用户名: 密码: 验证码:
基于认知无线电的频谱管理算法与MIMO系统容量分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线资源管理的目标是:在满足用户QoS要求的条件下,在有限的带宽上最大限度地提高频谱效率和系统容量,同时避免网络拥塞的发生。认知无线电技术通过从时间和空间上充分利用空闲频谱有效提高频谱利用率。准确的感知是认知无线电技术使用的前提,为了避免对授权系统造成有害干扰,认知系统首先要感知频段,发现频谱机会。认知无线电的学习能力是使它从概念走向实际应用的真正原因,有了足够的人工智能,它就可能通过吸取过去的经验来对实际的情况进行处理,过去的经验包括对频段上的使用情况,干扰情况,信号特征,解决方法等方面的内容。认知无线电技术赋予无线电设备根据频带可用性、位置和过去的经验来自主确定采用哪个频带的功能。所以研究认知无线电中频谱管理策略及基于该技术的MIMO系统容量分析更具有现实的意义。
     本文旨在研究认知无线电频谱检测及分配算法,主要工作包括:
     首先,研究了基于不同间隔的频谱检测算法。在等间隔频谱检测算法和现有文献基础上,衍生出非线性可变周期频谱检测算法,在对主用户的检测中,采用可变周期与采用固定周期相比较,减少了检测损失时间,有效降低了检测成本,同时实现了对频谱检测成本的有效控制。引入二元场论(阴阳理论),将主用户与认知用户假定为阴阳二体,借助太极哲学的思想——阴阳之间的比例是动态变化的,通过相互调整以达到平衡,阴阳之间的动态优化平衡。通过寻求阴阳之间的平衡点,就可以在两种对立的状态之间做出最优决策。仿真结果表明,基于二元场论的频谱检测算法可以更加有效地降低检测成本。
     其次,研究基于博弈论的认知无线电频谱分配算法。建立基于博弈论的认知无线电频谱分配模型,提出基于潜在博弈的认知无线电频谱分配算法,该算法能够在较短时间内收敛到纳什均衡状态,潜在函数值也随着算法的收敛逐步提高并达到最大,系统中各用户及整个系统的SIR水平得到明显改善,实现了提高频谱利用率的目的。综合考虑了认知无线电系统频谱分配问题的动态性和复杂性,结合博弈论提出了一种适合于认知无线电系统的基于多次博弈的动态频谱分配算法,通过数学分析,求出纳什均衡点,并证明了该算法中纳什均衡点的存在性和唯一性。同时提出了一种适合于认知无线电系统的基于多次博弈的功率控制模型,仿真结果表明,基于该模型的算法收敛性较好,经过7次左右的迭代即可收敛,既保证了不同用户对输出SIR的要求,又有效地降低了用户发射功率的消耗,在尽可能降低功率的前提下给用户的效用带来更高的保证,实现了资源的最优化配置。
     最后,研究了认知MIMO系统中的信道容量和两种相关模型下的相关系数与容量的关系。通过研究分布式MIMO系统的信道容量,建立了能同时反映小尺度衰落和大尺度衰落的分布式MIMO系统信道模型,给出了分布式MIMO系统的非相关和相关容量的计算公式。引用MIMO遍历信道容量经典公式,建立空间相关MIMO信道的矩阵模型,在此基础上推导出空间相关MIMO信道遍历容量的上界,得出常量相关模型的信道容量上界以及容量和相关系数的关系,在指数相关模型中得出容量和概率密度的关系,为了摆脱各种因素的制约,针对如何降低分析和计算的复杂度进行研究,从而使常量相关、指数相关模型被更加广泛使用。
Radio resource management goal is to improve spectrum efficiency and system capacityto the hilt with a limited bandwidth while avoiding network congestion under the condition ofmeeting the demand of user QoS. Cognitive Radio technology improves spectrum utilizationeffectively by making full use of idle spectrum in time and space. Spectrum sensingtechnology has become the basis and premise of Cognitive Radio technology, for cognitivesystem should perceive frequency band and find the spectrum opportunity to avert harmfulinterference to licensed systems. Having enough artificial intelligence, Cognitive Radio candeal with practical matters based on lessons, which include service condition, disturbedcondition, signal features as well as solutions of frequency band learned in the past. Namely,learning ability makes it into practical application from concept. Cognitive Radio technologyenables the radio equipment, by using the band usability, position and previous experience tochoose the appropriate frequency band independently. So the study of cognitive radiospectrum management strategy and the analysis of MIMO system capacity based on thistechnology are much more realistically significant.
     This paper aims to study cognitive radio spectrum detection and distribution algorithm.The major contents in this paper include:
     Firstly, spectrum detection algorithm based on the different interval is studied. Anonlinear variable period spectrum detection algorithm is derived from the equal intervalspectrum detection algorithm and the existing literature. The variable cycle and fixed cycledetection algorithm are compared in the primary user's detection, which reduces the detectingtime and the test cost. The method controls the spectrum test cost effectively. The main usersand cognitive users are assumed to be Yin and Yang two bodies, introducing the binary fieldtheory(yin-yang theory). The thought of Tai chi philosophy--the ratio between the Yin andYang changes quite dynamically. The dynamic optimization balance can be achieved throughthe mutual adjustment, is cited. The optimal decision between two opposite states can bemade by seeking the balance point of Yin and Yang. The simulation results show thatspectrum detection algorithm based on yin-yang theory can be more effective to reduce testcost.
