用户名: 密码: 验证码:
藻类增殖过程中关键因子的提取与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,对水体富营养化的监测多为在赤潮及水华异常暴发后,通过水域水色深度及面积进行监视,难以预报、预警,寻求一种简便易行、准确性高、成本低廉的预测预警技术,是当前水体富营养化监测技术的研发方向。本课题研究将传统的显微观测手段与计算机图像识别及分析技术相结合,用于有害藻类的识别和数量预测,为藻类水华的预测预警新技术开发提供基础参考。即通过对铜绿微囊藻增殖过程中形态、数量、光合产氧速率等关键因子的研究,提取藻类增殖过程中关键形态学和光合特征,根据已提取的特征对比藻类显微图像进行验证性试验;同时利用神经网络技术对藻类增殖情况进行拟合仿真,对其生长状况进行初步预测;并在人工围隔中诱发水华,监测水华前后藻类的增殖情况、生理生态和种群结构变化,结合现场实验结果探讨已有方法的可行性。
     所得主要结论如下:
     (1)铜绿微囊藻的比增殖速率和分裂率随培养时间变化,迟缓期(1-3d)、对数期(4-20d)、稳定期(21-25d)、衰老期(26-29d)的比增殖速率μ的变化规律分别为:从0.4d~(-1)猛增至1.0d~(-1)左右、在0.2到1.0d~(-1)之间波动变化、从0.1d~(-1)缓慢下降至0.0d~(-1)、稳定于0d~(-1)以下;分裂率变化也有一定规律,从30%快速上升至50%,在30%-50%之间上下浮动,在10%-15%之间波动,从15%缓慢上升到30%;藻细胞面积的变化随培养时间的增加由小→大→小→大,分别为:从35pixels迅速增大至120pixels,在80-160pixels之间波动,从60pixels逐渐上升到120pixels,均>120pixels且呈上升趋势;铜绿微囊藻处于稳定生长期时的叶绿素a含量最高9.06×10~(-8)μg/cell,其次是对数期7.89×10~(-8)μg /cell,衰老期最低为4.90×10~(-8)μg /cell。
     (2)处于不同生长期的铜绿微囊藻在不同培养温度条件下具有不同的呼吸速率和光补偿点;对数期的铜绿微囊藻具有更强的低光适应性,处于同一生长期的铜绿微囊藻呼吸速率受温度影响,温度越高,呼吸速率越强;同一温度下,衰老期藻的呼吸速率显著大于其它生长期;当环境温度为20℃,处于对数期、稳定期、衰老期的铜绿微囊藻,光补偿点分别250lx、900lx、780lx,其呼吸速率分别为45、37、55μmolO2·mg~(-1)·Chl a·h~(-1),当环境温度为25℃时,光补偿点分别为380lx、720lx、480lx,呼吸速率分别为67、57、117μmolO2·mg-1·Chl a·h-1。
     (3)在低光照度下,藻类消亡符合内源呼吸-藻细胞衰减模型Ma= Ma0 e-kt ;25℃时,斜生栅藻在不同低光照度0lx、200lx、500lx下的内源代谢系数K值分别为0.20、0.17、0.11d~(-1),30℃时分别为0.24、0.21、0.23d~(-1),可见,随着温度的升高K值增大,随着光照度的提高K值减小;不同藻种的K值不同,在25℃时,铜绿微囊藻、斜生栅藻和水华鱼腥藻的K值分别为0.37、0.20、0.30d~(-1)。
     (4)在人工围隔内诱发铜绿微囊藻水华时若进行光限制处理,围隔内叶绿素a、DO、pH值均会发生显著变化,铜绿微囊藻群体也会显著减小。光限制前水中叶绿素a浓度、DO、pH值分别为107.1μg/L、9.7mg/L、9.1,光限制7d后显著下降为44.5μg/L、2.6 mg/L、8.0;在群体形态方面,光限制前约71.4%群体直径大于50μm,光限制7d后几乎都在50μm以下。光限制初期铜绿微囊藻群体存在逐渐上浮聚集的趋势,这与其自身的浮力调控机制有关。
     (5)利用多种人工神经网络对实验室条件下的铜绿微囊藻形态特征、数量特征进行拟合仿真,并通过前4d的藻密度预测此后的铜绿微囊藻生长趋势。
Traditional eutrofication monitoring systems can not predict or previously warn harmful algal bloom (HAB) because they were based on measuring the color and area of destroyed water body, thus can only mornitoring HAB after it has occoured. Therefore, exploiting a simple, high-accuracy, low-cost prediction and warning system is a major direction of eutrophication research. In order to provide basic references for previous warning technologies, in this thesis, harmful algae identification and quantitative prediction were stutied through traditional means of microscopic observation plus computer image analysis.
