用户名: 密码: 验证码:
聚氨酯系汽车车底防石击涂料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用半预聚法制备了聚氨酯弹性体,通过正交试验对聚氨酯弹性体的合成条件进行优化;利用纳米颗粒对聚氨酯弹性体涂料进行改性,研究了纳米碳酸钙对其力学性能和动态力学性能的影响;采用不同结构的颜填料对聚氨酯弹性体涂料进行增强,研究了各种颜填料对其力学性能和动态力学性能的影响;通过各种助剂的选择,减少了涂膜的表面缺陷;制备出了宽温域、高阻尼、防石击性能优良的双组分聚氨酯系防石击涂料,并将其应用到汽车车底。
     研究了聚氨酯基体的合成工艺,确定了聚氨酯弹性体涂料的最佳合成条件。以液化MDI和聚四氢呋喃(PTMG)为原料,1,4-丁二醇(BDO)为扩链剂,PTMG和液化MDI质量比为4:6,采用一次加料的方法,半预聚温度为85℃,半预聚时间为2~3h,最终异氰酸根质量分数为6.5%,R=1.15。所制备出的聚氨酯弹性体涂料性能为:拉伸强度为4.67MPa,撕裂强度为18.92kN/m,邵A硬度为70,断裂伸长率为484.28%,tanδ>0.25的温域为5~105℃,tanδ_(max)为0.35。
     采用纳米碳酸钙对聚氨酯弹性体涂料进行改性,确定了纳米碳酸钙的最佳分散条件和用量。以聚氨酯涂料的B组分为分散介质,采用混合分散的分散方式,即先在混合稀释剂中超声40min,再球磨6h,最佳用量为6%~8%。研究结果表明,适量纳米碳酸钙的加入,提高了弹性体涂料的力学性能,改善了其动态粘弹特性,拓宽了涂膜的有效阻尼区域。纳米改性的聚氨酯弹性体涂料性能与未加纳米碳酸钙时相比,拉伸强度(5.33MPa)增加了14.1%,撕裂强度(24.82kN/m)增加了31.2%,邵A硬度(74)增加了5.8%,断裂伸长率(422.98%)稍有降低,tanδ>0.25的温域(-40~20℃)加宽了60%,tanδ_(max)(0.43)提高了22.8%。
     采用正交试验研究了颜填料对聚氨酯弹性体涂料性能的影响,确定了不同结构颜填料的最佳用量。用量分别为Cr_2O_3 14~16%,沉淀BaSO_4 8~11%,玻璃鳞片4~7%,TiO_214~17%和滑石粉2~5%。研究结果表明,适量颜填料的加入提高了弹性体涂料的力学性能,并使Tg向高温移动,损耗峰合二为一,在较宽的温度范围内有较高的损耗因子。其性能与未加颜填料相比,拉伸强度(8.72MPa)增加了63.2%,撕裂强度(20.32kN/m)有所降低,邵A硬度(78)增加了5.5%,断裂伸长率(223.46%)降低了47.1%,但仍然满足指标的要求,tanδ>0.25的温域(-15~100℃)变化不大,tanδ_(max)(0.42)基本不变。
     通过对催化剂、消泡剂和防缩孔流平剂的研究,解决了涂料生产和施工过程中固化慢的问题,减少了气泡、缩孔等表面缺陷。采用二月桂酸二丁基锡(DBTDL)为催化剂,用量0.03%,BYK-141为消泡剂,用量0.2~0.7%,BYK-306为流平剂,用量1~2%。
     制备出宽温域、高阻尼的双组分聚氨酯防石击涂料,利用普通喷涂法将其喷涂于涂有环氧电泳底漆的底材上。当涂膜厚度为200μm时,采用VDA-508石击仪,取500g碎石在0.3MPa的压力下进行10次石击试验,涂膜的防石击等级为2级,其性能优于目前国内使用的T-5H型防石击涂料,满足了防石击的使用要求。此防石击涂料可以广泛应用到汽车、坦克及装甲车等车底。
The synthetic conditions of polyurethane elastomer(PUE) were optimized via orthogonal design using half- prepolymerization.PU coating was modified by nanoparticles. The effects of nano-CaCO_3 on the mechanical properties and corresponding dynamic mechanical properties were studied.The properties of PU coating were reinforced via adding pigments and fillers with different structures.Surface defects of the coating film were solved by various additives.Finally,Higher-class PU stone chip-resistant underbody coating was prepared,with wider temperature range of resultful damping and higher loss tangent.