     Then, Cognitive Radio spectrum allocation algorithm based on game theory is studied.The cognitive radio spectrum allocation model is established and the cognitive radio spectrumallocation algorithm based on the potential game is proposed. The algorithm can converge tothe Nash equilibrium state in a relatively short period and potential function value graduallyrises till reaches maximum with the algorithm convergence. Thus, the SIR levels of users aswell as the whole system have been improved obviously and the purpose of improving thespectrum utilization is realized. A dynamic spectrum allocation algorithm based on multiplegame is proposed after considering the dynamics and complexity of Cognitive Radio systemspectrum allocation problem comprehensively and combining with game theory. A dynamicspectrum allocation algorithm based on multiple game is proposed after considering thedynamics and complexity of Cognitive Radio system spectrum allocation problemcomprehensively and combining with game theory. The Nash equilibrium point is worked outthrough mathematical analysis and its existence and uniqueness are proved. A power controlmodel based on multiple game is also proposed, which is suitable for Cognitive Radio system.The simulation results show that the algorithm based on the model has good convergencewhich can be reached after about seven times’ iteration, thus ensuring the different users’output SIR request, lowering the user emission power consumption effectively and efficientlyguaranting the user's utility under the premise of reducing the power as far as possible. That’sto say, the optimization of resource allocation is realized.
     Finally, the channel capacity of multiple-input multiple-output (MIMO) system and therelationship between correlation coefficient and the capacity of two related model are studied.Through studying the channel capacity of the distributed multiple-input multiple-output(MIMO) system, the distributed system channel model which can reflect both the small scalefading and large scale decline is established and the computational formula of unrelated andrelated capacity is presented. Introducing classic formulas of MIMO ergodic channel capacity,the matrix model of spatial correlation MIMO channel is set up to derivative the upper boundof the ergodic channel capacity. The channel capacity upper bound and the relationshipbetween the capacity and the correlation coefficient of constant related model, as well as therelationship between the capacity and probability density of index related model are alsoderived. In order to get rid of the restriction of various factors, researches are conducted to reduce the complexity of analysis and calculation so as to make constant related model andindex related model to be used more widely.
引文
[1] Stotas.S and nallanathan, An On the throughput and spectrum sensing enhancement ofopportunistic spectrum access cognitive radio networks[J]. IEEE trans. On wirelesscommunications, vol.11,no.1,pp.97-107,2012.
    [2] Min Song, Chunsheng Xin, Yanxiao Zhao, Xiuxzhen Cheng. Dynamic spectrum access: from cognitive radio to network radio[C]. IEEE wireless communications.Vol.19,no.1,pp.23-29.2012.
    [3] Zhang Zhou, Jiang Hai. Cognitive radio with imperfect spectrum sensing: the optimal set of channels to sense[C]. IEEE wireless communications letters. Vol.1,no.2,pp.133-136.2012.
    [4] FCC. ET Docket No.03-222Notice of proposed rule making an order[R]. December,2003.
    [5]魏急波,王杉,赵海涛.认知无线电网络:关键技术与研究现状[J].通信学报,2011,32(11):147-158.
    [6] Mitola J. Cognitive radio: making softwear radios more personal[C]. IEEE PersCommun,1999,6(4).
    [7] J.Mitola.Cognitive radio:An integrated agent architecture for software definedradio[D].Stockholm,Sweden:Royallnst.Technol.(KTH),2000.
    [8] Haykin Simon. Cognitive Radio:Brain-Empowered Wireless Communications[J].IEEEJournal on Selected Areas in Communications.2005,23(2).
    [9] FCC-03-322. Facilitating Opportunities for Flexible, Efficient, and Reliable SpectrumUse Employing Cognitive Radio Technologies[R].2003.
    [10]余官定,张朝阳,仇佩亮.一种自适应正交频分复用系统的子载波分配算法[J].浙江大学学报(工学版),sep.2004,VOL38,NO.9.
    [11]张文柱,王凌云.基于单频段多赢家拍卖的动态频谱分配[J].通信学报,2012,33(2):1-6.
    [12]包志华,张士兵,张晓格,邱恭安.最优认知用户配对与协作感知算法研究[J].通信学报,2012,33(1):128-135.
    [13]孙杰,郭伟,唐伟.认知无线多跳网中保证信干噪比的频谱分配算法[J].通信学报,2011,32(11):111-117.
    [14] Thang Van Nguyen, Hyundong Shin, Quek, T.Q.S, Win, M.Z. Sensing and probingcardinalities for active cognitive radios[J]. IEEE trans. on signal processing. Vol.60, no.4, pp.1833-1848.2012.
