用户名: 密码: 验证码:
磁射流抛光技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代光学系统对成像质量要求的提高,越来越多的非球面被采用,而且对光学零件的形状精度和表面粗糙度的要求也越来越高。由于非球面曲率变化的影响,光学零件偏离球面越多就越难加工,小磨头确定性抛光是目前加工非球面较可行的方法。但是对于高陡度非球面、大长径比内腔、小尺寸非球面光学零件等由于机械干涉和陡峭的局部倾斜度的限制,还没有有效的抛光方法。本文研究的磁射流抛光技术结合了射流抛光技术和磁流变抛光技术的特点,是一种小磨头确定性抛光技术。该技术利用喷嘴出口附近的局部轴向磁场对磁流变液射流束产生集束稳定作用,保持束径在长距离内基本不变,形成稳定的细长射流束,大大提高了确定性抛光去除函数的稳定性,且由于射流束径较小,适应上述特殊非球面光学零件的修形和抛光加工。本文的主要内容包括:
     1.根据磁射流抛光技术的特点,设计了一台磁射流抛光样机。对样机中的磁射流抛光所需要的磁场进行了分析,并结合有限元方法优化了喷嘴末端形状,设计出了具有明显集束效果的磁场结构形式。
     2.应用铁磁流体力学原理和射流理论研究了磁场稳定射流束的机理,分析了磁射流的聚束稳定性问题。从外磁场作用下磁流变液微观结构的演化出发,基于磁流变液的流变力学特性和基本的连续介质力学方程,数值模拟了磁射流运动的特征。最后通过实验研究了磁场对磁射流结构的稳定作用,实验结果与仿真结果表明,轴向磁场可以稳定磁射流,使得它能以没有显著的扩散和结构破坏的准直状态运行几十厘米远的距离。
     3.应用计算流体力学(CFD)方法分析了磁射流抛光技术的材料去除机理。利用CFD方法,分析了垂直冲击和倾斜冲击情况下磁射流与工件表面相互作用的流场,对比实验研究得到的磁射流抛光材料去除分布特征,证明了磁射流在工件表面径向扩展流动产生的径向剪切作用导致材料去除的机理。
     4.进行了磁射流抛光技术的修形工艺研究。通过工艺实验总结出各主要工艺参数(磁场强度、抛光距离、射流速度、抛光粉粒径等)对去除效率和表面粗糙度的影响规律。基于离散迭代方法求解驻留时间,对一个口径55mm的球形K9玻璃零件进行面形修正,面形精度从0.566μm PV提高到0.176μm PV。为了提高磁射流的抛光能力,进行了去除函数优化研究。最后进行了磁射流去除波纹度实验。
The use of aspherical surfaces in modern optical systems is growing due to higher demands on image quality. And the demands on the accuracy of their shape and on the quality of their surfaces also continue to grow. The aspherical optics are difficult to manufacture if they deviate from sphere too large for the varying curvature. Therefore deterministic polishing by sub-aperture is the rather feasible method to manufacture asphircal surfaces. Especially there are no effective methods for the finishing of steep aspherics, cavities with big ratio of length-diameter and small-scale aspherical optics, which are difficult to finish due to mechanical interferences and steep local slopes. Magnetorheological Jet Polishing (MJP) researched in this thesis is a sub-aperture deterministic polishing technology, which combines the characteristics of both Fluid Jet Polishing and Magnetorheological Finshing technology. In MJP, the jet of magnetorheological (MR) fluid is magnetized by an axial magnetic field when it flows out of the nozzle. And the MR jet is concentrated, and collimated into a stable slender jet, which may travel a long distance without loss of structure. Therefore the stable jet results in a stable removal function. MJP is advantageous for shape corrections and roughness reduction of the above-mentioned special aspherical surfaces. The main content includes:
     1. A MJP prototype machine tool is designed. The overall layout of the prototype is determined based on the mechanism of MJP. And the magnetic field for MJP is analyzed. The shape of the nozzle tip is optimized by Finite Element Method. And the magnetic field is concentrated, collimated, and shaped in the vicinity of the tip of the nozzle.
     2. The stabilization of MR jet is analyzed based on the theory of ferrohydrodynamics and hydrodynamics of jet. First the micro-structure of MR fluid under the external magnetic field is analyzed. Then the motion of MR jet is numerically simulated based on the basic equations of continuous media and characteristics of MR fluid. At last experiments are conducted to research the stabilization of magnetic field on the jet. The numerical and experimental results demonstrate that the axial magnetic field can stable the MR jet. As a result, the stable MR jet may travel up to tens of centimeters without significant divergence or structural breakup.