     Firstly,the preparing processes of PUE were investigated.A liquefacient MDI and polytetrahydrofuran(PTMG) were used as the starting materials,and 1,4-butanediol(BDO) was used as chain extender.The optimal synthetic conditions of PUE were determined as follows:PTMG:MDI=4:6(mass ratio),pouring once as charging method,T=85℃,t=2~3h, -NCO%=6.5%(ultimate),R=1.15.Under this condition,properties of PUE were shown as follows:tensible strength of 4.67MPa,tear strength of 18.92kN/m,shore A hardness of 70, breaken elongation of 484.28%.Temperature range of resultful damping(tanδ>0.25)was in the range of 5~105℃,and tanδ_(max) was 0.35.
     Secondly,PU coating was modified by adding nano-CaCO_3 and the optimal disperse conditions were obtained.When ingredient B of PU coating was used as dispersion medium,the best adding amount of nano-CaCO_3 in the range of 6~8wt%was obtained by the mixed dispersion method(ball mill 6h after ultrasonic dispersion 40min).PU coating with nano-CaCO_3 showed higher performance than that of coating without nano-CaCO_3, and its tensile strength(5.33MPa) was improved by 14.1%,tear strength(24.82kN/m) was raised by 31.2%,shore A hardness(74)was enhanced by 5.8%,elongation at break (422.98%) was decreased a little.Temperature range of resultful damping(tanδ>0.25) was in the range of -40~- 120℃which was widen by 60%,and tanδ_(max)(0.43) was increased by 22.8%.
     Thirdly,The effects of pigments and fillers on properties of PU coating were studied via orthogonal design.Color paste was then obtained from the dispersion mixture by adding 14~16wt%chromic oxide,8~11wt%precipitated baryta,4~7wt%glass flake, 14~17wt%titanic oxide and 2~5wt%saponite.Under this condition,mechanical properties of PU coating was improved,and the glass transition temperature shifted to higher temperature with loss tangent rising.Furthermore,two loss peaks combined into one.In comparison with PU coating without pigments and fillers,the properties of this kind of coating were enhanced.Its tensible strength(8.72MPa) was improved by 63.2%,tear strength(20.32 kN/m) was decreased a little,shore A hardness(78) was raised by 5.8%, although its elongation at break(223.46%) was reduced,it still can meet the index. Temperature range of resultful damping(tanδ>0.25) was in the range of -15~100℃,and tanδ_(max) was 0.42.
     Moreover,the surface defects of the coating film,such as lower solidifying,air bubble and sinkhole,were decreased by adding catalyst(0.03wt%DBTDL),antibubbling agent(0.2~0.7wt%BYK-141) and levelling agent(1~2wt%BYK-306).
     Finally,PU stone chip-resistant coating with wider temperature range of resultful damping and higher loss tangent was prepared.It consisted of half- prepolymer(A) and color paste(B),then it was applied with general spray gun.Panels were sprayed with EP resin as electrocoating.And then,stone chip-resistant coating was sprayed on the steels to a thickness of 200μm.At last,the stone chip test was Carried out using VDA- 508 stone chip test equipment.The test surface was bombarded ten times with 500g steel shots,at a pressure of 0.3MPa.The rating scale of PU stone chip-resistant coating was two.Therefore, it was approved that the obtained PU stone chip-resistant coating showed higher performance than domestic T-5H coating.It met the request of stone chip-resistant,and it can be widely used as stone chip-resistant underbody coating for motorcar,tank,armored car and so on.
