用户名: 密码: 验证码:
转基因植物的生态环境风险分析与安全评价方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
转基因植物大面积商业释放会给生态环境带来潜在而巨大的风险。目前对转基因植物商业释放的风险分析与安全评估研究还处于初级阶段,缺乏行之有效的安全评价方法用于生产实践。为建立一套转基因植物生态环境风险评估体系,本文对其风险分析与安全评价方法进行了初步探索,其研究内容主要包括以下几方面:
     (1)运用安全系统工程中的因果分析法与事故树分析法,结合转基因植物生态风险问题进行了系统风险源辨识。根据因果分析图与层次分析法对风险主干因素的分析,结果显示基因漂流是引起转基因植物生态环境风险的首要主干原因;而后运用事故树分析对处于底层的基本原因事件进行分析,其中自播转基因植株在结构重要度分析中占有重要地位。据此风险源辨识结果将基因流与自播植株的生态风险作为转基因植物风险分析与安全评价的重点。
     (2)利用复杂系统的网络拓扑结构分析与社会网中的小团体理论,构建了转基因植物基因流风险的网络分析法。该方法主要包括转基因植物基因流网络构建、网络结构特性分析、小团体分析与结构同型性分析四个基本步骤。以1989-2008年二十年间的常规油菜与十字花科植物杂交文献实验数据为基础对该方法进行了实例演示,研究表明油菜基因流网络的节点度服从幂律分布,具有无标度特性,网络特性分析显示该网络在受到随机攻击时具较好的鲁棒性,而受到恶性攻击时具极弱的抗攻击性,小团体和结构同型性分析可将网络中298个节点22类十字花科植物划分为2个小团体和5类结构角色,其中甘蓝型油菜在油菜基因流网络小团体中具有关键性作用。这些演示结果表明基因流风险的网络分析法可有效进行转基因植物基因流风险规律划分。
     (3)在基因流风险的网络分析基础上,为进一步细化转基因植物与同源物种之间风险规律关系,运用TOPSIS排序法与粗糙集综合权重确定法相结合,构建了转基因植物基因流风险排序集成模型。基于甘蓝型油菜与其近缘种间的杂交组合研究文献与《中国植物志》中甘蓝型油菜的近缘植物的生物学特性描述,运用该模型对甘蓝型油菜与其近缘植物的基因流风险排序进行了演示。结果显示该模型能将甘蓝型油菜与其近缘植物之间的基因流风险按从大到小或从小到大的规律进行一一排序,进一步深化了基因流风险的网络分析法结论。
     (4)利用模糊集重心理论与熵值权重确定法相结合,构建了转基因植物营养生长速率等级安全评价模型。模型包含方差分析、建立营养生长速率等级分类标准值、评价指标正态隶属函数确立、模糊集重心理论计算指标重心向量集、熵值法计算评价指标权重向量和营养生长速率等级划分等六个基本步骤。并利用湖南省具代表性的芸苔属作物杂交组合和营养生长指标实测值对该模型进行了演示。论证了该模型能较好区分芸苔属作物各物候期的营养生长速率的安全等级。
     (5)基于模糊数学中模糊聚类分析与模糊模型识别,并结合生物统计学相关知识,构建了转基因植物基因流安全等级评价模型。该方法包含转基因植物种间组合亲和性的模糊聚类分析、模糊聚类结果F检验、种间组合风险等级划分和风险等级模式识别四个基本步骤。并在等级模式识别步骤中针对样本数据收集情况的不同,构建了不同的等级识别方法,与传统聚类的硬性划分相比更具灵活性。以常规油菜杂交研究文献的实验数据对该方法进行了演示,将这些杂交组合聚类形成六个风险等级模式,并用研究文献资料中的一杂交组合数据为待识别样本进行风险等级识别,识别结论与文献结论相符,论证了该方法具可操作性。
     最后,基于风险规律与安全评价方法构建的基础上,提出了转基因植物风险控制的网格化管理模式和生物安全立法建议。
With the commercial release of transgenic plants in large range, there are many potential and large risks of ecological environment. Currently, the risk analysis and safety assessment methods research of transgenic plants are still at the primary stage, and there are almost not effectual methods applied to agriculture practice. To build a system of risk analysis and safety assessment methods of transgenic plants, some preliminary study is developed in this paper, which the main contents were as following:
     Firstly, based on the combination of the causality of analysis with the fault tree analysis, the risk sources of transgenic plants were system idetified. According to the analysis results of causality analysis, gene flow was the most important reason among transgenic plants ecological environment risks. The basic events were analysised by fault tree analysis, in which, volunteer crops played an important role in structure importance. According to the result of system identification, the gene flow and volunteer crops were two main research contents in this paper.
     Secondly, to understand the gene flow rules of transgenic plants, the gene flow risk complex network analysis method was built based on the theory of complex network and small group. The method included four steps:transgenic plants gene flow network construction; network structure characteristics analysis; small group analysis and structure isomorphism analysis.The method was demonstraded based on the documents of normal rapeseed hybridizing with cruciferae from 1989 to 2008. The transgenic rapeseed gene flow topological graph was constructed and the structural characteristics were analyzed. The result showed that node degree of network followed power-law distribution and had the scale-free properties. The network robustness was analyzed from two aspects of random attacks and intentional attacks. Analysis showed the gene flow network was robust against random failures of nodes but fragile to intentional attacks when the removal of node no more than 10% nodes. At last, the subgroup and structural position were analyzed, which showed 22 kinds cruciferae plant were divided into two subgroups and five structural positions, and Brassica napus played a key role in subgroups and structural position. These research results can provide new approach for transgenic plants gene flow research.
     To further study on the risk rule of the transgenic plants based on the gene flow risk complex network analysis method, the gene flow risk ranking integration model was built based on TOPSIS ranking and rough set theory. Then, the model was demonstrated by using the cross combination documents and the biological characteristics data in China flora, the result showed the model can preferably identify the rank between Brassica napus and cruciferae and further deepened the results of the complex network analysis method.
