用户名: 密码: 验证码:
碳纳米管/高分子复合材料的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究了碳纳米管/聚偏氟乙烯复合材料的电学性能和温度系数效应。为了充分利用碳纳米管的优异性能,提高碳纳米管与聚偏氟乙烯基体的相容性,我们对碳纳米管进行了化学修饰,制备了羧基修饰和酯基修饰的碳纳米管。利用溶液混合法、冷压、热处理技术,制备了未修饰、羧基修饰和酯基修饰碳纳米管/聚偏氟乙烯复合材料。研究表明:三类碳纳米管复合材料的渗流阈值大致相等,大约都为3.8 vol%。但是,未修饰碳纳米管/聚偏氟乙烯复合材料表现出明显的绝缘体-导体转变性质,而化学修饰碳纳米管复合材料的电导率随着碳管含量的增加缓慢上升。在达到复合材料渗流阈值时,复合材料的介电常数迅速增大。三种复合材料在室温下、1 KHz时所达到的最大介电常数和所需的碳管含量不同,分别为:未修饰碳纳米管/聚偏氟乙烯复合材料的最大介电常数为1700,碳管体积分数为6%;羧基修饰碳纳米管/聚偏氟乙烯复合材料的最大介电常数为3600,碳管体积分数为8%;酯基修饰碳纳米管/聚偏氟乙烯复合材料的最大介电常数为2400,碳管体积分数为6.5%。利用渗流阈值理论对复合材料的电学性质进行了解释。三种复合材料的温度系数效应都比较弱。但是,化学修饰碳纳米管/聚偏氟乙烯复合材料的熔融转变温度提高大约40度。复合材料的介电常数随温度变化关系一致,在1 KHz下表现为先增大后减小,后来又增大的变化趋势,这可能与基体的膨胀以及导电网络的改变有关。这类高介电高分子基复合材料有望在电活性高分子、电致伸缩等功能材料领域得到应用。
In this paper, the electrical properties and temperature coefficient effects of the multi-walled carbon nanotube/poly(vinylidene fluoride) (MWCNT/PVDF) composites were investigated. The carboxylic and ester functionalized MWCNT were prepared and the pristine, carboxylic, ester functionalized MWCNT/PVDF composites were fabricated by simple physical blending, cold-press, and heat treatment technology. The percolation thresholds of the three kinds of composites are approximately equal, about 3.8 vol%. The conductivity of the pristine MWCNT/PVDF composites increases remarkably near the percolation threshold, and exhibits a typical insulator-conductor transition. However, the conductivity of the chemically functionalized MWCNT/PVDF composites increases slowly with increasing the MWCNT volume fraction. The dielectric constants increase remarkably after the percolation threshold. However, the largest dielectric constant of these three kinds of composites is different. The largest dielectric constant of the pristine MWCNT/PVDF composites is 1700 with 6 vol% MWCNTs, while it reaches 3600 for carboxylic functionalized MWCNT/PVDF composites with about 8 vol% MWCNTs, and 2400 for ester functionalized MWCNT/PVDF composites with about 6.5 vol% MWCNTs. The positive temperature coefficient (PTC) and negative temperature coefficient (NTC) effects of these three kinds of composites are all small. However, the melting point of the chemically functionalized MWCNT/PVDF composites is larger than that of the pristine MWCNT/PVDF composites. The temperature dependence of the dielectric properties of these three kinds of MWCNT/PVDF composites is basically coincident. The dielectric constants of these composites increase with increasing temperature at low frequency, and then decrease when the temperature further increases up to about 140℃. However, the dielectric constants increase again at 180℃, which all can be attributed to the thermal expansion of the matrix and the change of the conduct net in these composites.