引文
[1]Krois M,Dilger L,Bohm S,Koch S.International Journal of Adhesion & Adhesives[J].2003,(23):413-425
    [2]李清材,杨茂林,孟军锋,何敏婷.武器装备特种涂料的研制[J].特种涂料与涂装特刊,2006,7:3-6
    [3]徐宗器等.PVC涂料的粘弹性和防石击原理[J].上海涂料,1991,3:13-18
    [4]徐宗器.汽车复合涂层的抗石击碎落性[J].上海涂料,1994,2:7-14
    [5]蓝立文.高分子物理[M].西北工业大学出版社,1985
    [6]蒋鼎丰.纳米碳酸钙在PVC防石击涂料中的应用[J].上海建材,2002,2:22-23
    [7]Proc.11th International Conference in Organic Coating Science and Technology[J].1986:203-221
    [8]Progress in Organic coatings[J].1989
    [9]Bender,J.Paint Technology[J].Vol.43,No.552,P.51(1971).
    [10]Plenery.Lecture at the Astan Coating[J].1992
    [11]Applied Polymer Science[J].1969:1258-1261
    [12]ACS Drv.Of PMSE.Papers[J].1988,58:126-138
    [13]王美华.国外汽车耐石击涂料技术进展[J].涂料与应用,1993,1:8-9
    [14]周光亚.汽车车身阻尼胶板的现状及发展[J].汽车工艺与材料,1955,5:22-23
    [15]王松,乔冬平.PVC阻尼涂料的研制[J].机械产品与科技,1996,2:32-34
    [16]李树生.PVC树脂在汽车上的应用[J].汽车工艺与材料,1995
    [17]日本公开专利62079250
    [18]吴志龙.超薄型PVC防石击涂料(底部)[J].上海涂料,1997,2:18-21
    [19]周光亚.汽车PVC防石击涂料[J].精细专用化学品,2000
    [20]钟志康.汽车涂料进展[J].涂料工业,2004,34(8):33-36
    [21]陈晓康.汽车车身焊缝胶及防石击底涂胶技术开发[D].天津大学硕士论文
    [22]天津油漆厂技术信息站“与西德赫斯特公司技术交流资料总结”
    [23]US 4699955,US4699957,US4699959,US4701501,US4701502,EP152413
    [24]日本公开专利81167764
    [25]美国专利US5596043
    [26]美国专利US621075881
    [27]美国专利US5210154
    [28]美国专利US5169725
    [29]胡宝芹.沥青改性聚氨酯涂料的制备和性能研究[D].西安交通大学硕士论文, 2003.6
    [30]龙复,寇波,刘洪荣.水性聚氨酯进展[J].涂料工业,1996(3)
    [31]李绍雄,刘益军.聚氨酯树脂及其应用[M].北京:化学工业出版社,2002
    [32]Bayer O.Agew Chemic[J].1947,A59:257
    [33]刘锦春.聚氨酯弹性体合成结构与性能表征[D].青岛科技大学硕士论文,2004.4
    [34]周广德.国外建筑防水材料新进展[J].化学建材,1994,(6)
    [35]王恩清.无溶剂环氧聚氨酯涂料的研制[D].西安交通大学硕士论文,2002.3
    [36]李国莱,张慰胜,管从胜.重防腐涂料[M].北京:化学工业出版社,1999.