    [15] Bo Zhao, Yunfei Chen, Chen He, Lingge Jiang. Performance analysis of spectrumsensing with multiple primary users[J]. IEEE trans. on vehicular technology. Vol.61,no.2, pp.914-918.2012.
    [16] Lim Hyoung-jin, Seol Dae-young, Im Gi-Hong, Joint sensing adaptation and reso-urce allocation for cognitive radio with imperfect sensing[J]. IEEE trans. on co-mmunications. Vol.60,no.4,pp.1091-1100.2012.
    [17]3GPP TR25.881v5.0.0.Improvement of RRM across RNS and RNS/BSS (release5)[S].2001.
    [18]3GPP TR25.891v0.3.0.Improvement of RRM across RNS and RNS/BSS (release6)[S].2003.
    [19]侯华,周武旸.跨层自适应无线资源分配方案[J].中国科学技术大学学报,2006,11.1221-1226.
    [20] Nishith D Tripathi, Jeffrey H Reed, Hugh F Vanlandingham. Radio ResourceManagement in Cellular Systems[M]. Kluwer Academic Publishers,2002.
    [21] Jordi Perez Romero, Oriol Sallent, Ramon Agusti, et al. Radio Resource ManagementStrategies in UMTS[M]. New York: John Wiley&Sons Ltd,2005.
    [22]李洪星.无线协作通信中的关键技术研究[博士学位论文].上海:上海交通大学,2010.
    [23]陆晓文,刘俊琳,朱近康.一种基于网络优化的动态信道分配策略[J].电子与信息学报,2004,26(10):1555-1561.
    [24] Siamak Naghian. Mesh VS. Point-to-Multipoint Topology: A Coverage and SpectrumEfficiency Comparison[C].IEEE,2004,pp.1048-1051.
    [25] D.Lee, C.Xu, U.Mayekar, and M.Mohile. Frequency Reuse Factor VS. PathlossExponent and Sectorization[C]. IEEE,1997,pp.109-112.
    [26] Jun Xiang. A Novel Two Site Frequency Reuse Plan[C]. IEEE,1996,pp.441-444.
    [27] K.B.Letaief, Y.J.Zhang. Dynamic Multi-user Resource allocation and adaptation forwireless systems[J]. IEEE Trans. On Wireless Commun. Aug2006,pp.38-47.
    [28]梁辉,赵晓辉.基于组合投资理论与主用户QoS保证的认知系统资源分配算法[J].通信学报,2011,32(11):44-50.
    [29]邝文芳,陈志刚,邓晓衡.自适应的认知无线Mesh网络QoS约束的路由与频谱分配算法[J].通信学报,2011,32(11):59-70.
    [30]高疆.GPRS无线网络的优化及探讨[J].电信科学,2002(11):59-62.
    [31] Leon-Garcia, A.,Jun Kyun Choi, Widjaja,I.. QoS Control in Next-Generation netw-orks[J]. IEEE Communications Magazine,2007,45(9):114
    [32] J.M.Aein. Power balance in systems employing frequency reuse[J]. COMSAT Tech.Rev.3(2)1973.
    [33] S.A.Grandhi,R.Vijayan, D.J.Goodman, et al..Centralized power control in cellular radiosystems[J]. IEEE Trans. VT.,1993,42(4):466-468.
    [34] Kim Y,Kim D K, Kim J H. Radio resource management in multiple-chip-rateDS.CDMA systems supporting multicasts services[J]. IEEE Trans on Vehicular Tech,2001,50(3):723-736.
    [35] Wenhua Jiao, Jianfeng Chen, Fang Liu. Provisioning End-to-End QoS Under IMS Overa WiMAX Architecture[J]. Bell Labs Technical Journal,2007:115-121.
    [36] BULJORE S, HARADA H, FILN S. Architecture and enablers for optimized radioresource usage in heterogeneous wireless access networks: the IEEE1900.4workinggroup[J]. IEEE Communications Magazine,2009,(1):122-129.
    [37] Zhao Q, Sadler B M. A survey of dynamic spectrum access[J]. IEEE Signal ProcessingMagazine,2007,24(3):79-89.
    [38] Boyd S.W., Frye J.M., Pursley M.B, Royster T,C. Spectrum monitoring duringreception in dynamic spectrum access cognitive radio networks[J]. IEEE trans. oncommunications. Vol.60,no.2,pp.547-558.2012.
    [39] Yu-Yu Lin, Kwang-Cheng Chen. Asynchronous dynamic spectrum access[J]. IEEEtrans. on vehicular technology. Vol.61,no.1.pp.222-236.2012.
    [40] Brik V,Rozner E, Banarjee S, Bahl P. DSAP: a protocol for coordinated spectrumaccess[J]. In Proc. IEEE DySPAN2005,2005:1108-118.
    [41] Raman C, Yates RD, Mandayam NB. Scheduling variable rate links via a spectrumserver[J]. In Proc. IEEE DySPAN2005,2005:110-118.
    [42] Zekavat SA,Li X. User-central wireless system:ultimate dynamic channel allocation[J].In Proc. IEEE DySPAN2005,2005:82-87.