引文
[1] Nan C. W. A creation of new materials from nonintuition composite effect[J]. Progress in Nature Science, 2004,14(4):390-396
    [2] Iijima S. Helical microtubules of graphitic carbon[J]. Nature(London), 1991,354(7): 56-58
    [3]张力德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2002: 6
    [4] Ishigami M., Cumings J., Zettl A., et al. A simple method for the continuous production of carbon nanotubes[J]. Chemical Physics Letters, 2000,319(5-6):457-459
    [5] Guo T., Nikolaev P., Rinzler A. G., et al. Self-Assembly of tubular fullerenes[J]. Journal of Physical Chemistry, 1995,99(27):10694-10697
    [6] Birkett P. R., Cheetham A. J., Eggen B. R., et al. Transition metal surface decorated fullerenes as possible catalytic agents for the creation of single walled nanotubes of uniform diameter[J]. Chemical Physics Letters, 1997,281(1-3):111-114
    [7] Cheng H. M., Li F., Su H., et al. Dresselhaus, Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons[J]. Applied Physics Letters, 1998,72(25):3281-3283
    [8] Dresselhaus M. S., Dresselhaus G., Saito R. Carbon fibers based on C60 and their symmetry[J]. Physical Review B, 1992,45(11):6234-6242
    [9] Venema L. C., Meunier V., Lambin P., et al. Atomic structure of carbon nanotubes from scanning tunneling microscopy[J]. Physical Review B, 2000,61(4):2991-2996
    [10] Hertel T., Walkup R. E., Avouris P. Deformation of carbon nanotubes by surface van der waals forces[J]. Physical Review B, 1998,58(20):13870-13873
    [11]成会明.碳纳米管制备、结构、物性及应用[M].北京:化学工业出版社,2002: 262-271
    [12] Dresselhaus M. S., Dresselhaus G., Saito R. Physics of carbon nanotubes[J]. Carbon, 1995,33(7):883-891
    [13] Mintmire J. W., Dunlap B. I., White C. T. Are fullerene tubules metallic[J]. Physical Review Letters, 1992,68(5):631-634
    [14] Li F., Cheng H. M., Bai S., et al. Tensile strength of single-walled carbon nanotubesdirectly measured from their macroscopic ropes[J]. Applied Physics Letters, 2000,77(20):3161-3163
    [15] Wang Z. L., Poncharal P., Heer W. A .de. Measuring physical and mechanical properties of individual carbon nanotubes by in situ TEM[J]. Journal of Physics and Chemistry of Solids, 2000,61(7):1025-1030
    [16] Xie S., Li W., Pen Z., et al. Mechanical and physical properties on carbon nanotube[J]. Journal of Physics and Chemistry of Solids, 2000,61(7):1153-1157
    [17] Pan Z. W., Xie S. S., Lu L., et al. Tensile tests of ropes of very long aligned multiwall carbon nanotubes[J]. Applied Physics Letters, 1999,74(21):3152.-3154
    [18] Bandow S., Asaka S., Zhao X., et al. Purificatin and magnetic properties of carbon nanotubes[J]. Applied Physics Letters, 1998,67(1):23-27
    [19] Hou P. X., Bai S., Yang Q. H., et al. Multi-step purification of carbon nanotubes[J]. Carbon, 2002,409(1):81-85
    [20]杨全红,刘敏,成会明,等.碳纳米管的孔结构、相关物性和应用[J].材料研究学报2001,15(4):375-386
    [21] Hamon M. A., Chen J., Hu H., et al. Dissolution of single-walled carbon nanotubes[J]. Advanced Materials, 1999,11(10):834-840
    [22] ChenY., Chen J., Hu H., et al. Solution-phase ERP studies of single-walled carbon nanotubes[J]. Chemical Physics Letters, 1999,299(6):532-535
    [23] Mickelson E. T., Huffman C. B., Rinzler A. G., et al. Fluorination of single-wall carbon nanotubes[J]. Chemical Physics Letters, 1998,296(1-2):188-194
    [24] Boul K. A., Liu J., Mickelson E. T., et al. Reversible sidewall functionalization of buckytubes[J]. Chemical Physical Letters, 1999,310(3-4):367-372