     The key morphological and photosynthetic characteristics were extracted through the study on the variation of morphology, number, photosynthetic oxygen production rate during proliferation of algal taxa Microcystis aeruginosa. The result was verified by comparing with algae microscopic images. Correspongdinly, neural network technology was utilized to stimulate the algal proliferation. In addition, in order to verify the feasibility of this method, the proliferation of algae as well as the changes of algae spicies and physiological ecology characteristics before and after the water bloom were monitored in artificial enclosure with M. aeruginosa bloom. The main conclusions are shown as follows:
     (1) There are four phases during M. aeruginosa proliferation: lag period (1-3d), logarithmic growth period (4-20d), stabilization period (21-25d), aging period (26-29d). Specific growth rateμof the four proliferation phases were increasing rapidly in 0.4-1.0d~(-1), stability changes in 0.2-1.0d~(-1), a declining trend in 0.0-0.1d~(-1), little change in almost <0d~(-1), respectively. Division rates of the four proliferation phases were increasing rapidly in 30%-50%, changes unsteadily in 30%-50%, stability changes in 10%-15%, increased trend slightly in 15%-30%, respectively. Cells areas were increasing rapidly in 35-120 pixels, stability changes in 80-160pixels, increasing slightly in 60-120pixels, increased trend in almost >120pixels, respectively. Chla concentration of M. aeruginosa at logarithmic growth period, stabilization period and aging period were 7.89×10-8, 9.06×10-8 and 4.90×10-8μg/cell, respectively.
     (2) Different respiration rates and light compensation point in different proliferation phases. M. aeruginosa at logarithmic growth period has stronger low-light adaptability than others. At the same period, the higher temperature, respiration rates are stronger. At the same temperature, respiration rates are highest at aging period. The respiration rates at logarithmic growth period, stabilization period and aging period were 45、37、55μmolO_2·mg~(-1)·Chl a·h~(-1) respectively under 20℃and 67、57、117μmolO_2·mg~(-1)·Chl a·h~(-1) respectively under 25℃.The light compensation point were 250、900、780lx respectively under 20℃and 380、720、480lx respectively under 25℃.
     (3) Endogenous metabolic factor K of Scenedesmus obliquus are different under different temperature: temperature increases, K-value increases and light intensity increase, K-value decreases. The K-value at 0、200、500lx is 0.20、0.17、0.11d~(-1) respectively under 20℃and 0.24、0.21、 0.23d~(-1) respectively under 25℃. Different K-value in different algae species. The K-value of Microcystis aeruginosa, Scenedesmus obliquus and Auabaena Flosaquae were respectively 0.37、0.20、0.30d~(-1).
     (4) After Microcystis aeruginosa bloom was induced in artificial enclosure, the light shading material was covered on the surface and the variation of chlorophyll a contents, pH and DO were analyzed. Chlorophyll a, DO and pH declined from 107.1μg/L, 9.7mg/L and 9.1 to 44.5μg/L, 2.6 mg/L and 8.0 respectively. Meanwhile, microcystis colony's radius decreased obviously, from 70% larger than 50μm to less than 50μm. It was shown that microcystis colonies floated upward to the water surface in light shading by means of monitoring Chlorophyll a contents at different water depths,. The buoyancy control mechanism of Microcystis aeruginosa may explain this phenomenon.
     (5) Succeed in predicting the growth trend of Microcystis aeruginosa proliferation by simulating morphological characteristics and growth curve using kinds of neural network models.
引文
[1].《2006 年中国环境状况公报》.摘自中国网 http://www.china.com.cn/city.