     3. The mechanism of material removal in MJP is studied by the method of Computational Fluid Dynamics (CFD). The characteristics of the flow field of MR jet under conditions of both normal and oblique impingements are simulated. Compared with experimental results, the conclusion is gained that the material is removed by shearing actions caused by the radial spread flow of the MR jet over the workpiece surface.
     4. The shape corrections and roughness reduction of MJP are studied. The effect of several main parameters on the removal efficiency and surface quality is researched through experiments. Those parameters include intensity of magnetic field, off-set distance, jet velocity, diameter of polishing particles, and so on. A spherical part is polished employing the discrete iterative method to compute the dwell time. And the figure accuracy is improved form 0.566μm PV to 0.176μm PV. To improve the performance, the removal function of MJP is optimized by rotating the nozzle around an eccentric axis. At last the experiment is conducted to remove the waveness.
引文
[1]Council N R.Harnessing Light:Optical Science and Engineering for 21~(st)century.Washington,DC:National Academy Press,1998
    [2]A.Bielke,K.Beckstette,and C.K(u|¨)bler,et al.Fabrication of aspheric optics:process challenges arising from a wide range of customer demands and diversity of machine technologies.SPIE,2004(5252):5252-67
    [3]张学军.《非球面加工与检测技术》专题文章导读.光学精密工程,2006,14(4):527
    [4]辛企明.光学塑料非球面制造技术.北京:国防工业出版社,2005.1
    [5]Robert R.Shannon,James P.Mills,et al.Optics that Fit.Photonics Spectra,April 2001
    [6]Patrick A.Trotta.Precision conformal optics technology program.SPIE,2001(4375):96-107
    [7]杨元华,陈时锦,程凯,孙西芝.超精密机械加工技术在微光学元件制造中的应用.航空精密制造技术,2005,41(4):10-12
    [8]Alex Ning.Compact lens with external aperture stop.Int.Cl.G02B 9/00.United States Patent,6,441,971 B2.2002.8.27
    [9]杨力主编.先进光学制造技术.北京:科学出版社,2001.9
    [10]J.W.Foreman,Jr.Simple numerical measure of the manufacturability of aspheric optical surfaces.Applied Optics,1986,25(6):826-827
    [11]J.Kumler.Designing and specifying aspheres for manufacturability.SPIE,2005(5874):58740C
    [12]M Y Yang,H C Lee.PC-based numerically controlled polishing machine for aspherical surfaces with dwell time coontrol.Proceedings of the First International Euspen Conference,1999(1):242-245
    [13]M Y Yang,H C Lee.Local material removal mechanism considering curvature effect in the polishing process f the small aspherical lens die.Journal of Materials Processing Technology,2001(116):298-304
    [14]C.Menchaca,D.Malacara.Directional curvatures in a conic surface.Appl.Opt.1984,23(19):3258-3260
    [15]Christian du JEU.Criterion to appreciate difficulties of aspherical polishing.SPIE,2004(5494):5494-14-9
    [16]阎秋生,张自强,唐延辉.磨料喷射微细加工应用基础研究——喷嘴设计及加 工试验.金刚石与磨料磨具工程,2002(2):19-2l
    [17]T Kuriyagama,N Yoshida,K Syoji.Machining characteriatics of abrasive jet mechining.Journal of the Japan Society for Precision Engineering,1998(64):881-885
    [18]Li F.Experimental and numerical investigation of abrasive waterjet polishing technology:PhD thesis.New Jersey Institute of Technology,USA,1996
    [19]M Hashish,D H Bothell.Polishing of CVD diamond films with abrasive-liquid jets.SPIE,1992(1759):97-105
