~5
    [25] Aronson R B. Why dry machining?, Manufacturing Engineering. 1995, 114(1):33~36
    [26] Dunlap C. Should You Try Dry?, Cutting Tool Engineering,1997, 49(1):22~23
    [27] Heine H J. Dry machining-a promising option, American Machinist,1997, 141,8:92~94
    [28] Tawakoli T, Azarhoushang B. Influence of ultrasonic vibrations on dry grinding of soft steel. International Journal of Machine Tools & Manufacture, 2008, 48: 1585~1591
    [29] Aurich J C, Herzenstiel P, Sudermann H, et al. High-performance dry grinding using a grinding wheel with a defined grain pattern. CIRP Annals-Manufacturing Technology, 2008, 57:357~362
    [30]艾兴.高速切削加工技术.北京:国防工业出版社,2003
    [31]侯世香,刘献礼.干式切削技术的发展现状.机械工程师,2000,7:37~38
    [32]任敬心,华定安.磨抛原理.西安:西北工业大学出版社,1988
    [33]张伯霖.高速切削技术及应用.机械工业出版社,2003:1~17
    [34]横田秀雄,吴敏镜.MQL切削的现状和发展,航空精密制造技术,2004,40(1):24~26
    [35] Ron Q.对MQL“最少量润滑剂”加工的理解,国际金属加工商情,2005,5
    [36] Silva L R, Bianchi E C, Catai R E, et al. Study on the behavior of the minimum quantity lubricant-MQL technique under different lubrication and cooling conditions when grinding ABNT4340 steel, Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2005,27(2): 192~199
    [37] Silva L R, Bianchi E C, Fusse R Y, et al. Analysis of surface integrity for minimum quantity lubricant-MQL in grinding,International Journal of Machine Tools and Manufacture, 2007, 47(2): 412~418
    [38] Tawakoli T, Hadad M J and Sadeghi M H. Influence of oil mist parameters on minimum quantity lubrication–MQL grinding process, International Journal of Machine Tools and Manufacture, 2010, 50(6): 521~531
    [39] Tawakoli T, Hadad M J, Sadeghi M H, et al. An experimental investigation of the effects of workpiece and grinding parameters on minimum quantity lubrication-MQL grinding.International Journal of Machine Tools and Manufacture, 2009, 49(12-13): 924~932
    [40] Paul S, Chattopadhyay A B. Determination and Control of Grinding Zone Temperature under Cryogenic Cooling. International Journal of Machine Tools and Manufacture, 1996, 36(4): 491~501
    [41] Chattopadhyay A B, Bose A, Chattopdhyay A K. Improvements in grinding steels by cryogenic cooling. Precision Engineering, 1985, 7(2): 93~98
    [42]陈梁均,杨南祥.用液氮冷却改善磨抛表面质量之探讨.机械,1994,21(4):32~33
    [43]横川和彦,横川宗彦,奥村成史.冷风研削切削加工技术.机械と工具,1998,7:57~62
    [44] Choi H Z, Lee S W, Jeong H D. The cooling effects of compressed cold air incylindrical grinding with alumina and CBN wheels. Journal of Materials Processing Technology, 2002, 127(2): 155~158
    [45] Ohmori S, Tateno M, Kokubo K. Effects of the supplied cold-air condition on grinding temperature in cold-air jet grinding. Key Engineering Materials, 2003, 238-239: 195~198
    [46] Nguyen T, Zhang L C. An assessment of the applicability of cold air and oil mist in surface grinding. Journal of Materials Processing Technology, 2003, 140(1-3): 224~230
    [47] Choi H Z, Lee S W, Jeong H D. The cooling effects of compressed cold air in cylindrical grinding with alumina and CBN wheels. Journal of Materials Processing Technology. 2002, 127(2): 155~158
    [48]安庆龙.低温喷雾射流冷却技术及其在钛合金机械加工中的应用,[博士学位论文].南京:南京航空航天大学,2006
    [49]李长河,蔡光起,修世超.低温冷却磨抛机理的研究.金刚石与磨料磨具工程,2006,152(2):55~57
    [50]高航,王继先,兰雄侯.一种适于低温冷气内冷却的CBN砂轮的研制.金刚石与磨料磨具工程,2001,5 (125):9~11
    [51]姚俊,朱黛茹.干冻磨抛技术在磨床中的应用.精密制造与自动化,2009,(2):16~18
    [52]吕伯诚(译).不用冷却液磨抛的新技术.世界制造技术与装备市场,1999,(2):63
    [53] Baheti U, Gou C and Malkin S. Environmentally Conscious Cooling and Lubrication for Grinding. Proceedings of the International Seminar on Improving Machine Tool Performance, San Sebastian, 1998, 2: 643~654.