    [2]. 周名江 朱明远 张经. 中国赤潮的发生趋势和研究进展[J]. 生命科学. 2001, 13(2): 54-59.
    [3].周云龙 于明.水华的发生、危害和防冶[J].生物学通报.2004, 39(6):11-14.
    [4]. 盛建武 何苗 施汉昌 钱易. 蓝藻毒素的监测及水华暴发的应急方案[J]. 中国给水排水. 2005, 21(5): 26-28.
    [5]. 肖兴富 李文奇 刘娜 杨旭光. 富营养化水体中蓝藻毒素的危害及其控制[J]. 中国水利水电科学研究院学报. 2005, 3(2): 116-123.
    [6]. 宋长青等. 湖泊及流域科学研究进展与展望[J]. 湖泊科学. 2002, 14(4): 289-300.
    [7]. 张运林 秦伯强. 太湖水体富营养化的演变及研究进展[J]. 上海环境科学. 2001, 20(6): 263-265.
    [8]. 长 江 中 下 游 湖 泊 富 营 养 化 研 究 获 重 大 进 展 . 摘 自 : 上 海 水 务http://www.shanghaiwater.gov.cn/window/window_show.jsp?fileId=9998612.
    [9].苏建强.海洋细菌调控赤潮藻生长、产毒作用的实验研究[D].硕士论文.厦门大学, 2002.
    [10]. 俞志明 曹西华. “九五”期间中国沿海有害赤潮灾害状况及其防治对策[J]. 安全与环境学报. 2002, 2(6): 15-17.
    [11].李鹏.PISC 混凝剂对赤潮异弯藻的去除效应研究[D].硕士论文.暨南大学, 2006.
    [12].陈芝兰.凤眼莲根对赤潮藻生长的抑制作用及其机理研究[D].硕士论文.暨南大学, 2005.
    [13]. 梁想 尹平河 赵玲 杨培慧 谢隆初. 生物载体除藻剂去除海洋赤潮藻[J]. 中国环境科学. 2001, 21(1): 15-17.
    [14].James L. Connaughton, John H. Marburger. National Assessment of Efforts to Predict and Respond to Harmful Algal Blooms in U.S. Waters; 2007.
    [15]. Paul S. Anderson. The Use of Citizen-Based Environmental Monitoring Programs for Making Real-Time Observations About Potentially Toxigenic Phytoplankton[J]. 第二届国际赤潮管理与减灾会议. 2001.
    [16]. 叶春 陈雪初. 国外控制蓝藻的技术与政策[J]. 湿地科学与管理. 2007, 3(3): 32-33.
    [17]. 陆斗定. 日本沿岸水域的赤潮监测研究及其防治对策[J]. 东海海洋. 1997, 15(1): 45-51.
    [18]. 李波 李祥敏 曹慧 崔中利. 湖泊蓝藻暴发的机制与防治[J]. 江苏科技信息. 2007, (7): 17-20.
    [19].李小平.美国湖泊富营养化的研究和治理[J].自然杂志.2002, 24(2):63-68.
    [20].Martin J H, et al.Iron deficiency limits phytoplankton growth in antarctic waters[J].Global biagechem Cycle,1990(4):5-12.
    [21]. 林长青. 大连近海富营养化评价与探讨[J]. 海洋环境科学. 1994, 13(4): 63-68.
    [22]. 刘明华 崔虹 张诚. 秦皇岛海域生态环境特征与赤潮监测[J]. 海洋环境科学. 1999, 18(4): 43-47.
    [23].肖培弘.华的种类及其识别判断[J].内陆水产.2004, (2):3.
    [24]. 刘其根 陈立侨 陈 勇. 千岛湖水华发生与主要环境因子的相关性分析[J]. 海洋湖沼通报. 2007, (1): 117-124.
    [25]. 叶属峰 黄秀清. 东海赤潮及其监视监测[J]. 海洋环境科学. 2003, 22(2): 10-14.
    [26]. 王金辉. 长江口邻近水域的赤潮生物[J]. 海洋环境科学. 2002, 21(2): 37-41.