     Two aspects research were mainly to be developed on safety assessment method. Firstly, to predict the law of vegetative growth of transgenic plants and study corresponding agricultural cultivation method when they compete with volunteer crops, an evaluation model of transgenic plants was proposed base on theory of barycenter of fuzzy set and entropy method. The model mainly included four steps:The normal membership function establishment of evaluation indexes, calculating index barycenter vector set by theory of barycenter of fuzzy set, calculating index weight by entropy method and identifying the vegetative growth rate rank. Subsequently, the evaluation model was demonstrated by using the cross data of normal rapeseed. These results proved that the model proposed could identify plants vegetative growth rate rank in various phonological phase and was operational. Furthermore, the agriculture activities of transgenic plants could be inducted by it. Secondly, to predict the environmental risk of the gene flow of transgenic plants after commercialization, a protocol for assessing its compatibility risks was proposed by the fuzzy clustering analysis and fuzzy model identification along with the biometric theory. The protocol included four steps:the fuzzy clustering analysis of interspecific crossing compatibility of transgenic plants, the F test of the outcome of the fuzzy clustering analysis, ranking of the risk of the interspecific crossing compatibility, and identifying the risk ranks. At the final stage of the protocol, various methods for identifying risk ranks were proposed to accommodate different data collection situations, therefore this approach was more flexible than the rigid ranking by the traditional clustering analysis. Subsequently, the protocol was demonstrated by using the the documents of normal rapeseed, and six ranks of risks were established, and the risk rank of the interspecific compatibility was identified successfully in a crossing data of Brassica napus. These results proved that the protocol proposed was operational.
     At last, based on these methods built above, the grid management pattern and some legislative suggestions of transgenic plants risk control were put forward.
引文
[1]张艳华,季静,王罡.转基因植物与生物安全性[J].作物杂志,2003,6:4-7
    [2]刘谦,朱鑫泉.生物安全[M].北京:科学出版社,2001,2
    [3]Kahl L S. Summary of consultation with calgene[J]. Concerning Flavr Savr Tomoto FDA,1994, 91:330-334
    [4]Graham Brookes, Peter Barfoot. GM Crps:The First Ten Years-Global Socio-Economic and Environmental Impacts [M]. ISAAA Brief,2006,No.36
    [5]樊龙江,周雪平,胡秉民等.转基因植物的基因漂流风险[J].应用生态学报,2001,12(4):630-632
    [6]张永军,吴孔明,彭于发等.转基因植物的生态风险[J].生态学报,2002,11(11):1951-1959
    [7]刘传光,林青山,江奕君等.转基因植物的生物安全问题探讨[J].中国生态农业学报,2003,11(3):175-177
    [8]田岩,张永军,赵奎君等.转基因植物对蜂类昆虫安全性[J].植物保护,2006,32(5):8-12
    [9]钱迎倩.转基因作物的利弊分析[J].生物技术通报,1999,5:7-11
    [10]钱迎倩,魏伟,桑卫国.转基因作物对生物多样性的影响[J].生态学报,2001,21(3):337-343
    [11]张竞秋,张丽,哈斯阿古拉.转基因作物及其生物安全性[J].北方园艺,2004(4):80-81
    [12]魏伟,钱迎倩,马克平.转基因作物与其野生亲缘种间的基因流[J].植物学报,1999,41(4):343-348
    [13]钱迎倩,魏伟,田彦等.转基因作物在生产中的应用及某些潜在问题[J].用与环境生物学报,1999,5(4):427-433
    [14]程焉平,转抗虫基因作物的安全性及其对策[J].吉林农业大学学报,2002,24(5):49-52
    [15]钱迎倩,魏伟.再论生物安全[J].广西植物,2003,10(2):126-128
    [16]徐海根,王健民,强胜等.《生物多样性公约》热点研究:外来物种入侵生物安全遗传资源[M].北京:科学出版社,2004,10
    [17]张兰,李建科.转基因产品对蜜蜂和雄蜂的影响[J].中国养蜂,2005,56(6):7-9
    [18]束春娥,柏立新,孙宏武等.棉铃虫多代连续取食转基因抗虫棉的抗性演变[J].中国生物防治,2000,17(1):1-5
    [19]Riddick E W, Dively G, Barbosa P. Effect of a seed mix deployment of Cry3A-transgenic and nontransgenic potato on the abundance of L ebia g rand is (Coleoptera:Carabidae) and Coleomegillam aculata (Coleopera:Coccinellidae) Ann[J]. Entolmol Soc Am,1998,91 (5): 647-653
    [20]Hilbeck A, Baumgartner M, Padruot M F, et al. Effects of transgenic Bacillus thuringiensis corn fed preonmortality and development time of immature Chry soperla carnea (N europ tera: Chrysopidae) [J]. Environ Entomol,1998,27 (2):480-487
    [21]Hall L, Topinka K. Pollen flow between herbicideresistant Brassica napus is the cause of multiple-resistan B.napus volunteers [J]. Weed Science,2000,48:688-694
    [22]Beckie H J, Hall L M.Impact of herbicide-resistant crops as weeds in Canada Proceedings Brighton Crop Protection Council Conference [J].Weeds,2001,32:135-142
    [23]Gal S B, Pisan T, John N, et al. Agroinfection of transgenic plants leads to viable cauliflwer mosaic virus by inter-molecular recombination [J]. Virology,1992,187:525-533
    [24]Dalton R. Transgenic corn found growing in Mexico [J]. Nature,2001,413-337
    [25]Quist D, Chapela I H. Transgenic DNA introgressed into traditional maize landraces in Mexico [J]. Nature,2001,44:541-543