    [54] Irani R A, Bauer R J and Warkentin A. A review of cutting fluid application in the grinding process International Journal of Machine Tools and Manufacture, 2005, 45(15):1696~1705
    [55] Inoue S and Aoyama T. Application of air cooling technology and minimum quantitylubrication to relief grinding of cutting tools. Key Engineering Materials, 2004, 257-258: 345~350.
    [56] Ramesh K, Yeo S H, Zhong Z W, et al. Coolant shoe development for high efficiency grinding. Journal of Materials Processing Technology, 2001, 114(3): 240~245
    [57]任家隆.气体射流冷却切削.现代制造工程,2001,12:58~59
    [58]任家隆.车削Cr12材料的绿色冷却工艺探讨.华东船舶工业学院学报(自然科学版),2001,6:66~69
    [59]赵恒华,蔡光起,高航.基于绿色磨抛的冷气冷却实验研究.制造技术与机床,2004, 4 :54~55
    [60]邓建新,丁泽良,赵军,等.自润刀具滑材料的研究.工具技术,2002, 12:8~11
    [61]石淼森.固体润滑技术.北京:中国石化出版社,2000
    [62]滕霖,史兴宽,任敬心.增效浸渗砂轮的增效机理及其效果.西北工业大学学报,1997,15(1):7~11
    [63] S.C. Salmon. The effects of hard lubricant coatings on the performance of electro-plated superabrasive grinding wheels, KeyEngineering Materials, 2003, (238–239): 283~288
    [64] Shaji S and Radhakrishnan V. An Investigation on surface grinding using graphite as lubricant, International Journal of Machine Tools and Manufacture 2001, 42(6): 733~740
    [65] Shaji S and Radhakrishnan V. Application of solid lubricants in grinding: investigations on graphite sandwiched grinding wheels, Machining Science and Technology, 2003, 7(1): 137~155
    [66] Matthew A, Kyriaki K and Shreyes M. An investigation of graphite nanoplatelets as lubricant in grinding. International Journal of Machine Tools & Manufacture, 2009, 49(12-13): 966~970
    [67] Shaji S and Radhakrishnan V. Analysis of process parameters in surface grinding with graphite as lubricant based on the Taguchi method.Journal of Materials Processing Technology, 2003, 141(1): 51~59
    [68] Bryant P J, Gutshall P L and Taylor L H, A study on mechanisms of graphite friction and wear, Wear,1964, 7(3): 118~119
    [69] Fukushima H and Drzal L T. Graphite nanoplatelets as reinforcements for polymers: structural and electrical properties in: Proceedings of the 17th Annual Conference of the American Society for Composites, Purdue University,2003.
    [70]宋宏文.强冷磨抛-钛合金磨抛新技术.航天制造技术,2001,6:13~15
    [71]安庆龙,傅玉灿,徐九华,等.低温气动喷雾射流冲击冷却技术在钛合金磨抛中的应用.中国机械工程,2006,17(11):1117~1121
    [72]朱波.低温ELID磨抛钛合金磨抛力的实验研究.机械工艺师,2000,44~45
    [73] Teicher U, Ghosh A, Chattopadhyay A B, etc. On the grindability of Titanium alloy by brazed type monolayered superabrasive grinding wheels. International Journal of Machine Tools and Manufacture. 2006, 46(6): 620~622
    [74] Bentley S A and Goh N P, Aspinwall D K. Reciprocating surface grinding of gamma titanium aluminide intermetallic alloy. Journal of Materials Processing Technology, 2001, 118: 22~28
    [75] Xu X P, Yu Y Q and Huang H. Mechanisms of abrasive wear in the grinding of titanium (TC4) and nickel (K417)alloys.Wear, 2003,255:1421~1426
    [76] Konig W, Tonshoff H K and Fromlowitz J. Belt grinding. Annals of the International Academy for Production Engineering. 1986,35(2):240~245