    [27]. 黄长江 董巧香 郑磊. 1997 年底中国东南沿海大规模赤潮原因生物的形态分类与生态学特征[J]. 海洋与湖沼. 1999, 30(6): 581-590.
    [28]. 黄长江 董巧香. 1998 年春季珠江口海域大规模赤潮原因生物的形态分类和生物学特征Ⅰ[J]. 海洋与湖沼. 2000, 31(2): 197-204.
    [29]. 黄长江 董巧香. 1998 年春季珠江口海域大规模赤潮原因生物的形态分类和生物学特征Ⅲ[J]. 海洋与湖沼. 2001, 32(1): 1-6.
    [30]. 安达六郎. 赤潮生物と赤潮生态[J]. 水产土木. 1973, 9(1): 31-36.
    [31]. 王海云 程胜高 黄磊. 三峡水库“藻类水华”成因条件研究[J]. 人民长江. 2007, 38(2): 16-18.
    [32]. 许卫忆 朱德弟 卜献卫 陈耕心. 赤潮发生和蔓延的动力机制数值模拟[J]. 海洋学报. 2002, 24(5):91-97.
    [33]. 张朝贤 邹淑美. 赤潮的主要特征参数和化学环境[J]. 黄渤海海洋. 1992, 10(3): 73-76.
    [34]. 张青田 张兆琪 等. 环境因子对赤潮藻类增殖及相关特性的影响[J]. 海洋湖沼通报. 2002: 79-84.
    [35]. 徐家声. 水动力状况与赤潮生物的聚集和扩散[J]. 海洋环境科学. 1994, 13(3): 19-22.
    [36]. 何文珊 陆健健. 高浓度悬沙对长江河口水域初级生产力的影响[J]. 中国生态农业学报. 2001, 9(4): 24-27.
    [37]. 李林奇 李铜基 等. 近海污染/生态环境自动监测装置-水质监测浮标[J]. 海洋技术. 2001, 20(1): 112-115.
    [38].2004 年 年 度 报 告 ( 资 源 环 境 技 术 领 域 ). 摘 自 863 — 中 国 高 技 术 研 究 发 展 计 划http://www.863.org.cn/863_105/annals/annals_2004/200512060010.pdf.
    [39]. 吴传庆 王桥 杨志峰 魏 斌 王昌佐 厉 青. 太湖水华的遥感分析[J]. 中国环境监测. 2007, 23(3): 52-56.
    [40]. 潘德炉 毛天明 李淑菁 毛志华. 卫星遥感监测我国沿海水色环境的研究[J]. 第四纪研究. 2000, 20(3): 240-246.
    [41].2002 年 年 度 报 告 ( 资 源 环 境 技 术 领 域 ). 摘 自 863 — 中 国 高 技 术 研 究 发 展 计 划http://www.863.org.cn/863_105/annals/annals_2002/200405090036.html.
    [42]. 张磊. 赤潮优势藻图像分析的研究[J]. 天津大学. 2003.
    [43].徐瑶.湖泊浮游植物动态及微囊藻监测技术研究[D].硕士论文.南京师范大学, 2007.
    [44]. Istvánovics V., Honti M., Osztoics A.等. Continuous monitoring of phytoplankton dynamics in Lake Balaton (Hungary) using on-line delayed fluorescence excitation spectroscopy[J]. Freshwater Biol. 2005, 50(12): 1950-1970.
    [45].Akiba T., Horiuchi T., Motohara Y. Continuous monitoring technologies of plankton and Suspended Particulate Matter. In: Ocean '04 - MTS/IEEE Techno-Ocean '04: Bridges across the Oceans - Conference Proceedings; 2004; 2004. p. 1414-1417.
    [46].Horiuchi T., Akiba T., Kakui Y. Development of a continuous imaging system equipped with fluorescent imaging for classification of phytoplankton. In: Ocean '04 - MTS/IEEE Techno-Ocean '04: Bridges across the Oceans - Conference Proceedings; 2004; 2004. p. 1410-1413.
    [47]. G.Theodoropoulos et al. A digital image analysis and neural network based system for identification of third-stage parasitic strongyle larvae from domestic animals[J]. Computer Methods and Programs in Biomedicine. 2000, 62(2): 69-76.