    [26]Kjellson G, Simonsen V. Methods for risk assessment of transgenic plants. I competition, establishment and ecosystem efforts[M]. Basel:Birkhauser Verlag,1994,1-214
    [27]Losey J E.Transgenic pollen harms monarch larvae [J].Nature,1999,399:214
    [28]Pleasants J M, Hellmich R L,Dively G P,et al.Corn pollen deposition on milkweeds in and near cornfields[J]. Proc Natl Acad Sci USA,2001,98(21):11919-11924
    [29]Lavigne C, Klein E K,Vallee P, et al. A pollen-dispersal experiment with transgenic oilseed rape estimation of the average pollen dispersal of an individual plant within a field [J].Theoret Appl Genetics,1998,96(6):886-896
    [30]Saeglitz C, Pohl M, Bartsch D. Monitoring gene flow from transgenic sugar beet using cytoplasmic male-sterile bait plants [J]. Mol Ecol,2000,9(12):2035-2040
    [31]沈法富,于元杰,张学坤等.转基因棉花的Bt基因流[J].遗传学报,2001,28(6):562-567
    [32]张长青, 吕群燕,王志兴等.抗2,4-D转基因棉花的基因漂流频率[J].中国农业科学,1997,(1):92-93
    [33]Scheffler J A, Parkinson R, Dale P J.Evaluating the effectiveness of isolation distances for field plots of oilseed rape(Brassica napus)using a herbicide-resistance transgene as a selectable marker[J]. Plant Breeding,1995,114:317-321
    [34]Timmons A M, Brien E T, Charters Y M, et al. Assessing the risks of wind pollination from fields of genetically modified Brassica napus ssp[J]. Oleifera Euphytica,1995,85:417-423
    [35]Downey R K. Gene flow and rape -the Canadian experience.In British Crop Protection Council: Gene flow and Agriculture-Relevance for Transgenic Crops [P]. Symposium Proceedings 1999, {72):109-116
    [36]Rakow G, Woods D L. Outcrossing in rape and mustard under Saskatchewan prairie conditions [J]. Plant Sci,1987, (67):147-151
    [37]Crouch M L. How the Terminator terminates:an explanation for the nonscientist of a remarkable patent for killing second generations seeds of crop plants. http://www.bio.indiana.edu/people.terminator html
    [38]钱迎倩,马克平,桑卫国等.终止子技术与生物安全[J].生物多样性,1999,(2):151-155
    [39]David Lee, Ellen Natesan. Trends in Biotechnology[J], Plant Sci,2006, (24):3-4
    [40]Kumar S. Stable transformation of the cotton plastid genome and maternal inheritance of transgenes[J]. Plant molboil,2004, (56):203-216
    [41]Kumar S. Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots and leaves confers enhanced salt tolerance [J]. Plant Physiol,2004, (136):2843-2854
    [42]Khan M S, Maliga P. Fluorescent antibiotic resistance marker for tracking plastid transformation in higher plants [J]. Nat Biotechnol,1999, (17):910-915
    [43]Medysegy. Transmission of paternal chloroplasts in Nicotiana[J].Mol Gen Genet,1986, (204):195-198
    [44]Stewart J R, Adang J N, Raymer P L, et al. Insect control and dosage effects in transgenic canola containing a synthetic Bacillus thringiensis cryLAc Gene[J]. Plant Physiology,1996, (112):115-120
    [45]Halfhill M D, Richards H A, Mabon S A,et al. Expression of GFP and Bt transgenes in Brassica napus and hybridization with Brassica rapa[J]. Theor Appl Genet,2001, (103):659-667
    [46]Stewart C N. Gene flow and its consequences:Brassica napus (canola, oilseed rape) to wild relatives:Proceedings of the Gene Flow workshop[P], the Ohio State University, March 5 and 6, 2002:99-105
    [47]张书芬,文雁成,王建平等.高配合力双低油菜细胞质雄性不育基因的遗传及细胞质效应[J].中国油料作物学报,1999,21(1):1-3
    [48]Walklate P J, Hunt J C, Higson H L,et al. model of pollen-mediated gene flow for oilseed rape[J]. Biol Sci,2004, (271):441-449
    [49]Damgaard C, Kjellsson G. Gene flow of oilseed rape (Brassica napus) according to isolation distance and bufferzone [J]. Agric Ecosyst Environ,2005, (108):291-301
    [50]Devaux C, Lavigne C, Falentin-Guyomareh H, et al. High diversity of oilseed rape pollen clouds over an agriecosystem indicates long-distancedispersal [J]. Mol Ecol,2005,(14):2269-2280
    [51]Klein E K, Lavigne C, Picault H, et al. Pollen dispersal of oilseed rape:estimation of the dispersal function and effects of field dimension [J]. Appl Ecol,2006, (43):141-151
    [52]Colbach N, Clermont-Dauphin C, Meynard J M. GENESYS:a model of the influence of cropping system on gene escape from herbicide tolerant rapeseed crops to rape volunteers I.Temporal evolution of a population of rapeseed volunteers in a field[J].Agric Ecosyst Environ, 2001a, (83):235-253
    [53]Claessen D, Gilligan C A, Bosch F. Which traitspromote persistence of feral GM crops? Part1: Implications of metia population structure [J]. Oikos,2005a (110):30-42
    [54]Gamier A, Lecomte J. Using a spatial and stage-structured invasion model to assess the spread of feral populations of transgenic oilseed rape [J]. Ecol Model,2006, (194):141-149