    [20]L J Rhoades.Abrasive jet stream polishing.U.S.Pat.No.6,288,154
    [21]Oliver W.Faehnle,Hedser Brug,and Hans J.Frankena.Fluid polishing of optical surface.APPLIED OPTICS,1998,37(28):6671-6673
    [22]W Kordonski,A Sekeres.Jet-induced finishing of substrate surface.US Patent 6,719,611,2004
    [23]方慧,郭培基,余景池.液体喷射抛光材料去除机理的研究.光学技术,2004,30(2):248-250
    [24]Silvia Maria BOOIJ.Fluid Jet Polishing-possibilities and limitations of a new fabrication technique:PhD thesis.Delft University,Netherlands,2003
    [25]H Liu,J Wang,C Z Huang.Abrasive liquid jet as a flexible polishing tool.Proceedings of the ICSFT,September 2006
    [26]彭小强.确定性磁流变抛光的关键技术研究:学位论文.长沙:国防科学技术大学,2004
    [27]张峰.磁流变抛光技术研究:学位论文.长春:中国科学院长春光学精密机械与物理研究所,2000.9
    [28]Paul R Dumas,Jon Fleig,Greg W Forbs,et.al.Flexible polishing and metrology solutions for free-form optics.ASPE 2004
    [29]张国强,吴家鸣.流体力学.北京:机械工业出版社,2006年1月第一版
    [30]董志勇.射流力学.北京:科学出版社,2005年3月第一版
    [31]R D Blevins.Applied fluid dynamics handbook.Van Nostrand Reinhold Co.,Inc.,1984.262
    [32]尤伟伟,彭小强,戴一帆.磁流变抛光液的研究.光学 精密工程,2004,12(3):330-334
    [33]W Kordonski,D Golini,S Hogan,A Sekeres.System for abrasive jet shaping and polishing of surface using magnetorheological fluid.US Patent 5,971,835,1999
    [34]W Kordonski.Apparatus and method for abrasive jet finishing of deeply concave surfaces using magnetorheological fluid.US Patent 6,561,874,2003
    [35]www.cameraphonereport.com/2006/11/gartner_48_of_p.html
    [36]W Kordonski,A Shorey,A Sekeres.New magnetically assisted finishing method:material removal with magnetorheological fluid jet.SPIE,2004(5180):107-114
    [37]William Kordonski,Aric Shorey,Marc Tricard.Jet-induced high-precision finishing of challenging optics.SPIE,2005(5869):586909
    [38]A Shorey,W Kordonski,Marc Tricard.Dterministic precision finishing of domes and conformal optics.SPIE,2005(5786):310-318
    [39]Marc Tricard,Aric Shorey,Paul Dumas,Mike DeMarco.Extending the application of sub-aperture finishing.SPIE,2006(6150):61501K-1,8
    [40]王贵林.SiC光学材料超精密研抛关键技术研究:学位论文.长沙:国防科学技术大学,2002
    [41]高波.气囊抛光实验样机研制及其关键技术研究:学位论文.哈尔滨:哈尔滨工业大学,2005
    [42]王健,鄢定尧,李洁,许乔.非球面聚焦透镜数控加工技术研究.强激光与粒子束,2003,15(10):951-954
    [43]David D.Walker,David Brokkks,andrew King,et al.the 'Precessions' tooling for polishing and figuring fiat,spherical and aspheric surfaces.Optics Express,2003,11(8):958-964
    [44]张宝裕,刘恒基.磁场的产生.北京:机械工业出版社,1987
    [45]魏群.螺线管磁场分布特征.长春工业大学学报,2003,24(3):68-70
    [46]Takeshi Ohara,Katsuyki Kaiho,Tsukasa Kiyoshi.Optimization of a superconducting solenoid for high gradient magnetic separation systems.IEEE Transactions on Magnetics,1996,32(5):5103-5105
    [47]杨斌堂,陶华,C.Prelle,M.Bonis.磁致伸缩微小驱动器电磁线圈的设计研究.机械科学与技术,2004,23(8):982-1008
    [48]杨斌堂,陶华,M Bonis,C Prelle,F Lamaique.Terfenol-D磁致伸缩微小驱动器磁路设计.机械科学与技术,2005,24(3):293-295,349
    [49]於乾英,富知愚.圆柱型螺线管磁体的最佳形状.上海大学学报(自然科学版),2002,8(1):76-79
    [50]雷银照.轴对称线圈磁场计算.北京:中国计量出版社,1991年8月第一版
    [51]汪建新,胡巧英,孙建平等.磁致伸缩换能器结构对驱动磁场均匀性的影响.磁性材料及器件,2006,37(2):24-27
    [52]Fernando D.Goncalves,Jeong-Hoi Koo and Mehdi Ahmadian.A Review of the State of the Art in Magnetorheological Fluid Technologies-Part Ⅰ MR fluid and MR fluid models.The Shock and Vibration Digest.,2006,38(3):203-219