    [43] Zhao J, Zheng H Yang G H. Distributed coordination in dynamic spectrum allocationnetworks[J]. In Proc. IEEE DySPAN2005,2005:259-268.
    [44] Cao L,Zheng H. Distributed spectrum allocation vea local bargaining[J]. In Proc. IEEESensor and Ad Hoc Communications and Networks(SECON)2005,2005:475-486.
    [45] Ma L, Han X, Shen CC. Dynamic open spectrum sharing MAC protocol for wireless adhoc network[J].In Proc. IEEE DySPAN2005,2005:203-213.
    [46] Sankaranarayanan S, Papadimitratos P, Mishra A, Hershey S. A bandwidth sharingapproach to improve licensed spectrum utilization[J]. In Proc. IEEE DySPAN2005,2005:101-109.
    [47] Zhao Q, Tong L, Swami A, Decentralized cognitive MAC for dynamic spectrumaccess[J]. In Proc. IEEE DySPAN205,2005:224-232.
    [48] A.Oppenheim, R.Schaefer. Discrete Time Signal Processing, Prentice Hall, EnglewoodCliffs, NJ[M].1989.
    [49] L.Rabiner, J.H.McClellan and T.W.Parks. FIR Digital Filter Design Techniques UsingWeighted Chebyshev Approximations[J]. Proceedings of the IEEE,Vol.63,1975,pp.595-610.
    [50] T.W.Parks, J.J.McClellan. Chebyshev Approximations for Nonrecursive Digital Filt-ers with Linear Phase[J]. IEEE Transactions on Circuit Theory,Vol.19,1972,pp.189-194.
    [51] J.Flanagan. Speech Synthesis and Perception[M]. Springer Verlag, New York,1972.
    [52] Fred Harris. Multirate Signal Processing for Communication Systems, Prentice Hall,Englewood Cliffs, NJ[M].2004.
    [53] F.Rosenblatt, The Perceptron:A probabilistic Model for Information Storage andOrganization in the Brain[J]. Cornell Aeronautical Laboratory, Psychological Review,Vol.65, No.6,1958, pp.386-408.
    [54] J.Baker. Stochastic Modeling for Speech Recognition,Doctoral Thesis, Department ofComputer Science[M]. Carnegie Mellon University,Pittsburgh,PA,1976.
    [55] K.Lee, R.Reddy and Hsiao-wuen. An Overview of the SPHINX Speech RecognitionSystem[J]. IEEE Transactions on Acoustics on Acoustics Speech and Signal Processing,January1990, pp.34-45.
    [56] FCC. Spectrum Policy Task Force[R]. Rep. ET Docket no.02-135,Nov.2002.
    [57] FCC. Cognitive Radio Workshop[R]. May19,2003,[online], available:http://www.fc-c.gov/searchtools.htm.
    [58] Proc. Conf. Cogn. Radios, Las Vegas, NV, Mar.15-16,2004.
    [59] FCC. Notice of Proposed Rule Making[R]. ET Docket No.04-113,May25,2004.
    [60] FCC-04-113. Unlicensed Operation in the TV Broadcast Bands Additional Spectrum forUnlicensed Devices below900MHz and in the3GHz Band[R]. May.25,2004.
    [61] R.W.Brodersen, A.Wolisz,D.Cabric, et al. CORVUS: a cognitive radio approach forusage of virtual unlicensed spectrum[M]. white paper, Berkeley,CA,SA: BerkeleyWireless Research Center,2004.
    [62] I.F.Akyildiz, Y. Li. OCRA:OFDM-based cognitive radio networks[R]. Broadband andWireless Networking: Laboratory Technical Report, Mar.2006.
    [63] T.A.Weiss, J.Hillenbrand, A.Krobn,F.K.Jondral. Efficient signaling of spectral reso-urces in spectrum pooling system[C].10th symposium on Communications andVehicular Technology(SCVT2003),Nov.2003,pp:1-6.
    [64] Weiss T, Jondra F. Spectrum pooling: an innovative strategy for the enhancement ofspectrum efficiency[J]. IEEE Communications Magazine,2004,(42):8-14.
    [65] Capar F, Martoyo I, Weiss T, et al. Comparison of bandwidth utilization for controlledand uncontrolled channel assignment in a spectrum pooling system[C]. In proc. Of theIEEE55th Vehicular Technology Conference VTC Spring2002,Birmingham(AL),2002:1069-1073.
    [66] D.Grandblaise, C.Kloeck, K.Moessner et al. Techno-Economic of Collaborative basedSecondary Spectrum Usage-E2R Research Project Outcomes Overview[J]. In proc.IEEE DySPAN2005,Nov.2005,Page(s):318-327.
    [67] End-to-End Reconfiguration,E2R_WP5_D5.3_50727[EB/OL]. Available: http://e2r.motlabs.com/Deliverables/E2R_WP5_D5.3_50727.pdf.
    [68] P.Demestichas, G.Dimitrakopoulos, V.Stavroulaki. Introducing reconfigurability inwireless B3G environments[J/OL].[online]. Available at: http://www.eruasip.org/Proceedings/Ext/IST05/papers/1026.pdf.