    [55]Squire G R, Burn D, Crawford J W. A model for the impact of herbicide tolerance on the performance of oilseed rape as a volunteer weed [J]. Ann Appl Biol,1997, (131):315-338
    [56]Colbach N, Clermont-Dauphin C, Meynard J M. GENESYS:a model of the influence of cropping system on gene escape from herbicide tolerant rapeseed crops to rape volunteers in a field II:Genetic exchanges among volunteer and cropped populations in a small region[J]. Agric Ecosyst Environ,2001b, (83):255-270
    [57]Claessen D, Gilligan C A, Bosch F. Which traits promote persistence of feral GM crops? Part 2:Implications of metia population structure [J]. Oikos,2005b (123):50-62
    [58]Pekrun C, Lane PW, Lutman P J. Modelling seed bankdynamics of volunteer oilseed rape (Brassica napus) [J]. Agric Syst,2005, (84):1-20
    [59]Begg G S, Hockaday S, Mc Nicol J W, et al. Modelling the persistence of volunteer oilseed rape (Brassica napus) [J]. Ecological Modelling,2006, (198):195-207
    [60]Thompson C J, Thompson B J, Ades P K,et al. Model-based analysis of the likelihood of gene introgression from genetically modified crops into wild relatives [J]. Ecol.Model,2003, (162): 199-209
    [61]Gamier A, Lecomte J. Using a Spatial and stage-structured invasion model to assess the spread of feral populations of transgenic oilseed rape[J]. Ecological Modelling,2006, (194):141-149
    [62]Sabine Gruber, Wilhelm Claupein. Fecundity of volunteer oilseed rape and estimation of potential gene dispersal by a practice-related model [J]. Agriculture Ecosystems and Environment,2007, (119):401-408
    [63]Bateman A J. Contamination in seed crops:Ⅲ Relation with isolation distance[J]. Heredity, 1947,(1):303-336
    [64]Manasse R. Ecological risks of transgenic plants:effects of spatial dispersion on gene flow [J]. Ecol Appl,1992,2:431-438
    [65]Coy P A, Duesing J H. Assessing the environmental impact of gene transfer to wild relatives [J]. Bio/Tech,1996,(14):39-40
    [66]Haygood R. Population genetics of transgene containment [J]. Ecol Lett,2004, (7):213-220
    [67]Kareiva P, Morris W, Jacobi C M. Studying and managing the risk of cross-fertilization between transgenic crops and wild relatives [J]. Mol Ecol,1994, (3):15-21
    [68]Sabine Gruber, Wilhelm Claupein. Fecundity of volunteer oilseed rape and estimation of potential gene dispersal by a practice-related model [J].Agriculture.Ecosystems and Environment,2007, (119):401-408
    [69]Christian Damgaard, Gosta Kjellsson. Gene flow of oilseed rape (Brassica napus according to isolation distance and buffer zone [J].Agriculture Ecosystems and Environment,2005, (108):291-301
    [70]Kjellsson G, Simonsen V, Ammann K, et al. Methods for Risk Assessment of TransgenicPlants:Ⅱ Pollination, Genetransfer and Population Impacts[M]. Basel:Birkhauser Verlag,1997,221-237
    [71]Doebley J. Molecular evidence for gene flow among Zea species [J]. Bioscience,1990, 40:443-448
    [72]Kerlan M C, Chevre A M, Eber F. Interspecific hybrids between a transgenic rapeseed (Brassica napus) and related species:cytogenetical characterization and detection of the transgene[J]. Genome,1993,36:1099-1106
    [73]Metz P L J, Jacobsen E, Nap J P,et al. The impact on biosafety of the
    phosphinothricin-tolerance transgene in inter specific B. rapa ×B. napus hybrids and their successive backcrosses[J]. Theor Appl Genet,1997,95:442-450
    [74]Rissler J, Mellon M.The ecological risks of engineered crops[M]. London:MIT Press,1996
    [75]汪其怀,付仲文,李宁等.菲律宾转基因生物安全管理.世界农业,2002,6:30-31
    [76]国务院发展研究中心.美、日、欧盟转基因生物安全管理模式[J].河北畜牧畜医,2002,18(5): 42
    [77]林祥明,朱州.美国转基因生物安全的法规体系形成与发展[J].世界农业,2004,5:14-17
    [78]李宁,汪其怀,付仲文.美国转基因生物安全管理考察报告[J].农业科技管理,2005,24(5):12-17
    [79]边永民.欧盟转基因生物安全法评析[J].河北法学,2007,25(5):157-163
    [80]刘培磊,李宁,汪其怀.日本农业转基因生物安全管理实施进展[J].世界农业,2006,8:43-46
    [81]高胜.转基因技术与《生物安全协定书》[J].山东工商学院学报,2004,18(4):61-65
    [82]桑卫国,马克平,魏伟.国内外生物技术安全管理机制[J].生物多样性,2000,8(4):413-42
    [83]Organization for Economic Cooperation and Development. Safety evaluation of foods produced by modern biotechnology:concepts and principies[M]. Paris,1993.1-16
    [84]李尉民,岳宁,夏红民.转基因生物及其产品的风险与管理[J]生物技术通报,2000,16(4):41-44
    [85]李晓农,刘瑞爽,李晓霞等.完善我国的转基因生物安全法规体系[J].中国卫生法制,2005,13(5):13-15
    [86]李宁,连庆,付仲文.在转基因生物安全管理法规框架下健全《生物安全议定书》履约机制[J].农业科技管理,2006,25(6):21-23
    [87]农业部农业转基因生物安全管理办公室.中国农业转基因生物安全法规与管理[J].科技中国,2004,9:54-55
    [88]付仲文,汪其怀,李宁等.农业转基因生物为安全评价申报资料要求[J].农业生物技术学报,2006,14(6):1002-1004
    [89]丁晓阳.浅议我国生物安全政策[J].科技进步与对策,2003,12:32-33
    [90]雷蕾.浅谈农业转基因作物发展及生物安全管理[J].西南园艺,2002,30(3):49-50