    [25] Mickelson E. T., Chiang I. W., Zimmerman J. L., et al. Solvation of fluorinated single-wall carbon nanotubes in alcohol solvents[J]. Journal of Physical Chemistry B, 1999,103(21):4318-4322
    [26] Qin Y., Shi J., Wu W., et al. Concise route to functionalized carbon nanotubes[J]. Journal of Physical Chemistry B, 2003,107(47):12899-12901
    [27] Qin Y., Liu L., Shi J., et al. Large-scale preparation of solubilized carbon nanotubes[J]. Chemistry of Materials, 2003,15(17):3256-3260
    [28] Li S., Qin Y. Shi J., et al. Electrical properties of soluble carbon nanotube/polymer composite films[J]. Chemistry of Materials, 2005,17(1):130-135
    [29] Zhang H., Li H. X., Cheng H. M. Water-soluble multiwalled carbon nanotubes functionalized with sulfonated polyaniline[J]. Journal of Physical Chemistry B, 2006,110(18):9095-9099
    [30] Tang. B. Z., Xu H. Y. Preparetion, alignment, and optical properties of soluble poly(phenylacetylene)-wrapped carbon nanotubes[J]. Macromolecules, 1999,32(8):2569-2576
    [31] Chen X. H., Chen C. S., Xiao H. N., et al. Corrosion behavior of carbon nanotubes–Ni composite coating[J]. Surface coating Technology, 2005,191(2-3):351-356
    [32] Ang L. M., Hor T. S. A., Xu G. Q., et al. Decoration of activated carbon nanotubes with copper and nickel[J]. Carbon, 2000,38(3):363-372
    [33] Zhang Y., Zhang Q., Li Y., et al. Coating of carbon nanotubes with tungsten by physical vapor deposition[J]. Solid State Communications, 2000,115(1):51-55
    [34] Liu Z., Xu Z., Yuan Z. Y., et al. A simple method for coating carbon nanotubes with Co-B amorphous alloy[J]. Materials Letters, 2003,57(7):1339-1344
    [35] Gong X., Liu J., Baskaran S., et al. Surfactant-assisted processing of carbon nanotube/polymer composites[J]. Chemistry of Materials, 2000,12(4):1049-1052
    [36] Chen J., Liu H., Weimer W. A., et al. Noncovalent engineering of carbon nanotube surfaces by rigid, functional conjugated polymer[J]. Journal of American Chemistry Society, 2002,124(31):9034-9035
    [37] Barrau S., Demont P., Perez E., et al. Effect of palmitic acid on electrical conductivity of carbon nanotubes-epoxy resin composites[J]. Macromolecules, 2003,36(26):9678-9680
    [38] Barrau S., Demont P., Peigney A., et al. DC and AC conductivity of carbon nanotubes-polyepoxy composites[J]. Macromolecules, 2003,36(14):5187-5194
    [39] Cheol P., Zoubeida O., Kent A., et al. Dispersion of single wall carbon nanotubes by in situ polymerization under sonication[J]. Chemical Physics Letters, 2002,364(3-4):303-308
    [40]从文.聚偏氟乙烯塑料概述[J].有机氟工业, 2002,(2):38-45
    [41]顾明浩,张军,王晓琳.聚偏氟乙烯的晶体结构[J].高分子通报,2006,7:82-87
    [42] Salimi A., Yousefi A. A. FTIR studies ofβ-phase crytal formation in stretched PVDF films[J]. Polymer Testing, 2003,22:699-704
    [43]朱友良,余燕.聚偏氟乙烯树脂的性能与应用[J].上海塑料,2005,12(4):35-37
    [44]晓力.聚偏氟乙烯树脂的生产、性能及用途[J].有机氟工业,2006,1:24-32
    [45] Shirinov A. V., Schomburg W. K. Pressure sensor from a PVDF film[J]. Sensor Actor A, 2008,142(1):48-55
    [46] Zhao X. Z., Bharti V., Zhang Q. M., et al. Electromechanical properties of electrostrictive poly(vinylidene fluoride-trifluoroethylene) copolymer[J]. Applied Physics Letters, 1998,73(14):2054-2056
    [47]黄兴溢,柯清泉,江平开,等.颗粒填充聚合物高介电复合材料[J].高分子通报, 2006, (12):39-45
    [48] Brosseau C., Beroual A. Computational electromagnetics and the rational design of new dielectric heterostructures[J]. Progress in Materials Science, 2003,48(5):373-456