    [37]M.R.Jean,LHenry,M.Taha,Journal of Applied Polymer Science[J].2000,77:2711
    [38]Manson,J.A.Sperling,L.H.Polymer Blends and Composites[M],Plenum:NewYork,1976
    [39]Paul,D.Rewman,S.,Eds,Polymer Blends,Acdamic:San Diego[J].1978
    [40]Paul,D.R.,Sperting,L.H.,Es,Multicomponent Polymer Materials[M].American Che-mical Society:W ashington,DC,1986
    [41]Utracki,L.H.,Eds,PolymerAlloys and Blends[M].Hansoer:NewYork,1989
    [42]Sperling L K,Interpentrating Polymer Networks and Related Materials[J].Plenum:NewYork,1981
    [43]徐培林,张淑琴,聚氨酯材料手册[M].北京:化学工业出版社,2002
    [44]朱吕民.聚氨酯合成材料[M].江苏科学技术出版社,2002
    [45]金琼.聚氨酯涂料生产现状及其在各个领域中的应用[J].中国涂料,1998,6:17-21
    [46]宜兆龙,易建政,杜仕国.金属防腐涂料的新进展[J].现代化工,1999,19(4):22
    [47]朱明,王志强.刚结构常用防腐涂料的研制[J].刚结构,2001,16(4):52-53
    [48]赖广森.管道大修热喷快固化防腐涂料及其研究方向[J].涂料工业,1997,3:33-35
    [49]ProlingheuerEC,et al.J Elast Plas.1989,21:100
    [50]张春玲.聚氨酯弹性体结构与性能的关系研究[D].北京化工大学硕士学位论文,2004.4
    [51]Hogelnik H J.et al.J Elast Plas[M].1991,23:314
    [52]Bonart R,et al.J Macromol Sci Phy[J].1974,10:177
    [53]OphirZ,Wilkes GL.J Polym Sci Phys[J].1980,18:146
    [54]Guillermo Jimenea,Shigeo Asai,AT5ushi Shishido.European Polymer Jounral[J],2000,36:2039
    [55]Zhang B Y.Tan H M.EUr.Polym.[J].1998,34(3-4):571
    [56]郝立新,朱少庆,张虹等.浇注型端羟基聚丁二烯聚氨酯弹性体的合成及性能研究[J].橡胶工业,1996,43:652
    [57]陈福泰,多英全,罗善国等.PEG嵌段热塑性聚氨酯弹性体的形态结构和性能[J].高分子材料科学与工程,2001,17(3):55
    [58]丰美丽等.热塑性聚氨酯弹性体中软段或硬段变化对其物理机械性能的影响[J].化学推进剂与高分子材料,1999,(2):14
    [59]翟文,陈强,李玉莲.室温固化高硬度聚醚聚氨酯弹性体的研制[J].弹性体,2003,13(3):11
    [60]刘益军,王保志.聚氨酯弹性体在医疗制品上的应用[J].化工新型材料,1999,27(9):7
    [61]朱永群,黄亦军,胡巧玲等.同步互穿和顺序互穿对PU/EP IPN性能及微结构的影响[J].高等学校化学学报,1997,8(5):807
    [62]朱金华(ZHU Jin-hua).海军工程学院学位论文(Degree Thesis of Naval Academy Of Engineering),1987
    [63]朱金华,文庆珍,姚树人.聚氨酯弹性体的相区相容性和阻尼性能研究[J].应用化学,2001,18(5):416-418
    [64]文庆珍,朱金华,王源升等.聚氨酯的阻尼性能和形态结构的研究[J].武汉大学学报(理学版),2003,49(6):705-709
    [65]Wen Qing-zhen,Zhu Jin-hua,Yao Shu-ren.Effect of Hard Segments on the Damping Property and Compatibility of Polyurethanes[J].Polymer Materials Science and Engineering,2002,18(4):117-120(Ch)
    [66]傅明源,孙酣经.聚氨酯弹性体及其应用[M].化学工业出版社,2006