    [91]黄锡生,张菱芷.浅议我国生物安全的法律保障[J].南方冶金学院学报,2005,26(5):107-108
    [92]王明远.转基因生物安全监管模式及我国转基因生物安全立法研究[J].上海交通大学学报(农业科学版),2007,(2):113-118
    [93]闫新甫.转基因植物[M].北京:科学出版社,2003年
    [94]陆德如,陈永青.基因工程[M].北京:化学工业出版社现代生物技术与医药科技出版中心,2002
    [95]何水林.基因工程[M].北京:科学出版社,2008
    [96]宣卫红,诸谧琳,藏靖.普通高等院校教学质量控制的因果分析图法.河北建筑工程学院学报,2007,25(4):119-121
    [97]康健,徐永新.重要度因果分析法在煤层开采中的应用.矿业快报,2008,7(7):108-110
    [98]沈斐敏.安全系统工程基础与实践[M].北京:煤炭工业出版社,1991
    [99]杜海峰,李树茁,W. F. Marcus.小世界网络与无标度网络的社区结构研究[J].物理学报,2007,56(12):6886-6893
    [100]Hethcote H W. The mathematics of infectious diseases[J]. SIAM Review,2000,42:599-653
    [101]Farkas I, Jeong H, Vicsek T, et al. The topology of the transcription regulatory network in the yeast, Saccharomyces cerevisiae. Physica A,2003,318:601-612
    [102]Barabasi A.L, Jeong H, Z. Neda, et al. Evolution of the social network of scientific collaborations. Physica A,2002,311:590-614
    [103]翁文国,倪顺江,申世飞.复杂网络上灾害蔓延动力学研究[J].物理学报,2007,56(4):1938-1943
    [104]章忠志,周水庚,方锦清.复杂网络确定性模型研究的最新进展[J].复杂系统与复杂性科学,2008,4(5):29-46
    [105]俞桂杰,彭语冰,褚衍昌.复杂网络理论及其在航空网络中的应用[J].复杂系统与复杂性科学,2006,1(3):79-85
    [106]谭跃进,吴俊.网络结构熵及其在非标度网络中的应用[J].系统工程理论与实践,2004,6: 1-3
    [107]李敏,陈建二,王建新.基于标准结构熵的PP1网络可靠性研究[J].计算机应用研究,2009,26(1):97-98
    [108]罗家德.社会网分析讲义[M].社会科学文献出版社,北京,2005
    [109]wen Jing, Tu Jin-xing, Li Zai-yun, et al. Improving Ovary and Embryo Culture Techniques for Efficient Resynthesis of Brassica napus from Reciprocal Crosses between Yellow-seeded Diploids B. rapa and B. oleracea[J]. Euphytica, Springer Science Business Media B.V.2007: 93-102
    [110]刘忠松,官春云,李栒等.甘蓝型油菜与芥菜型油菜种间杂交研究[J],中国油料作物学报.2001,(2):82-86
    [111]Richard G. FitzJohn, Tristan T. Armstrong, Linda E. Newstrom-Lloyd, et al. Hybridisation within Brassica and allied genera:evaluation of potential for transgene escape[J]. Euphytica, 2007(158):209-230
    [112]Graham Brookes, Peter Barfoot. GM Crps:The First Ten Years-Global Socio-Economic and Environmental Impacts[R]. ISAAA Brief,No.36,2006:2-3 http://biosafety.ihe.be
    [113]朱媛,林良斌.甘蓝型油菜和芸芥属间杂交的亲和性研究[J].中国农学通报,2005,(12)170-173
    [114]朱旺升,徐晶,华玉伟等.埃塞俄比亚芥与诸葛菜属间杂种的基因组原位杂交分析[J].西北植物学报,2005,25(4):662-667
    [115]刘兴梁,孟金陵.甘蓝型油菜与埃塞俄比亚芥种间可交配性的胚胎学研究[J].作物学报,1995,21(4):385-392
    [116]陈树忠,殷家明,唐章林等.甘蓝型油菜与羽衣甘蓝远缘杂交初步研究[J].西南农业大学学报,2000,22(3):208-211
    [117]徐爱遐,黄继英,金平安等.甘蓝型油菜和芥菜型油菜种间杂交研究[J].西北植物学报,1999,19(3):402-407
    [118]张永泰,李爱民,陆莉等.通过甘蓝型油菜和白芥属间杂种后代的小孢子培养获得二体异附加系[J].作物学报,2006,32(11):1764-1766
    [119]H. Yamagishi, M. Landgren, J. Forsberg. Production of Asymmetric Hybrids between ArabidopsisThaliana and Brassica Napus Utilizing an Efficient Protoplast Culture System [J]. Theor Appl Genet,2002 (104):959-964
    [120]O. Sridevil, N. Sarla. Production of Intergeneric Hybrids between Sinapis Alba and Brassica Carinata[J]. Genetic Resources and Crop Evolution 2005, (52):839-845
    [121]M. T. Li,Z. Y. Li,C. Y. Zhang,et al. Reproduction and Cytogenetic Characterization of Interspecific Hybrids Derived from Crosses between Brassica Carinata and B. Rapa[J].Theor Appl Genet,2005, (110):1284-1289
    [122]Hall L, Topinka K. Pollen Flow between Herbicideresistant Brassica Napus is the Cause of Multiple-resistant B.napus Volunteers [J]. Weed Science,2000, (48):688-694
    [123]Beckie H J, Hall L M. Impact of Herbicide-resistant Crops as weeds in Canada Proceedings Brighton Crop Protection Council Conference [J].Weeds,2001,135-142
    [124]浦惠明,戚存扣,张洁夫等.转基因抗除草剂油菜对近缘作物的基因漂移[J].生态学报,2005,25(3):581-588
    [125]浦惠明,戚存扣,张洁夫等.转基因抗除草剂油菜对十字花科杂草的基因漂移[J].生态学报,2005,25(4):911-917
    [126]刘忠松.油菜远缘杂交的遗传育种研究 Ⅱ甘蓝型油菜与芥菜型油菜杂交的亲和性及其杂种一代[J].中国油料,1994年,16(3):1-6
    [127]刘忠松,黄崧,喻名科.油菜远缘杂交的遗传育种研究 Ⅳ芥菜型油菜与甘蓝型油菜杂交后代的脂肪酸组成分析[J].湖南农业科学,1995,(2):32-34
    [128]刘晓霞.甘蓝型油菜杂交亲和性的研究[J].湖南农业科学,2007,(5):39-41
    [129]杜德志,李秀萍,余青兰等.特早熟双低甘蓝型油菜杂交种的选育[J].西北农业学报,2003,12(1):1-4
    [130]殷家明,陈树忠,唐章林等.黄籽羽衣甘蓝和白菜型油菜杂交再合成甘蓝型油菜研究[J].西南农业学报,2004,17(2):149-151
    [131]钱秀珍,欧光鉴,田廷亮.7个不同国家的甘蓝型油菜品种配合力的研究[J].华中师范大学学报(自然科学版),1997,31(2):225-230
    [132]孟金陵,严准,甘莉.Moricandia arvensis与甘蓝型油菜属间杂种的获得及其生物学特性研究[J].作物学报,1998,24(4):396-401
    [133]周清元,殷家明,崔翠等.白菜型油菜×羽衣甘蓝种间杂种的性状表现.西南农业大学学报(自然科学版),2006,28(1):1-4
    [134]钟新民,吕建华.大白菜与甘蓝型油菜、甘蓝远缘杂交试验[J].山西农业科学,1998,26(1):35-37
    [135]文雁成,张书芬,王建平等.对甘蓝与大白菜种间杂交合成的甘蓝型油菜的研究[J].中国油料作物学报,1999,21(4):8-11
    [136]汤洁,戴兴临,张弢等.甘蓝型油菜与薄菜远缘杂交选育新品系的主要农艺及产量性状研究[J].江西农业学报2008,20(9):35-37
    [137]徐利远,罗鹏,兰泽邃.甘蓝型油菜与蓝花子远缘杂交及双二倍体的合成研究[J].遗传学报,1996,23(2): 124-130
    [138]杨毅,李旭峰,王幼平等.甘蓝型油菜与蓝花子属间倍半二倍体的形成及其细胞遗传学特性[J].四川大学学报(自然科学版),1995,32(3):347-350
    [139]胡大有,王爱云,李栒.甘蓝型油菜与萝卜属间杂种的获得及分子鉴定[J].中国油料作物学报,2006,28(4):476-479
    [140]潘大仁,Friedt W.甘蓝型油菜与萝卜属间杂种的获得及其酶学分析[J].福建农业大学学报,1997,26(4):492-497.