    [49]薛庆忠,卢贵武.聚苯乙烯-钛酸钡复合材料的介电特性研究[J].复合材料学报,2001,18(1):55-57
    [50]薛庆忠.二元复合材料的介电理论[J].胜利油田师范专科学校学报. 1999,13(4):25-30
    [51] Brosseau C. Generalized effective medium theory and dielectric relaxation in particle-filled polymeric resins[J]. Journal of Apllied Physics, 2002,91(5):3197 - 3204
    [52] Nan C. W. Physics of inhomogeneous inorganic materials[J]. Progress in Materials Science, 1993,37(1):1-116
    [53]党智敏,王海燕,王岚.新型高温高介电无机/有机功能复合材料[J].复合材料学报. 2005,22(5):9-15
    [54] Doyle W. T., Jacobs I. S. Effective cluster model of dielectric enhancement in metal-insulator composites[J]. Physical Review B, 1990,42(15):9319-9327
    [55] Doyle W. T., Jacobs I. S. The influence of particle shape on dielectric enhancement in metal-insulator composites[J]. Journal of Apllied Physics,1992,71(8):3926-3936
    [56]江平开,徐传骧,刘辅宜,等.金属-绝缘体复合材料介电增强的研究[J].西安交通大学学报. 1997,31(2):6-11
    [57] Song Y., Noh T. W., Lee S. I. Experimental study of three-dimensional ac conductivityand dielectric constant of a conductor-insulator composite near the percolation threshold[J]. Physical Review B, 1986,33(2):904-909
    [58] Wang L., Dang Z. M. Carbon nanotube composites with high dielectric constant at low percolation threshold[J]. Applied Physics Letters, 2005,87(4):042903-1-3
    [59] Li Y. J., Xu M., Feng J. Q., et al. Dielectric behavior of a metal-polymer composite with percolation threshold[J]. Applied Physics Letters, 2006,89(7):072902-1-3
    [60] Ahmad K., Pan W., Shi S. L. Electrical conductivity and dielectric properties of multiwalled carbon nanotube and alumina composites[J]. Applied Physics Letters, 2006,89(13): 133122-1-3
    [61] Huang W., Wang Y., Luo G., et al. 99.9% purity multi-walled carbon nanotubes by vacuum high-temperature annealing[J]. Carbon, 2003,41(13):2585-2590
    [62] Zhang J., Zou H., Qing Q., et al. Effect of chemical oxidation on the structure of single-walled carbon nanotube[J]. Journal of Physical Chemistry B, 2003,107(16):3712-3718
    [63] Kim Y. J., Shin T. S., Choi H. D., et al. Electrical conductivity of chemically modified multiwalled carbon nanotube/epoxy composites[J]. Carbon, 2005,43(1):23-30
    [64] Yu A., Itkis M. E., Bekyarova E., et al. Effect of single-walled carbon nanotube purity on the nanotube purity on the thermal conductivity of carbon-based composites[J]. Applied Physics Letters, 2006,89(13):133122-1-3
    [65] Velasco-Santos C., Martínez-Hernández A. L., Fisher F. T., et al. Improvement of thermal and mechanical properties of carbon nanotube composites through chemical functionalization[J]. Chemistry of Materials, 2003,15(23):4470-4475
    [66] Jiang X., Bin Y., Matsuo M. Electrical and mechanical properties of polyimide–carbon nanotube composites fabricated by in situ polymerization[J]. Polymer, 2005,46(18):7418-7424
    [67] Bai Y., Cheng Z. Y., Bharti V., et al. High-dielectric-constant ceramic-powder polymer composites[J]. Applied Physics Letters, 2000,76(25):3804-3806
    [68] Dang Z. M., Nan C. W., Xie D., et al. Dielectric behavior and dependence of percolation threshold on the conductivity of fillers in polymer-semiconductor composites[J]. Applied Physics Letters, 2004,85(1):97-99 47
    [69] Hong J. I., Winberg P., Schadler L. S., et al. Dielectric properties of zinc oxide/low density polyethylene nanocomposites[J]. Materials Letters, 2005,59(4):473-476