    [67]Paik Sung C S and Schneider N S.Macromol[J].1975,8:68
    [68]Legass R R.J Appl Polym Sci[J].1977,27:2489
    [69]Kevei T K,et al.J Appl Polym Sci[J].1982,2(7):2891
    [70]丰美丽.室温固化聚氨酯弹性体的合成[D].北京化工大学硕士论文,2001
    [71]Koutsky J A,Hien N V,Cooper S L.Some Results on Electron Microscope Investigations of Polyether-Urethane and Polyester-Urethane Block Copolymers[J].Jounral of Polymer Science PartB Polymer Letters,1970,8(5):353-359
    [72]Seymour R W,Estes G M,Cooper S L.Macromolecules[J].1970,3(5):579
    [73]Wilkes C E and Yusek C S.J Macromol Sci Pys[J].1973,B7:157
    [74]边祥成,李忠明等.聚氨酯弹性体力学性能的研究进展[J].2006,34(5)40-43
    [75]陈海良,张芳.聚醚型高硬度聚氨酯弹性体的研制[J].聚氨酯工业,2003,18(4):22
    [76]李宁等.聚氨酯无溶剂涂料MDI/聚醚半预聚体的合成[J].应用化工,2003,32(3):27-29
    [77]杨茹果,白少敏.丁二酸系聚氨酯弹性体的研制[J].太原理工大学学报,2004,35(3):362
    [78]赵选民.试验设计方法[M].科学出版社,2006
    [79]钟发春.聚氨酯/聚硅氧烷IPN阻尼弹性体研究[D].中国工程物理研究院博士学 位论文,2001.6
    [80]童国忠编著.现代涂料仪器分析[M].化学工业出版社,2006
    [81]丛树枫,喻露如.聚氨酯涂料[M].北京:化学工业出版社,2003
    [82]B.X.Fu,B.S.Hsiao,S.Pagola,Polymer,2001,42:599
    [83]吴人洁.现代分析技术在高聚物中的应用[M].上海科学技术出版社,1987
    [84]高濂,孙静,刘阳桥.纳米粉体的分散及表面改性[M].化学工业出版社,2003
    [85]史建明.纳米碳酸钙的分散和聚合物包覆[D].浙江大学博士学位论文,2005.1
    [86]田涛.环保型耐酸防腐涂料的研究[D].国防科学技术大学硕士学位论文,2005.11
    [87]秦总根,涂伟萍.聚氨酯涂料起泡的原因及其处理[J].2004,33(2):34-36
    [88]万开.单组分湿气固化聚氨酯船舶甲板白漆的研制[D].华南理工大学硕士学位论文,2001.5
    [89]洪啸吟,冯汉保.涂料化学[M].科学出版社,2005
    [90]吴珂,王伟.赵丰军用水陆两栖汽车发展现状和发展趋势
    [91]山西化工研究所,聚氨酯弹性体手册[M].化学工业出版社,2000
    [92]G.P.A特纳.涂料化学入门.徐宗器,林三元译.第一版.上海科学技术文献出版社,1985
    [93]钟发春,傅依备,尚蕾等.聚氨酯弹性体的结构与性能[J].材料科学与工程学报,2003,21(2):211
    [94]赵菲,孙学红,郝立新等.聚氨酯弹性体的力学性能影响因素研究[J].聚氨酯工业,2001,16(3):9
    [95]王正熙编著.聚合物红外光谱分析和鉴定[M].成都:四川大学出版社,1989
    [96]刘锦春,段有顺.影响MDI体系聚氨酯弹性体性能的因素[J].塑料工业,2006,34(7):4-7
    [97]杨其岳.木器漆用助剂[J].中国涂料,1999,(2):9-13
    [98]毕克公司表面助剂产品资料
    [99]王泳厚.聚氨酯涂料用助剂[J].涂料工业,1994,(5):48-53
    [100]陈晓康,范华,高俊玲等.轿车车身焊缝胶及防石击底涂胶技术开发[J].材料导报,2000,14(179)
    [101]罗华丽,李中原,黄岐善.异氰酸酯缩合碳化二亚胺用催化剂[J].聚氨酯工业,2004,19(6):10-13
    [102]李序霞,周芸,王世宇,黄岐善.液化MDI的GPC峰的判断[J].聚氨酯工业,2005,19(3):42-44
    [103]Hourston D.J.et al.Journal of Applied Polymer Science[J].1998,67:1973-1985

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700