    [69] The XG Vision, V2.0.[online]. Available at: http://www.ir.bbn.com/projects/xmac/vision.html.
    [70] XG Working Group. The XG Vision.RFC v1.0.[online]. Available at: http://ww-w.ir.bbn.com/projects/xmac/rfc-af.pdf.
    [71] IEEE802LAN/MAN Standards Committee802.22WG[EB/OL]. http://www.ieee802.org/22/.
    [72] DARPA:The Next Generation(XG)Program. Available at: http://www.darpa.mil/ato/programs/xg/index.html.
    [73] DARPA XG WG, The XG Vision RFC V1.0,2003.
    [74] Frederick W.Seelig. A Description of the August2006XG Demonstrations at Fort A.P.Hill[J]. In proc. IEEE DySPAN2007,Apr.2007,pp:1-12.
    [75] Serena Chan. Shared spectrum access for the DoD[J].In Proc. IEEE DySPAN2007,Apr.2007,pp:524-534.
    [76] Mark McHenry, Eugene Livsics, Thao Nguyen, et al. XG Dynamic spectrum sharingfield test resrlts[J]. IEEE Communications Magazine,2007,45(6), pp:51-57.
    [77] FP6End-to-End Reconfigurability(E2R)Project Proposal[C]. Presentation at The EUConcertation Meeting, Brussels, September9th,2003.
    [78] IST-2003-507995E2R (End-to-End Reconfigurability)Project[OL]. Available at:http://e2r2.motlabs.com.
    [79] ICT-2007-216248E3Project[OL].Available at: http://www.ict-e3.eu/][http://www.sc-c41.org/.
    [80] Giorgetti A., Chiani M., Dardari D., Piesiewicz R., Bruck,G.H. The cognitive radio paradigm for ultra-wideband systems-The European Project EUWB[J]. Proceedi-ngs of the2008IEEE international conference on ultra-wideband (ICUWB2008),vol.2,2008,no.169-172.
    [81] EUWB. Coexisting short range radio by advanced ultra-wideb and radiotechnology[DB/OL].http://www.euwb.eu/,Retrieve on2008-9-6.
    [82] Pleaves, D Grandblaise. Dynamic spectrum allocation in composite Reconfiguraabl-e wireless networks[J].IEEE Communications Magzine.2004,42(5):72-81.
    [83] Hongjie Liu, Shufang Li. Research on the mechanism of wran self-coexistence[C].In Proc.4th International Symposium on Electromagnetic Compatibility2007(EMC’2007),Oct,2007,pp:65-68.
    [84] J.Acharya, R.D.Yates. A Framework for dynamic spectrum sharing between CognitiveRadios[C]. In Proc. IEEE ICC’07,Jun.2007.Page(s):5166-5171.
    [85] Wendong Hu, D. Willkomm, M.Abusubaih, et al, Dynamic frequency hoppingcommunities for efficient IEEE802.22operation[J]. IEEE CommunicationsMagazine,45(5),May2007,Page(s):80-87.
    [86] Cordeiro C, Challapali K, birru D, et al. IEEE802.22: the first worldwide wirelessstandard based on cognitive radios[J]. IEEE DySPAN2005,2005.
    [87] S.M.Mishra, R.Tandra, A.Sahai. Coexistence with primary users of different scales[J].In Proc.IEEE DySPAN2007,Apr.2007,pp:158-167.
    [88] S.M.Mishra, S.Brink, R.Mahadevappa. Cognitive technology for Ultra-Wideband/wiMax coexistence[J]. In Proc. IEEE DySPAN2007,Apr.2007,pp:179-186.
    [89] S.Sankaranarayanan, P.Papadimitratos, A.Mishra. A bandwidth sharing approach toimprove licensed spectrum utilization[J]. In Proc. IEEE DySPAN2005,Nov.2005,pp:279-288.
    [90] Raul Etkin, Abhay Parekh, David Tse. Spectrum sharing for unlicensed bands[J]. InProc. IEEE DySPAN2005,NOV.2005,pp:251-258.
    [91] Simon Haykin.Cognitive dynamic systems Acoustics, speech and signal processing[C].in Proc. Vol.4,IEEE ICASSP2007,Apr.2007pp:IV-1369-IV-1372.
    [92] Yiping Xing. Dynamic spectrum access in open spectrum wireless networks[J]. IEEEJournal on Selected Areas in Communications,2006,24(3), pp:626-637.
    [93] IEEE802.16’s License-Exempt(LE)TaskGroup[EB/OL]. Available at: http://ieee802.org/16/le/.
    [94] IEEE P1901.1TM/D01, IEEE P1900Working Group[EB/OL]. Available at: http://grouper.ieee.org/groups/emc/emc/1900/index.html.
    [95] Oliver Holland, Markus Muck, Patricia Martigne, et al. Development of a radio enablerfor reconfiguration management within the IEEE P1900.4Working Group[J]. In Proc.IEEE DySPAN2007,Apr.2007,pp:232-239.