    [70] Xu J., Wong C. P. Characterization and properties of an organic-inorganic dielectric nanocomposite for embedded decoupling capacitor applications[J]. Composites Part A 2007,38(1):13-19
    [71] Xiao M., Sun L., Liu J., et al. Synthesis of properties of polystyrene/graphite nanocomposites[J]. Polymer, 2002,43(8):2245-2248
    [72] Owens F. J., Jayakody J. R. P., Greenbaum S. G. Characterization of single walled carbon nanotube: polyvinylene difluoride composites[J]. Composites Science and Technology, 2006,66(10):1280-1284
    [73] Connor M. T., Roy S., Ezquerra T. A., et al. Broadband ac conductivity of conductor-polymer composites[J]. Physical Review B, 1998,57(4):2286-2294
    [74] Kilbride B. E., Coleman J. N., Fraysse J., et al. Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films[J]. Journal of Applied Physics, 2002,92(7):4024-4030
    [75] Jiang M. J., Dang Z. M., Xu H. P. Giant dielectrica constant and resistance-pressure sensitivity in carbon nanotubes/rubber nanocomposites with low percolation threshold[J]. Applied Physics Letters, 2007,90(4)042914-1-3
    [76] Feng J., Chan C. M. Positive and negative temperature coefficient effects of an alternating copolymer of tetrafluoroethylene–ethylene containing carbon black-filled HDPE particles[J]. Polymer, 2000,41(19):7279-7282
    [77] Feng J., Chan C. M. Double positive temperature coefficient effects of carbon black-filled polymer blends containing two semicrystalline polymers[J]. Polymer, 2000,41(12):4559-4565
    [78] Hindermann-Bischoff M., Ehrburger-Dolle F. Electrical conductivity of carbon black–polyethylene composites Experimental evidence of the change of cluster connectivity in the PTC effect[J]. Carbon, 2001,39(3):375-382
    [79] Zhang C., Ma C. A., Wang P., et al. Temperature dependence of electrical resistivity for carbon black filled ultra-high molecular weight polyethylene composites prepared by hot compaction[J]. Carbon, 2005,43(12):2544-2553
    [80] Jiang M. J., Dang Z. M., Xu H. P. Significant temperature and pressure sensitivities of electrical properties in chemically modified multiwall carbon nanotube/methylvinyl silicone rubber nanocomposites[J]. Applied Physics Letters, 2006,89(18)182902-1-3
    [81] He X. J., Du J. H., Ying Z., et al. Positive temperature coefficient effect in multiwalled carbon nanotube/high-density polyethylene composites[J]. Applied Physics Letters, 2005,86(6):062112-1-3
    [82]章明堙饮,贾文陶,陈欣方.炭黑填充聚偏氟乙烯PTC复合材料研究[J].高分子材料科学与工程. 1998,14(2):58-62
    [83]李荣群,李威,苗金玲,等.高分子PTC材料的一种新理论模型.高分子材料科学与工程. 2003,19(5):42-49
    [84]李文春,沈烈,郑强.多壁碳纳米管填充高密度聚乙烯复合材料的导电特性.高等学校化学学报. 2005,26(2):382-384
    [85] Shenogin S., Bodapati A., Xue L., et al. Effect of chemical functionalization on thermal transport of carbon nanotube composites[J]. Applied Physics Letters, 2004,85(12):2229-2231
    [86] Xu Y., Ray G., Abdle-Magid B. Thermal behavior of single-walled carbon nanotube polymer-matrix composites[J]. Composites Part A, 2006,37(1):114-121
    [87] Zhang S., Zhang N., Huang C., et al. Microstructure and electromechanical properties of carbon nanotube/ poly(vinylidene-fluoride - trifluoroethylene - chlorofluoroethylene) composites[J]. Advanced Materials, 2005,17(15):1897-1901
    [88] Dang Z. M., Wu J. B., Fan L. Z. et al. Dielectric behavior of Li and Ni co-doped NiO/PVDF composites[J]. Chemical Physics Letters, 2003,376(3-4):389-394

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700