    [53]尤伟伟.磁流变抛光的关键技术研究:学位论文.长沙:国防科技大学研究生院,2004
    [54]Tammy M Simon,F Reitich,M R Jolley,K Ito,H T Banks.Estimation of the effective permeability in magnetorheological fluids.J.Intell.Material Systems and Structures,1998
    [55]Curtis M Oldenburg,Sharon E Borglin,George J Moridis.Numerical simulation of ferrofluid flow for subsurface environmental engineering applications.Transport in Porous Media,2000(38):319-344
    [56]沈辉,徐雪青,王伟.磁性液体表面形貌与颗粒排列结构的电子显微镜观察.中国科学(E辑),2003,33(1):25-28
    [57]池长青,王之珊,赵丕智.铁磁流体力学.北京:北京航空航天大学出版社,1993年12月第一版
    [58]Eric M Furst,Alice P Gast.Micromechanics of magnetorheological suspensions.Physical Review E,2000,61(6):6732-6739
    [59]尹真.电动力学(第二版).北京:科学出版社,2005年4月第二版
    [60]Sonia Melle,James E Martin.Chain model ofa magnetorheological suspension in a rotating field.Journal of Chemical Physics,2003,118(21):9875-9881
    [61]S Odenbach.Magnetoviscous effects in ferrofluids.Springer,Berlin,2002
    [62]T M Simon,F Reitich,M R Jolly,et al.The effective magnetic properties of magnetorheological fluids.Mathematical and computer modeling,2001(33):273-284
    [63]Mark R Jolly,J David Carlson,Beth C Munoz.A model of the behaviour of magnetorheological materials.Smart Mater.Struct.,1996(5):607-614
    [64]李国斌,宋顺成,赵宝荣等.磁性液体材料微结构磁化状态数值分析.计算物理,2006,23(5):571-575
    [65]F R Cunha,Y D Sobral.Characterization of the physical parameters in a process of magnetic separation and pressure-driven flow of a magnetic fluid.Physica A,2004(343):36-64
    [66]H V Ly,F Reitich,M R Jolly,et al.Simulations of particle dynamics in magnetorheological fluids.J Comput Phys,1999(155):160-177
    [67]M Mohebi,N Jamsbi.Simulation of the formation of non-equilibrium structures in magnetorheological fluids subject to an external magnetic field.Physical Review E,1996,54(5):5407-5413
    [68]方生,张培强.旋转磁场作用下磁流变液颗粒运动及结构演化的模拟.化学物理学报,2001,14(5):562-566
    [69]司鹄,彭向和,陈伟民.分析磁流变流体屈服应力微观力学模型.应用力学学报,2005,22(2):198-201
    [70]司鹄.磁流变体的力学机理研究:学位论文.重庆:重庆大学,2003
    [71]司鹄,李晓红.磁流变液的流体动力学理论.功能材料,2006,37(5):727-728,732
    [72]Rosenswig R E.Ferrohydrodynamics.Cambridge:Cambridge University Press,1985
    [73]Kunio Shimada,Shigemistu Shuchi,Atsushi Shibayama,et al.Effect of a magnetic cluster on the magnetic pressure of a magnetic compound fluid.Fluid Dynamics Research,2004(34):21-32
    [74]冯慈璋.静态电磁场.西安:西安交通大学出版社,1985年6月第一版
    [75]谢树艺.工程数学矢量分析与场论(第二版).北京:高等教育出版社,1985年3月第二版
    [76]D J Klingenberg,J C Ulicny,A Smith.Effects of body forces on electro- and magnetorheologicalfluids.Applied PhysicsLetters,2005(86):104101
    [77]Y M Shkel,D J Klingenberg.Magnetorheology and magnetostriction of isolated chains of nonlinear magnetizable spheres.J.Rheol.2001,45(2):351-368
    [78]吴其芬,李桦.磁流体力学.长沙:国防科技大学出版社,2007.1
    [79]Batchelor G K.An introduction to fluid dynamics.China Machine Press 2004
    [80]Entov V M,Barsoum M,Shmaryan L E.Instability of magnetorheological fluids.Society of Rheology,1996,40(5):727-739
    [81]Cheng Haobo,Sun Guozheng,FENG Zhijing,et al.Micro-phenomenon and viscosity features of magnetorheological fluids at external field.SPIE,2006(6149):6149-020
    [82]Seval Genc.Synthesis and properties of magnetorheological(MR) fluids:PhD thesis.University of Pittsburgh,2002