    [141]唐征,刘庆,张小玲等.甘蓝型油菜与青花菜种间杂种子房离体培养研究[J].中国农学通报,2006,22(10):93-96
    [142]伍晓明,许鲲,王汉中等.甘蓝型油菜与新疆野生油菜属间杂种的获得与分子鉴定[J].中国油料作物学报,2002,24(4):5-9
    [143]戴林建,李栒,官春云等.甘蓝型油菜与芸芥属间杂种F1的获得及鉴定[J].中国油料作物学报,2005,27(4):7-12
    [144]朱媛,林良斌,张传利.甘蓝型油菜与芝麻菜远缘杂交研究[J].云南农业大学学报,2007,22(1):26-29
    [145]Peng Luo, Hua Long Fu, Qu Ze Lan, et al. Phytogenetic Studies on Intergeneric HybridiTation Between Brassica napus and Matthiola incana [J]. Acta Botanica Sinic,2003,45(4): 432-436
    [146]李倩,丁云花,李成琼等.甘蓝与甘蓝型油菜—萝卜d染色体附加系杂交F1代的获得与鉴定[J].西南农业大学学报(自然科学版),2008,30(8):67-71
    [147]陈玉萍,王晓友,徐跃进等.花椰菜和甘蓝型油菜种间杂交的研究Ⅰ油菜和花椰菜种间杂种组织培养效率[J].湖北农业科学,1995, (5):46-50
    [148]赵洪朝,杜德志,刘青元等.芥菜型多室油菜与甘蓝型油菜的种间远缘杂交[J].西北植物学报,2003,23(9):1587-1591
    [149]胡大有,王爱云,李栒.萝卜与甘蓝型油菜和黑芥的远缘杂交亲和性研究[J].作物研究,2006, (2):124-126
    [150]肖成汉,吴江生,何凤仙.提高甘蓝型油菜与菘蓝属间杂交结籽率方法的初步研究[J].湖北农业科学,1993, (9):10-12
    [151]郑卓,李健,李栒等.新疆野生油菜与甘蓝型油菜属间杂交亲和性及杂种分子鉴定[J].湖南农业大学学报(自然科学版),2006,32(5):465-468
    [152]李琳,蓝泽邃,陈祥荣等.影响甘蓝型油菜与诸葛菜远缘杂交结实率的几个因素.中国油料,1997,19(4):5-6
    [153]戴兴临,程春明,宋来强等.油菜×蔊菜远缘杂交创新油菜种质资源研究[J].植物遗传资源学报,2005,6(2):242-244
    [154]王国槐,官春云,陈社员等.油菜雄性不育系与十字花科蔬菜远缘杂交亲和性研究[J].湖南农业大学学报(自然科学版),2000,26(5):337-339
    [155]王舟,宋小玲,皇甫超河等.野芥菜向抗除草剂转基因油菜基因流动的研究[J].南京农业大学学报2008,31(4):49-54
    [156]黄邦全,刘幼琪,吴文华等.Ogura CMS紫菜苔×萝卜×甘蓝型油菜杂种的获得及细胞遗传学研究[J].遗传学报,2002,29(5):467-470
    [157]王爱云 李栒 胡大有.芥菜型油菜和黑芥与诸葛菜属间杂种的获得及其特性[J].作物学报,2008,34(9):1557-1562
    [158]戚存扣,仲裕泉,傅寿仲等.埃塞俄比亚芥黄种皮性状向甘蓝型油菜的转移研究[J].江苏农业学报1999.12(2):23-28
    [159]孟金陵,吴江生.埃塞俄比亚芥与白菜、芥菜间的可交配性[J].华中农业大学学报,1992,11(3):203-207
    [160]栗茂腾 张椿雨 李宗芸等.埃塞俄比亚芥与白菜型油菜间六倍体杂种的获得及其生物学特性研究[J].作物学报,2005,31(12):1579-1585
    [161]吴沿友,罗鹏.白菜型油菜与蓝花子杂交的初步研究[J].广西植物,1998,18(1):5457
    [162]崔辉梅,曹家树,张明龙等.甘蓝型油菜Ogura雄性不育×白菜的回交杂种后代与亲本之间蕾期基因表达差异比较研究[J].遗传,2005,27(2):255-261
    [163]周永明,Scarth R.甘蓝型油菜和芥菜型油菜杂种小孢子培养获得再生植株[J].作物学报,1996,22(4):399-403
    [154]肖成汉,何凤仙,赵合句等.甘蓝型油菜与菘蓝属间杂交新品系的形态解剖研究[J].中国油料,1995,17(3):10-12
    [165]胡文发,孟金陵,刘兴梁.甘蓝型油菜亲本基因型对其与埃塞俄比亚芥的可交配性影响[J].中国油料,1992,(2):18-22
    [166]戚存扣,浦惠明,傅寿仲.甘蓝型油菜与埃塞俄比亚芥杂交F衍生后代的育性及性状变异[J].中国油料,1993,(2):8-10
    [167]戚存扣,浦惠明,傅寿仲.甘蓝型油菜与埃塞俄比亚芥种间杂交亲和性及F1植株形态[J].江苏农业学报,1989,5(3):27-33
    [168]肖成汉,何凤仙,赵合句等.甘蓝型油菜与荠菜属间杂交新品系的形态及解剖学特征[J].中国油料,1996,18(3):27-29
    [169]李再云,刘后利.甘蓝型油菜与诸葛菜的属间新杂种[J].华中农业大学学报,1995,14(1):33-37
    [170]马占强,林良斌,董娜等.甘蓝型油菜与紫罗兰远缘杂交亲和性初探[J].江苏农业科学,2005,(1):32-33
    [171]王幼平,罗鹏,李旭峰.海甘蓝与芸苔属属间杂交的亲和性研究[J].四川大学学报(自然科学版),1996,33(6):590-594
    [172]周清元,李加纳,崔翠等.芥菜型油菜×羽衣甘蓝种间杂种的获得及其性状表现[J].作物学报,2005,31(8):1058-1063
    [173]王幼平,罗鹏,李旭峰等.芥菜型油菜与海甘蓝属间杂种的获得与鉴定[J].植物学报,1997,39(4):296-301
    [174]李德华 孟金陵.芥菜型油菜与埃塞俄比亚芥种间可交配性的遗传分析[J].中国农学通报,1994,10(4):25-30
    [175]刘忠松,官春云,陈社员等.芥菜型油菜与甘蓝型油菜种间杂种二代分离观察[J].中国油料作物学报,1998,20(4):6-10
    [176]陈玉萍,Andrzej Wojciechowski.利用胚和胚珠的离体培养获得甘蓝型油菜与青花菜的种间杂种[J].华中农业大学学报,2000,19(3):274-278