    [48]. 陆新泉 李宁 陈世福. 形态、颜色特征及神经网络在肺癌细胞识别中的应用研究[J]. 计算机辅助设计与图形学学报. 2001, 13(1): 87-92.
    [49]. Stefan Thiel et al. Automated object recognition of blue-green algae for measuring water quality-A preliminary study[J]. Wat Res. 1995, 29(10): 2398-2404.
    [50]. Stefan Thiel et al. The automated detection of cyanobacteria using digital image processing techniques[J]. Environment International. 1995, 21(2): 233-236.
    [51]. 李崇明 黄真理 张 晟 常剑波. 三峡水库藻类“水华”预测[J]. 2007, 16(1): 1-6.
    [52]. 宫莹.城市小型浅水湖泊水环境预测方法应用研究[D].硕士论文.河海大学, 2004. [J].
    [53]. 刘载文 杨斌 黄振芳 张 艳. 基于神经网络的北京市水体水华短期预报系统[J]. 计算机工程与应用. 2007, 43(28): 243-245.
    [54]. 曾勇 杨志峰 刘静玲. 城市湖泊水华预警模型研究[J]. 水科学进展. 2007, 18(1): 79-85.
    [55]. 矫晓阳. 透明度作为赤潮预警监测参数的初步研究[J]. 海洋环境科学. 2001, 20(1): 27-31.
    [56]. 林祖亨 梁舜华. 探讨运用多元回归分析预报赤潮[J]. 海洋环境科学. 2002, 21(3): 1-4.
    [57]. 林祖亨 梁舜华. 探讨影响赤潮的物理因子及其预报[J]. 海洋环境科学. 2002, 21(2): 1-5.
    [58]. 王正方 张庆 吕海燕 卢勇 扈传昱 曾江宁. 长江口溶解氧赤潮预报简易模式[J]. 海洋学报. 2000, 22(4): 125-129.
    [59]. Teles L. O., Vasconcelos V., Teles L. O.等. Time series forecasting of cyanobacteria blooms in the Crestuma Reservoir (Douro River, Portugal) using artificial neural networks[J]. Environmental Management. 2006, 38(2): 227-237.
    [60]. Laanemets J., Lilover M. J., Raudsepp U.等. A fuzzy logic model to describe the cyanobacteria Nodularia spumigena blooms in the Gulf of Finland, Baltic Sea[J]. Hydrobiologia. 2006, 554(1): 31-45.
    [61]. Lilover M. J., Laanemets J. A simple tool for the early prediction of the cyanobacteria Nodularia spumigena bloom biomass in the Gulf of Finland[J]. Oceanologia. 2006, 48(SUPPL.): 213-229.
    [62]. Ibelings B. W., Vonk M., Los H. F. J.等. Fuzzy modeling of cyanobacterial surface waterblooms: Validation with NOAA-AVHRR satellite images[J]. Ecological Applications. 2003, 13(5): 1456-1472.
    [63]. Wei B., Sugiura N., Maekawa T. Use of artificial neural network in the prediction of algal blooms[J]. Water Research. 2001, 35(8): 2022-2028.
    [64]. Friedrich Recknagel. ANNA-Artificial Neural Network model for predicting species abundance and succession of blue-green algae[J]. Hydrobiologia. 1997, 349: 47-57.
    [65].Kathleen M. Fisher, Allison L. Allen, Heidi M. Keller et al. Annual Report of the Gulf of Mexico Harmful Algal Bloom Operational Forecast System(GOM HAB-OFS); 2006.
    [66]. Donald M. Anderson, Dennis J. McGillicuddy, Ruoying He. Initial observations of the 2005 Alexandrium fundyense bloom in southern New England: General patterns and mechanisms[J]. Deep-Sea ResearchⅡ. 2005, 52: 2856-2876.
    [67]. Roelke D., Buyukates Y. Dynamics of phytoplankton succession coupled to species diversity as a system-level tool for study of Microcystis population dynamics in eutrophic lakes[J]. Limnology and Oceanography. 2002, 47(4): 1109-1118.