    [83]H Zhang,M Widom.Field-induced forces in colloidal particle chains.Physical Review E,1995,51(3):2099-2103
    [84]Sonia Melle.Study of the dynamics in magnetorheological suspension subject to external fields by means of optical techniques:PhD thesis.University c0mplutense of mardrid,Spain,2002
    [85]邹继斌,陆永平.磁性流体密封原理与设计.北京:国防科工业出版社,2000.8
    [86]阎超.计算流体力学方法及应用.北京:北京航空航天大学出版社,2006.6
    [87]Fluent Inc.Fluent user manuals Version 6.2
    [88]Weishan Kang,Zengyu Xu,Chuanjie Pan.MHD stabilities of liquid metal jet flows with gradient magnetic field.Fusion Engineering and Design,2006(81):1019-1025
    [89]P A Voltairas,D I Fotiadis,L K Michalis.Hydrodynamics of magnetic drug targeting.J.of Biomechanics,2002(35):813-821
    [90]乌效鸣.钻井液与岩土工程浆液.武汉:中国地质大学出版社,1999
    [91]刘小健,俞涛,刘林生.膨润土及其在磨料射流中的应用研究.新技术新工艺,2005(7):58-60
    [92]朗道,E M栗弗席兹著.周奇译.连续媒质电动力学[下册].北京:人民教育出版社,1963
    [93]徐惊雷,徐忠,肖敏等.冲击射流的研究概述.力学与实践,1999,21(6):8-17
    [94]周刚毅,金昀,张培强.磁流变液管道流模式流动行为的实验研究.中国科学技术大学学报,2000,30(1):46-50
    [95]H.Liu,J.Wang,N.Kelson,R.J.Brown.A study of abrasive waterjet characteristics by CFD simulation.J.Mat.Pro.Tec.,2004(153-154):488-493
    [96]林福严,曲敬信,陈华辉.磨损理论与抗磨技术.北京:科学出版社,1993
    [97]Eric Ness,Ron Zibbell.Abrasion and erosion of hard materials related to wear in the abrasive waterjet.Wear,1996(196):120-125
    [98]李诗卓,董祥林.材料的冲蚀磨损与微动磨损.北京:机械工业出版社,1987.10
    [99]曹天宇,周鹏飞.光学零件制造工艺学(修订本).北京:机械工业出版社,1987年6月第二版
    [100]方慧,郭培基,余景池.液体喷射抛光技术材料去除机理的有限元分析.光学精密工程,2006,14(2):218-223
    [101]查立豫,等.光学材料与辅料.北京:兵器工业出版社,1995
    [102]韩敬华,冯国英,杨李茗等.抛光液的PH值对抛光元件表面粗糙度的影响.光学技术,2006,32(4):562-564
    [103]Stephen D.Jacobs.Manipulating mechanics and chemistry in precision optics finishing.Science and Technology of Advanced Materials,2007(8):153-157
    [104]W.I.Kordonski,A.B.Shorey,and Marc Tricard.Magnetorheological jet(MR Jet~(TM))finishing technology.Journal of Fluids Engineering,2006,128(1):20-26
    [105]Hocheol Lee,Minyang Yang.Dwell time algorithm for computer-controlled polishing of small axis-symmetrical aspherical lens mold.Opt.Eng.,2001,40(9):1936-1943
    [106]Prashant M.Shanbhag,Michael R.Feinberg,Guido Sandri,et al.Ion-beam machining of millimeter scale optics.APPLIED OPTICS,2000,39(4):599-611
    [107]蔡自兴.机器人学.北京:清华大学出版社,2000.9
    [108]冯川,孙增圻.机器人喷涂过程中的喷炬建模及仿真研究.机器人,2003,25(4):353-358
    [109]张永贵,黄玉美,高峰等.喷漆机器人空气喷枪的新模型.机械工程学报,2006,42(11):226-233
    [110]孙希威,张飞虎,董申,栾殿荣.磁流变抛光光学曲面的两级插补算法.光电工程,2006,33(2):61-64
    [111]陈朝光,唐余勇,吴鸿业.微分几何及其在机械工程中的应用.哈尔滨:哈尔滨工业大学出版社,1998.4
    [112]David James Knapp.Conformal optical design:PhD thesis.University of Arizona,2002
    [113]彭小强,戴一帆,李圣怡,尤伟伟.回转对称非球面光学零件磁流变成形抛光的驻留时间算法.国防科技大学学报,2004,26(3):89-92
    [114]王云飞,姚英学,余顺周.回转对称非球面气囊抛光控制算法研究.现代制造工程,2006(8):9-11,14
    [115]徐炎昭,蒋静坪,曹天宇.旋转对称非球面自动加工控制算法研究.光学技术,2000,26(1):46-48
    [116]Osamu Horiuchi,Junichi Ikeno,Hideo Shibutani,at et.Nano-abrasion machining of brittle materials and its application to corrective figuring.Precision Engineering,2007(31):47-54
    [117]周林,戴一帆,解旭辉等.光学镜面离子束加工的可达性.光学 精密工程,2007,15(2):160-166
    [118]Q Fang,P S Sidky,M G Hocking.Microripple formation and removal mechanism of ceramic materials by solid-slurry erosion.Wear,1998(223):93-101

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700