    [96] Markus Muck, Soodesh Buljore, Patricia Martigne, et al. IEEE P1900.B:CoexitenceSuppout for Reconfigurable,Heterogeneous Air Interfaces[J]. In Proc. IEEE DySPAN2007,Apr.2007,pp:381-389.
    [97] IEEE P802.11-Task Group Y-Meeting Update: Status of project IEEE802.11y[EB/OL].http://grouper.ieee.org/groups/802/11/Reports/tgy_update.html.
    [98] Y-C.Liang, H-H.Chen, J.Mitola Ⅲ, P.Mahonen, R.Kohno and J.H.Reed. GuestEditorial-Cognitive Radio: Theory and Application [J].IEEE Journal on Selected Areasin Communications.vol.26,no.1-4.2008.
    [99]59T.A.weiss, J.Hillenbrand, A.krobn, F.K.Jondral. EffieientsignalingofsPeetralresources In spectrum pooling system[C].10thSymposium on Communications and veh-ieular Technology(SCVT2003),Nov.2003,pp:l-6.
    [100] S.Haykin. Cognitive Radio: Brain-Empowered Wireless Communications[J]. IEEEJSAC,2005,Vol.23(2):201-220.
    [101] D.Cabric, S.M.Mishra, R.W.Brodersen. Implementation issues in spectrum sensing forcognitive radios[C]. In Proc.38th Asilomar Conference on Signals, Systems andComputers2004,2004,772-776.
    [102]虞贵财,罗涛,乐光新.认知无线电系统中协同能量检测算法的性能研究[J].电子与信息学报,2009,31(11):2682-2686.
    [103] Ning Han, SungHwan Shon, Jae Hak Chung, et al. Spectral Correlation Based SignalDetection Method for Spectrum Sensing in IEEE802.22WRAN Systems[C]. The6thICACT, Seoul, Korea, Feb2006.
    [104] B.Wild, K. Ramchandran. Detecting Primary Receivers for Cognitive RadioApplications[C]. First IEEE International Symposium on New Frontiers in DynamicSpectrum Access Networks.2005:124-130.
    [105]谢显中.感知无线电技术及其应用[M].北京:电子工业出版社,2007.
    [106]李红岩.认知无线电的若干关键技术研究[博士学位论文].北京:北京邮电大学,2009.
    [107]王悦,冯春燕,曾志民等.认知无线电频谱检测机制研究[J].吉林大学学报(信息科学版),2008,26(3):230-237.
    [108] Wang Peng, Xiao Limin, Zhou Shidong, et al. Optimization of Detection Time forChannel Efficiency in Cognitive Radio Systems[C]. Wireless Communications andNetworking Conference. Hongkong, China:IEEE Press.2007,111-115.
    [109] Ghasemi Amir, Sousa Elvino S. Optimization of Spectrum Sensing for OpportunisticSpectrum Access in Cognitive Radio Networks[C]. Consumer Communications andNetworking Conference. Las Vegas,NV,USA:IEEE Press,2007,1022-1026.
    [110]曾志民,郭彩丽.认知无线电网络的MAC层关键技术[J].中兴通讯技术,2009,15(2):20-25.
    [111] Song Qi-jun, Han Yu-nan, Huang Yan.A Centre Controlled strategy for A daptiveSpectrum Access[C].Environmental Electromagnetics, The20064th Asia-PacificConference on Aug,2006,771-774.
    [112]张烨,龚晓峰.认知无线电频谱分配的博弈论方法[J].通信技术,2009,42(6):5-7.
    [113] Haykin S. Cognitive Radio, Software Defined Radio and Adaptive WirelessSystems[M]. Springer,2007:470.
    [114] Aleksandar Jovicic, Pramod Viswanath. Cognitive Radio: An Information-TheoreticPerspective[C]. Information Theory,2006IEEE Information Symposium on,2006.
    [115] Devroye N., Mitran P., Tarokh V. Achievable rates in cognitive radio channels[J]Information Theory, IEEE Transactions on.2006,52(5):1813-1827.
    [116] Sridharan S., Vishwanath S.. On the Capacity of a Class of MIMO Cognitive Radios[J].Selected Topics in signal Processing, IEEE Journal,2008,2(1):103-117.
    [117] Weingarten H., Steinberg Y., Shamai S.. The Capacity Region of the GaussianMultiple-Input Multiple-Output Broadcast Channel[J]. Information Theory, IEEETransactions,2006,52(9):3936-3964.
    [118] Caire G., Shamai S.. On the achievable throughput of a multiantenna Gaussianbroadcast channel[J].Information Theory, IEEE Transactions,2003,49(7):1691-1706.
    [119] Jafar S.A., Shamai S.. Degrees of Freedom Region of the MIMO X Channel[J].Information Theory, IEEE Transactions,2008,54(1):151-170.
    [120] Kuppusamy V., Mahapatra R.. Primary user detection in OFDM based MIMOCognitive Radio[C]. Cognitive Radio Oriented Wireless Networks and Communications,2008.Crowncom2008.3rd International Conference,2008.