    [68]. Roelke D., Buyukates Y. The diversity of harmful algal bloom-triggering mechanisms and the complexity of bloom initiation[J]. Human and Ecological Risk Assessment. 2001, 7(5): 1347-1362.
    [69].孔海南等.海洋赤潮及水库、湖泊蓝绿藻爆发的预报、预警、监测技术及相应光机电系统监测控制设备开发——项目资金申请报告.国家重大技术装备研制和重大产业技术开发专项.2004, 1-24.
    [70].刘春光 金相灿 等.不同氮源和曝气方式对淡水藻类生长的影响[J].环境科学.2006, 27(1):101-104.
    [71].146 种 培 养 基 配 方 ( 细 菌 培 养 基 和 植 物 培 养 基 ). 摘 自 生 物 谷 实 验 频 道http://www.bioon.com/experiment/plant2/159568.shtml.
    [72]. 李东侠 丛威 蔡昭铃 施定基 欧阳藩. Fe3+对赤潮异弯藻生长和光合作用的影响[J]. 应用与环境生物学报. 2003, 9(3): 254-258.
    [73]. Maya P.Stoyneva, Jean-Pierre Descy,Wim Vyverman. Green algae in Lake Tanganyika: is morphological variation a response to seasonal changes[J]. Hydrobiologia. 2007, 578: 7-16.
    [74].Jef HUISMAN, Hans C.P. MATTHIJS,Petra M.VISSER.Harmful Cyanobacteria[M].The Netherlands.Springer.2005:78-80.
    [75]. Martin T. Dokulil, Karl Donabaum,Katrin Teubner. Modifications in phytoplankton size structure by environmental constraints induced by regime shifts in an urban lake[J]. Hydrobiologia. 2007, (578): 59-63.
    [76]. 吕秀平 张栩 康瑞娟 胡晗华 丛威, 谭天伟. Fe3+对铜绿微囊藻生长和光合作用的影响[J]. 北京化工大学学报. 2006, 33(1): 27-30.
    [77].O'Farrell I., P. de Tezanos Pinto & I. Izaguirre, 2007. Phytoplankton morphological response to the underwater light conditions in a vegetated wetland[J]. Hydrobiologia 578: 65–77.
    [78].Jezberova′ J. & J. Koma′rkova′ . 2007. Morphometry and growth of three Synechococcus-like picoplanktic cyanobacteria at different culture conditions[J]. Hydrobiologia 578: 17-27.
    [79].王宪. 海水养殖水化学. 厦门: 厦门大学出版社; 2006.
    [80]. 邓光 李夜光 胡鸿钧 齐雨藻 耿亚红 李中奎. 温度、光照和 pH 值对锥状斯氏藻和塔玛亚历山大藻光合作用的影响及光暗周期对其生长速率和生物量的影响[J]. 武汉植物学研究. 2004, 22(2): 129-135.
    [81]. 李小龙 耿亚红 李夜光 胡鸿钧. 从光合作用特性看铜绿微囊藻(Microcystis aeruginosa)的竞争优势[J]. 武汉植物学研究. 2005, 24(3): 225-230.
    [82]. 苏玉萍 郑达贤 陈娜蓉 王家乐 林婉珍. 环境因子对福建省山仔水库水华微囊藻生长的影响[J]. 植物资源与环境学报. 2005, 14(3): 42-46.
    [83]. 刘玉生 韩梅 梁占彬 林毅雄. 光照、温度和营养盐对滇池微囊藻生长的影响[J]. 环境科学研究. 1995, 8(6): 7-11.
    [84].华汝成.单细胞藻类的培养与利用[M].北京:农业出版社, 1986.48-58.
    [85].张宝玉等.温度、光照强度和 pH 对雨生红球藻光合作用和生长速率的影响[J].海洋与湖沼.2003, 34(5):558-565.
    [86].Stein J R. Handbook of phycological methods culture methods and growth measurementsn[M].Cambridge:Cambridge University Press.1973.
    [87].小島貞男 飯田耕作 滑川明夫.局部遮光による藻類(アオコ)制御の実証的研究[J].用水と廃水.2000, 42(5):5-12.
    [88].Coles J F, Jones R C.Effect of temperature on photosynthesis-light response and growth of four phytoplankton species isolated from a tidal freshwater river[J].J phycol.2000,36:7-16.