    [177]刘忠松,官春云,陈社员.芥菜型油菜与甘蓝型油菜种间杂种后代的RAPD分析.中国农业科学2002,35(8):1010-1015
    [178]王国槐 官春云 陈社员等.十字花科芸薹属种间杂种营养优势的利用研究[J].作物学报,2003,29(1):54-58
    [179]胡金良,徐汉卿,刘惠吉.同源四倍体矮脚黄白菜与甘蓝型油菜杂交的胚胎学研究[J].南京农业大学学报,1997,20(4),19-23
    [180]李旭峰,吴俊,李琳等.油菜OguCMS与诸葛菜属间杂种的获得[J].四川大学学报(自然科学版),2000,37(2):257-260
    [181]赵云,潘涛,王茂林等.油菜与诸葛菜属间远缘杂交的初步研究[J].中国油料,1993,(1):7-10
    [182]孟金陵,甘莉,程必芳.由种间杂交创建的两个新的甘蓝型油菜细胞质雄性不育系[J].华中农业大学学报,1995,14(1):21-25
    [183]戴林建,李栒,官春云等.油菜与芸芥属间杂种离体子房和胚培养研究[J].湖南农业大学学报(自然科学版),2004,30(3):201-204
    [184]戴林建,李栒,张四伟等.芸芥与芸薹属属间杂交亲和性研究[J].作物研究,2002,(3):123-125
    [185]冯午,邓岳芬,李懋学等.白菜甘蓝种间杂种后代细胞质遗传及其利用前景探讨[J].园艺学报,1993,20(3):267-273
    [186]程雨贵,吴江生,陈洪高等.萝卜和甘蓝远缘杂交研究[J].中国油料作物学报,2006, 28(1):1-6
    [187]汤洁,张弢,宋来强等.甘蓝型油菜与焯菜远缘杂交选育新品系的主要性状及其硼效应研究[J].江西农业学报2007,19(4):7-9
    [188]李石开,和江明,刘旭云等.芥菜型油菜温敏核不育向甘蓝型油菜转育的种间杂交研究Ⅰ甘蓝型油菜可交配品系的筛选[J].西南农业学报,2006,19(增):63-66
    [189]鲁玉妙,张恩慧,许忠民.青花菜与红甘蓝变种间杂交的遗传效应[J].西北农业学报,1999,8(3): 71-72
    [190]王丹,王文和,徐书法等.芥菜型油菜与白菜种间杂种的获得与鉴定[J].中国农学通报,2001,22(8):389-393
    [191]金海霞,冯辉,徐书法.通过大白菜胞质不育系与芥菜远缘杂交选育新的芥菜胞质不育系[J].园艺学报,2006,33(4):737-74
    [192]戴兴临,程春明,潘斌等.油菜与蔊菜远缘杂交亲和性研究初报[J].江西农业学报,2001,13(1):6061
    [193]刘忠松.油菜远缘杂交的遗传育种研究Ⅲ甘蓝型油菜与芸薹属植物远缘杂交亲和性[J].作物研究,1994,8(3):27-30
    [194]关峻,胡皓中.利用改进的无标度网络理论研究生态系统[J].武汉理工大学学报(信息与管理工程版),2007,29(1):7-10
    [195]秦艳,张宁,李季明.上海市加权公交站点网络拓扑结构分析[J].广西师范大学学报(自然科学版),2008,26(2):14-17
    [196]Serrano M A, Boguna M. Topology of the world trade web [J]. Physical Review E,2003,68: 15101-15104
    [197]瞿波,傅丽霞,刘后利等.甘蓝型油菜与诸葛菜杂交时花粉与柱头的识别反应[J].中国油料,1996,18(1):1-3
    [198]中国科学院中国植物志编辑委员会.中国植物志第33卷[M],北京:科学出版社,1987
    [199]王爽,赵鹏.基于TOPSIS的出行方案评价指标权重的确定方法[J].交通运输系统工程与信息,2009,9(2):122-128
    [200]付巧峰.一种修改的TOPSIS法[J].西北大学学报(自然科学版),2007,37(4):531-533
    [201]吴立云,杨玉中,张强.矿井通风系统评价的TOPSIS方法[J].煤炭学报,2007,32(4):407-410
    [202]陈杰,朱丽倩,吴向炜.改进的TOPSIS在区域水资源可持续利用综合评价中的应用研究[J].武汉大学学报(工学版),2008,41(增刊):303-306,
    [203]巩艳芬,张爱芬,吕延防.改进的TOPSIS法在天然气开发方案选优中的应用[J].辽宁技术工程大学学报(社会科学版),2009,11(2):151-52
    [204]罗鹏,蓝泽邃,林成双,油菜良种繁育中几个植物学问题的研究[J].四川大学学报,1963,(2):117-135
    [205]曹坤方.植物生殖生态学透视[J].植物学通报,1993,10(2),15-23
    [206]张钦弟,秦永燕,安志鹏等,濒危植物翘果油树种群传粉生物学研究[J].西北植物学报,2006,26(8):1584-1587
    [207]于鑫,安振涛,宣兆龙.模糊集与故障树复合分析法研究及其在飞行器模拟训练系统中的应用[J].南昌航空工业学院学报,2000,14(1):38-42
    [208]贾智伟,景国勋,张强等.基于三角模糊数的矿井火灾事故树分析[J].安全与环境学报,2004,4(6):62-65]
    [209]孙斌,王立杰.基于粗燥集理论的权重确定方法研究[J].计算机工程与应用,2006,29:216-217
    [210]钟嘉鸣,李订芳.基于粗糙集理论的属性权重确定最优化方法研究[J].计算机工程与应用,2008,44(20):51-53
    [211]姜淑慧,管荣展,董海滨等.播娘蒿与甘蓝型油菜的原生质体融合与植株再生.中国油料作物学报,2005,27(4):1-6
    [212]戴林建,李栒,官春云等.油菜与芸芥杂交时花粉与柱头识别反应的研究[J].湖南农业大学学报(自然科学版),2003,29(3):175-178
    [213]宋小玲,强胜.抗除草剂转基因油菜向杂草诸葛菜的潜在基因转移[J].安徽农业科学,2003,31(4):526-529
    [214]Rosie S. Hails, Kate Morley. Genes invading new populations:a risk assessment perspective [J]. TRENDS in Ecology and Evolution,2005,20 (5):245-252