    [121] Pandharipande A., Linnartz J.-p. Performance Analysis of Primary User Detection in aMultiple Antenna Cognitive Radio[C]. Communications,2007.ICC’07. InternationalConference on,2007.
    [122] Qinghai Yang, Xizhi An, Kyung Sup Kwak. Qutage Probability Analysis for CognitiveRadios with Reception Diversity[C]. Cross Layer Design,2007.IWCLD’07.InternationalWorkshop,2007
    [123]吴伟陵,牛凯.移动通信原理[M].北京:电子工业出版社,2005.
    [124] Islam H., Ying-chang Liang, Anh Hoang. Joint power control and beamforming forcognitive radio networks[J]. Wireless Communications, IEEE Transactions,2008,7(7):2415-2419.
    [125] Lan Zhang, Ying-chang Liang, Yan Xin. Joint Beamforming and Power Allocation forMultiple Access Channels in Cognitive Radio Networks[J]. Selected Areas inCommunications, IEEE Journal,2008,26(1):38-51.
    [126] Hamdi K., Wei Zhang, Ben Letaief K. Joint Beamforming and Scheduling in Cognitive Radio Networks[C]. Global Telecommunications Conference,2007.GLOBECOM’07.IEEE,2007.
    [127] Yangsoo Kwon, Hyeonsu Kim, Jaeho Yoo, Jaehak Chung. Orthogonal BeamformingMethodology in Cognitive Radio Networks[C]. Cognitive Radio Oriented WirelessNetworks and Communications,2008.Crowncom2008.3rd International Conference,2008.
    [128] Lan Zhang, Ying-chang Liang, Yan Xin. Robust cognitive beamforming with partialchannel state information[C]. Information Sciences and Systems,2008.CISS2008.42ndAnnual Conference,2008.
    [129]张宇,冯春燕,郭彩丽.基于可变间隔的认知无线电频谱检测机制[J].北京邮电大学学报,2008,31(2):128-131.
    [130] Hyoil Kim, Kang G. Shin. Efficient Discovery of Spectrum Opportunities withMAC-Layer Sensing in Cognitive Radio Networks[J]. IEEE Transactions on MobileComputing,2008,Vol.7(5):534-535.
    [131] Muterspaugh M, Liu Hang, Gao Wen. Thomson Proposal Outline forWRAN[EB/OL]http://www.ieee802.org/22/Meeting_documents/2005_Nov/22-05-0095-00-0000_Thomson_Proposal_Outline.doc(2005-11-7)[2007-5-15].
    [132] Akyildiz I F, Altunbasak Y, Fekri Y,et al. Adapt Net: an adaptive protocol suitefor the next-generation wireless Internet[J]. IEEE Communications Magazine2004,42(3):128-138.
    [133] Weiss T, Jondra F. Spectrum pooling:an innovative strategy for the enhancement ofspectrum efficiecy[J]. IEEE Communications Magazine,2004,42:8-14.
    [134] Capar F, Martoyo I, Weiss T,et al. Comparison of bandwidth utilization for controlled and uncomtrolled channel assignment in a spectrum pooling system[C]. Inproc.of the IEEE55th Vehicular Technology Technology Conference VTC Spring2002,Birmingham(AL),2002:1069-1073.
    [135] Yanqing Zhang, Kandel A. Compensatory Genetic Fuzzy Neural Networks and theirApplications[M]. New York:World Scientific Publishing,1998.
    [136]克劳斯·格拉夫.数学与信息学的古典标记—来自易经的太极符号[J].自然杂志,2006,28(4):236-238.
    [137]付家才,石娟,唐旭华.基于阴阳调和的模糊神经网络[J].黑龙江科技学院学报,2007,17(3):243-247.
    [138]张艳,陈东,李晓雷,等.融合阴阳补偿理论的软计算故障诊断方法[J].北京理工大学学报,2001,21(3):304-309.
    [139]王霞,朱琦.一种改进的认知无线电博弈功控算法[J].信号处理,2009,25(5):825-831.
    [140]田峰,杨震.认知无线电频谱分配新算法研究[J].通信学报,2007,09(9):27-33.
    [141]刘玉涛,谭学治,孙永亮.基于认知用户最小需求的频谱分配算法[J].哈尔滨工业大学学报,2008,40(增刊):32-37.
    [142]席志红,晋野,李娅.认知无线电的频谱分配算法[J].应用科技,2010,37(02):9-11.
    [143] MENON R, MACKENZIE A, BUEHRER R. Game theory and interference avoidance in decentralized networks[C]. SDR Form Technical Conference,2004.15-18.
    [144]田峰,杨振.基于囚徒困境的认知无线电竞争频谱共享分析[J].南京邮电大学学报(自然科学版),2008,28(03):1-6.
    [145]邱晶.认知无线电中的动态频率选择和功率控制研究[J].系统仿真学报,2008,07(20)1821-1825.
    [146]洪波.认知无线电系统中频谱分配综述[J].电信快报,2009(03):29-32.
    [147]柳海涛.基于博弈论的认知无线电频谱分配模型[J].通信技术,2008,41(08):107-109.
    [148] D.Monderer and L.Shapley. Potential Games. Games and Economic Behavior[M].1996.