    [77]任守良.钛合金砂带磨抛的工艺研究,[硕士学位论文].南京:南京航空航天大学,2007
    [78]王宛山,单瑞兰,张舒杨.砂带磨抛钛合金的试验研究.磨料磨具与磨抛,1990,5(59):8~10
    [79] Axinte D A, Kritmanorot M and Axinte M. Investigations on belt polishing of heat-resistant titanium alloys. Journal of Materials Processing Technology. 2005, 166(3): 398~404
    [80]唐建设,潭茂兴.固体润滑剂涂层砂轮磨抛钛合金时最佳涂层条件研究.磨料磨具与磨抛,1990,(2):2~9
    [81]史兴宽,康仁科,任敬心.用浸渍砂轮磨抛钛合金的研究.磨床与磨抛,1992, 3:11~14
    [82]汤道祥.用致冷剂处理干磨砂轮的试验研究.精密制造与自动化,1987, 3:38~41
    [83]李伟,浦学锋,张幼祯.渗浸砂轮的配方优选及其应用.磨料磨具与磨抛,1992,69(3): 13~18
    [84]李伟,袁哲俊.“化学渗浸砂轮”在钛合金打磨加工中的应用.哈尔滨工业大学学报,1994,26(2):84~89
    [85] Jain V K and Adsul S G. Experimenet linvestigations into abrasive flow machining. International Journal of MachineTools & Manufacture, 2000, (40):1003~1021
    [86] Nasaki I, Tonshoff HK, Howes T D. Abrasive Machining in the Future. Annals of the Annals of the The International Academy for Production Engineering , 1993, 42(2):723~732
    [87]鲁里耶ГБ著,张洪勋译.砂带磨抛.北京:机械工业出版社,1987
    [88] S Mezghani and Mansori M E. Abrasiveness properties assessment of coated abrasives for precision belt grinding, Surface and Coatings Technology, 2008, 203(5-7):786~789
    [89] Burkart W and Schmotz K, Grinding and polishing theory and practice, Redhill: Portcullis1981
    [90] Jourani A, Dursapt M, Hamdi H, etc. Effect of the belt grinding on the surface texture: Modeling of the contact and abrasive wear. Wear, 2005, 259 (7-12):1137~1143
    [91]尤洪文,栗果,郭志邦,等.多片型冲研磨页轮新制造工艺.金刚石与磨料磨具工程,2004,141(3):73~74
    [92]丁文锋.镍基高温合金高效磨抛用单层钎焊立方氮化硼砂轮的研制,[博士学位论文].南京:南京航空航天大学,2006
    [93]石淼水.固体润滑材料.北京:化工工业出版社,2009
    [94]胡黄卿.固体润滑剂应用的研讨.机械研究与应用,2003(9),16(3):21~25
    [95]威克斯Z.W,琼斯F.N.有机涂料科学和技术.北京:化学工业出版社,2002
    [96]周强,徐瑞清.石墨材料的润滑性能及其开发应用.新型碳材料,1997 (9):11~16
    [97]黄云,朱派龙.砂带磨抛原理及其应用.重庆:重庆大学出版社,1993
    [98]吕崇德.热工参数测量与处理(第二版).北京:清华大学出版社,2005
    [99]刘战强,黄传真,万熠,等.切削温度测量方法综述.工具技术,2002.36(3):3~7
    [100]汪波.基于LabVIEW的切削加工测试与分析系统开发,[硕士学位论文].南京:南京航空航天大学,2008
    [101]霍文国,徐九华,傅玉灿.砂带干式磨抛Ti-6Al-4V合金磨抛力的试验.机械工程材料,2008,32(12):19~21
    [102]霍文国,徐九华,傅玉灿.近α钛合金砂带磨抛的磨粒磨损研究.山东大学学报工学版,2010,40(1):53~58
    [103]束宏飞.砂带页轮磨抛加工钛合金的试验研究,[硕士学位论文].南京:南京航空航天大学,2009
    [104]任守良.钛合金砂带磨抛的工艺研究,[硕士学位论文].南京:南京航空航天大学,2007
    [105]赵新立.涂附磨具的选择与使用.金刚石与磨料磨具工程,2003,1:75~79
    [106]徐蔡俊.钛合金高效砂带磨抛实验研究,[硕士学位论文].南京:南京航空航天大学,2008
    [107]曹同坤.自润滑陶瓷刀具的设计开发及其自润滑机理研究, [博士学位论文].济南:山东大学,2005
    [108]吴芳.碳化硅陶瓷及其摩擦学研究,[博士学位论文].长沙:中南大学,2001
    [109]路新春,温诗铸.微观摩擦磨损研究的新进展.摩擦学学报,1995,15(2):177~183
    [110]聂时春,张用伟,王洪波,等.原子力显微镜在纳米摩擦学中应用的进展.摩擦学,1998,18(3):88~96
    [111]石淼水.固体润滑技术.北京:中国石化出版社,1998
    [112]徐西鹏,徐鸿钧,戴勇,等.树脂结合剂CBN砂轮缓进深磨钛合金—CBN砂轮在缓磨中的应用.南京航空航天大学学报,1993,25(5):631~637
    [113]肖大雪.多孔自润滑烧结体介层力学特性研究,[硕士学位论文].武汉:武汉理工大学,2006
    [114]孔祥言.高等渗流力学.合肥:中国科学技术大学出版社,1999
    [115]林瑞泰.多孔介质传热传质引论.北京:科学出版社,1995
    [116]王玲,赵浩,等.金属基复合材料及其浸渗制备的理论与实践.北京,冶金工业出版社,2005
    [117]李溪滨,刘如铁,程时和,等.粉末冶金金属基固体自润滑材料摩擦学行为,润滑与密封,1999,6: 53~55

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700