    [215]Christian Damgaard, Gosta Kjellsson. Gene flow of oilseed rape (Brassica napus) according to isolation distance and buffer zone [J]. Agriculture, Ecosystems and Environment,2005,108: 291-301
    [216]Graziano M, Mark Bartlett, Charles Perrings. Landscape gene flow, coexistence and threshold effect:The case of genetically modified herbicide tolerant oilseed rape(Brassica napus)[J]. Ecological Modeling,2007,205:169-180.
    [217]Sabine Gruber, Wilhelm Claupein. Fecundity of volunteer oilseed rape and estimation of potential gene dispersal by a practice-related model[J]. Agriculture, Ecosystems and Environment,2007,119:401-408
    [218]Lu CM, Kato M., Kakihara F. Destiny of a transgene escape from Brassica napus into Brassica rapa [J]. Theor Appl Genet,2002,105:78-84
    [219]Gamier A, Lecomte J. Using a spatial and stage-structured invasion model to assess the spread of feral populations of transgenic oilseed rape [J]. Ecological Modeling,2006,194:141 -149
    [220]Begg G.S, Hockaday, S. McNicol J.W, et al. Modelling the persistence of volunteer oilseed rape (Brassica napus) [J]. Ecological Modeling,2006,198:195-207
    [221]Gruber S, Pekrun C, Claupein W. Population dynamics of volunteer oilseed rape (Brassica napus L.) affected by tillage[J], Europ. J. Agronomy,2004,20:351-361
    [222]杜荣骞.生物统计学[M].北京:高等教育出版社,2003年
    [223]李德毅,刘常昱.论正态云模型的普适性[J].中国工程科学,2004,6(8):28-34
    [224]钟诗胜,周济,余俊等.基于重心的多目标方案排序理论[J].计算机科学,1996,1(23):23-26
    [225]钟诗胜.工程方案设计中的模糊理论与技术[M].哈尔滨:哈尔滨工业大学出版社,2000:77-105
    [226]张先起,梁川,刘慧卿.基于熵权的属性识别模型在地下水水质综合评价中的应用[J].四川大学学报(工程科学版),2005,3(37):28-31
    [227]金振玉.信息论[M].北京:北京理工大学出版社,1991:11-20
    [228]孙峥,庄丽,冯启民.风暴潮灾情等级识别的模糊聚类分析方法研究[J].自然灾害学报,2007,16(4):49-55
    [229]官春云.油菜生态和遗传育种研究[M].长沙:湖南科学技术出版社,1990年
    [230]陈存武,周守标.大别山区六种黄精属植物的五种同工酶分析[J].广西植物,2006,26(4):395-399
    [231]何成兴,吴文伟,尹可锁等.南美斑潜蝇及其寄生蜂种群动态的模糊聚类分析[J].西南农业学报,2006,19(4):639-643
    [232]康小兵,许模,张强等.模糊聚类分析预测隧道涌水灾害[J].湖南科技大学学报(自然科学版),2007,22(3):81-85
    [233]樊哲超,陈建生,董海洲等.模糊聚类方法研究堤坝渗漏[J].岩土力学,2007,27(7):1214-1219
    [234]马咏真.模糊聚类分析在中国火灾危害分类中的应用[J].防灾减灾工程学 报,2006,26(4):414-419
    [235]孙峥,庄丽,冯启民.风暴潮灾情等级识别的模糊聚类分析方法研究[J].自然灾害学报,2007,16(4):49-55
    [236]李鸿吉.模糊数学基础及实用算法[M].北京:科学出版社,2005,210-211
    [237]Richard G. FitzJohn, Tristan T. Armstrong, Linda E. Newstrom-Lloyd, et al. Hybridisation within Brassica and allied genera:evaluation of potential for transgene escape[J]. Euphytica, 2007 (158):209-230
    [238]李德仁,宾洪超,绍振峰.国土资源网格化管理与服务系统的设计与实现[J].武汉大学学报,信息科学版,2008,33(1):1-6
    [239]程述,白庆华.网格技术启示及网格化城市管理机制研究[J].情报杂志,2008,10:56-59
    [240]张锦,杨东援.现代物流信息网格的体系结构模型[J].系统仿真技术,2005,1(3):123-130
    [241]杨宏波.网格化的城市危机管理研究[J].凯里学院学报,2008,26(6):62-64

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700