    [89].罗固源 朱亮 等.不同磷浓度和曝气方式对淡水藻类生长的影响[J].重庆大学学报(自然科学版).2007, 30(2):86-89.
    [90].孙从军 张明旭.河道曝气技术在河流污染治理中的应用[J].环境保护.2001, 4:12-20.
    [91].陈荣三 黄孟健 钱可萍主编.无机及分析化学[M].北京:人民教育出版社, 1979:86-137.
    [92].李夜光 胡鸿钧 龚小敏.螺旋藻培养液 pH 值变化的机理和碳源利用率的研究[J].生物工程学报.1996, 12(增刊):242-248.
    [93].黄玉瑶.内陆水域污染生态学——原理与应用[M].北京:科学出版社, 2001:15-16.
    [94].Baosheng Qiu, Kunshan Gao.Effects of CO2 enrichment on the bloom-forming cyanobacterium Microcystis aeruginosa(cyanophyceae) physiological response and relationship with the availability of dissolved inorganic carbon[J].J phycol.2002,38:721-729.
    [95].Kctchum B H, A C Redfield.A method for maintaining a continuous supply of marine diatoms by culture.Biol.Bull,75(1):165-169.
    [96].王志红 崔福义 安全 等.pH 与水库水富营养化进程的相关性研究[J].给水排水.2004, 30(05):37-41.
    [97].陈雪初 孙扬才 张海春 等.低光照度对源水中铜绿微囊藻增殖的抑制作用[J].中国环境科学.2007, 27(3):352-355.
    [98].尹澄清 屠清瑛 顾丁锡.巢湖富营养化研究[M].北京:中国科学技术出版社, 1990.
    [99].Gibson C E. 1975. A field and laboratory study of oxygen uptake by planktonic algae[J]. J. Ecol.1975, 63: 867-880.
    [100].Visser P M, Passarge J,Mur L R. Modelling vertical migration of the cyanobacterium Microcystis[J].Hydrobiologia.1997,349(1-3):99-109.
    [101].Wallace B B, Bailey M C, Hamilton D P. Simulation of vertical position of buoyancy regulating Microcystis aeruginosa in a shallow eutrophic lake[J]. Aquatic Sciences.2000,62(4):320-333.
    [102].Walsby A E, Schanz F,Schmid M.The Burgundy-blood phenomenon: A model of buoyancy change explains autumnal waterblooms by Planktothrix rubescens in Lake Zurich[J]. New Phytologist.2006,169(1):109-122.
    [103].姚志红.多元共生遗传算法研究及其在藻类智能模式识别中的应用[D].博士论文.2007.
    [104].Samir w., Mahfoud.Niching Methods for Genetic Algorithms,Ph.D.Thesis.University of Illinois,1995.
    [105].Wang X P, Cao L M. Genetic Algorithm[M]. Xi'an Jiaotong University Press,2000.
    [106].Whitley D A. The genitor algorithm and selection pressure: Why rank-based allocation reproduction trials is best[A]. Proc of the 3rd Int Conf on Genetic Algorithms[C]. Los Atlos: Morgan Kaufmann Publishers.1989.116-121.
    [107].Li J H, Wang S A, Du L F.Family GA-An improved genetic algorithms[J]. Control and Decision. 2004,19(9):999-1003.
    [108].M.S., Chen,F.H.,Liao.Neural networks training using genetic algorithms[A].Proceedings of the IEEE International Conference on Systems.Man and Cybernetics[C].San Diego.CA.1998,3:2436-2441.
    [109].Paul K H Phua, Ming Daohua.Parallel nonlinear optimization techniques for training neural networks[J]. IEEE Trans Neural Networks.2003,14(6):1460-1468.
    [110].M., li,J.,Kou.A new Non-Monotone Fitness Scaling for Genetic Algorithms[J].Progress in Natural Science.2001,11(5):530-536.
    [111].T., Andrew.Adapting Operator Settings in Genetic Algorithms[J].Evolutionary Computation.1998,6(2):163-184.
    [112].Michael Negnevitsky. Artificial Intelligence[M].China Machine Press.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700