    [149]卢勇,惠晓威.应用博弈论的认知无线电频谱分配算法[J].微计算机信息,2010,26(08):221-222.
    [150]程世伦,杨震.基于信干比的认知无线电自适应功率控制算法[J].电子与信息学报,2008,30(1):59-62.
    [151] Koskie S, Gajic Z. A Nash Game Algorithm for SIR-based Power Control in3GWireless CDMA Networks[J].IEEE/ACM Transactions on Networking,2005,13(5):1017-1026.
    [152] SARAYDAR C U, MANDAYAM N B, GOODMAN D J. Efficient power control viapricing in wireless data networks[J]. IEEE Transactions on communications,2002,50(2):291-303.
    [153]赵成林,李鹏,蒋挺.快速收敛的认知无线电功率控制算法[J].北京邮电大学学报,2009,32(1):74-75.
    [154]满成圆,刘雁,周文安等.基于博弈论的宽带无线系统功率控制算法研究[J].北京邮电大学学报,2005,28(5):121-124.
    [155] Yates R D. A framework for uplink power control in cellular radio systems [J]. IEEE JSel Areas Commun,1995,13(7):1341-1347.
    [156]杨大成.移动传播环境—理论基础、分析方法和建模技术[M].北京:机械工业出版社,2003.
    [157] Theodore S.Rappaport.无线通信原理与应用(蔡涛,李旭,杜振民译)[M].北京:电子工业出版社,1999.
    [158]彭林.第三代移动通信技术[M].北京:电子工业出版社,2001.
    [159] Gregory D.Durgin.空—时无线信道(朱世华,任品毅,王磊,等译)[M].西安:西安交通大学出版社,2004.
    [160] M.Patzold. Mobile Fading Channels[M].John Wiley&Sons,Ltd.,2002.
    [161] Foschini G J. Layered space-time architecture for wireless communication in a fadingenvironment when using multi-element antennas[J].Bell Labs Technical Journal,1996,l(2):41-59.
    [162] Foschini G J, Gans M J. On limits of wireless communications in A fading environment when using multiple antennas[J]. Wireless Personal Communications,19-98,6(3):311-335.
    [163] DOHLER M, AGHVA H. On the Approxmation of MIMO Capacity[J]. IEEE Tr-ansactions on Wireless Communications,2005,4(1):30-34.
    [164] DOHLERM, AGHVAH. A closed Form Expression of MIMO capacity over ErgodicNarrowband Channels[J]. IEEE Communications Letter,2004,8(6):365-367.
    [165] SHINH,LEEH. Closed-form Formulas for Ergodic Capacity of MIMO Rayleigh FadingChannels[A]. IEEE ICC[C].2003.2996-3000.
    [166] SHINH, LEE J H. On the Capacity of MIMO Wireless Channels [J]. IEICETransactions on Communications,2004,E87-B(3).
    [167] ALOUINIM,GOLDSMITH J. Capacity of Rayleigh fading channels under differentadaptive transmission and diversity-combining techniques[J]. IEEE Transactions onVehicular Technology,1999,48.
    [168] Abdi A, Barger J A, and Kaveh M.A parametric model for the distribution of the angleof arrival and the associated correlation function and power spectrum at the mobilestation[J]. IEEE Trans. on Vehicular.Technology,2002,51(3):425–434.
    [169] Durgin G D and Rappaport T S.Effects of multi-path angular spread on the spatialcross-correlation of received voltage envelopes[J].49th IEEE Vehicular TechnologyConference,Houseton,Texas,USA,July1999,2:996–1000.
    [170] H.Shin and J.H.Lee. Capacity of multiple-antenna fading channels:Spatial fading correlation,double scattering,and keyhole[J].IEEE Trans. Inform. Theory,vol.49,2007,pp.2636-2647.
    [171] Shuo Pan. Capacity of MIMO Systems for Spatial Channel Model Scenarios[D].The Australian National University, Canberra, Australia. June2006.
    [172] E.Biglieri, J.Proakis, and S.Shamai(Shitz). Fading channels:Information-theoretic and communications aspects[J]. IEEE Trans. Inform. Theory, vol.44,1998, pp.2619-2692,.
    [173] A.Grant.Rayleigh fading multiple-antenna channels[J].EURASIP Journal on Applied Si-gnal Processing, vol.2002, pp.316-329.
    [174] C.-N.Chuah, D.N.C.Tse, J.M.Kahn and R.A.Valenzuela. Capacity scaling in MIMOwireless systems under correlated fading[J]. IEEE Trans.Inform. Theory, vol.48,2002,pp.637-650.
    [175] P.J.Smith, S.Roy, M.Shafi. Capacity of MIMO systems with semicorrela167flatfading[J]. IEEE Trans. Inform. Theory, vol.49,2003,pp.2781-2788.
    [176] M.Chiani, M.Z.Win, A.Zanella. On the capacity of spatially correlated MIMO Rayleigh-fading channels[J]. IEEE Trans. Inform. Theory, vol.49,2003,pp.2363-2371.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700