用户名: 密码: 验证码:
粗糙集属性协同演化约简关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粗糙集理论具有能有效定量分析并处理不精确、不一致、不完整信息与知识等特征,已被广泛应用于数据挖掘、模式识别和机器学习等领域。属性约简是粗糙集理论研究的重要内容,其是指在保持决策表中数据分类能力不变的条件下,删除不相关和冗余属性,选择最小属性集,使决策表中知识表示可简化而又不丢失决策表中重要信息。Wong等人已证明找出决策表的最小属性约简是一个典型NP-Hard问题,许多学者对此开展了相关研究,并取得了一定的研究成果,然而至今仍未找到一种通用且高效的解决方法为其求解提供有效途径。
     近年来,协同演化算法通过揭示和模拟自然界生态系统中多种群协同进化现象和过程而成为计算智能领域研究热点,它能有效解决许多传统演化算法难以解决的复杂问题,尤其是在NP-Hard问题上凸显其较强优势。本文将协同演化算法引入到粗糙集最小属性约简优化中,对属性协同演化约简中算法收敛性、协同机制、模型优化、演化自适应性、大规模属性约简及其代表性个体选择等关键问题进行了深入系统地研究,致力于完善粗糙集属性演化约简理论方面的工作,构建协同演化框架下属性约简模型和系列算法,并且在属性约简与特征分类、核磁共振成像MRI约简与分割等实际应用问题中展示本文所提相关算法的有效性。具体而言,本文的主要贡献在于:
     1.针对传统属性演化约简易早熟收敛和进化种群邻域选择问题,将小生境进化技术引入到粗糙集属性演化约简中,提出了基于小生境圆锥邻域粒子群的属性协同演化约简算法。该算法将具有社会认知行为的粒子种群映射至属性近似空间,进化粒子在属性约简寻优过程中通过圆锥分层空间自主动态构造小生境邻域半径,并利用自适应强化约束罚函数提高粒子种群目标适应度的收敛能力。实验结果表明该算法能充分发挥进化种群在各自小生境邻域内属性协同演化约简作用,较好地避免了属性演化约简早熟收敛,对属性约简性能具有明显的提高。
     2.为提高进化种群在粗糙集属性演化约简中的协同优化能力,将协同演化机制进行拓展,构造了基于自适应进化树的属性混合协同演化约简算法。该算法建立了一种基于自适应多层进化树的动态种群协同模型,采用竞争和合作混合的协同演化机制实现各属性子集向量约简寻优经验的协同共享,较好地达到属性演化约简中广度寻优和深度探索的有效平衡。实验结果表明该基于自适应进化树模型的竞争和合作混合协同机制在属性演化约简中的有效性。
     3.将量子协同演化引入到粗糙集属性约简模型优化中,提出了基于量子蛙群进化的属性协同演化高效约简算法。该算法用量子态比特进行动态多簇结构蛙群个体编码,提高参与属性演化约简进化个体的多样性;以量子旋转门动态自适应调整机制驱动属性演化约简的搜索过程,在全局搜索和局部求精之间保持属性协同约简均衡;以量子变异和量子纠缠策略避免属性演化约简陷入局部极值,快速向全局最优收敛。该算法并重构了属性量子协同演化约简目标适应度函数,取得了较为满意的最小属性约简集。在此基础上,又提出了一种基于动态交叉协同的量子蛙群属性协同演化约简与分类学习级联算法,进一步提高其在属性约简与决策规则分类学习中的应用性能。实验结果表明该属性量子协同演化约简算法具有极强的全局最小属性约简搜索性能,其属性约简效率和精度较一般算法具有明显提升。
     4.为进一步增强新型框架下属性量子协同演化约简的自适应性,基于云模型在非规范知识定性、定量表示及其相互转换过程中优良特征,提出了基于量子云模型的属性协同演化自适应约简算法。该算法利用量子种群基因云对参与属性约简的量子蛙群进行定性控制;基于约简属性熵权逆向云进行量子云旋转门的自适应调整,使其在定性知识指导下能自适应控制属性约简空间的搜索范围;采用量子云变异和云纠缠操作算子使量子蛙群自适应搜索到全局最优属性约简集。该算法利用云模型使属性量子协同演化约简具有更优的自适应性,能较好地处理模糊的和不完整的属性约简问题。
     5.为扩大粗糙集属性协同演化约简在大规模实际优化问题中的应用及解决其代表性精英个体选择问题,基于群体协作模式框架下精英角色思想,提出了基于量子种群精英的大规模属性协同演化集成约简算法。该算法首先设计一种量子蛙群多层精英池结构,利用量子精英蛙快速引导整个蛙群进入最优化区域寻优;然后构建大规模属性自适应合作型协同演化约简模型,融合量子种群最优执行经验和分配信任度将大规模属性集分割为自适应规模的属性子集;最后以各蛙群模因组内量子精英蛙优化各自选择的属性子集,有效增强量子种群精英在大规模属性演化约简中的协同求解性能。理论分析和实验结果证明了该算法的可行性和有效性,该算法在核磁共振成像MRI约简和分割中的应用进一步表明其具有较强的适用性。
Rough set theory (RST) was introduced by Professor Pawlak in1982to analyze and deal withsome information and knowledge with imprecision, inconsistency and incompletion. In recent years,it has been widely applied in diversified research areas, such as data mining, pattern recognition,machine learning, and so on. Attribute reduction is one of the most important topics of RST, and it hasbeen recognized as an important feature selection method. Attribute reduction studies how to removeirrelevant and redundant features with minimal information loss, and to select the attribute subsetfrom original attributes in the decision table while retaining the suitably high classificationperformance in representing the original attributes. Finding the minimum reduction set is moredifficult and it has been proven to be a representative NP-hard problem by Wong et al, and manyresearchers have made efforts on the algorithms of attribute reduction and achieved some betterresults. However, there has been no universal and efficient solution for this purpose.
     In recent years, the co-evolutionary algorithm has been a growing interest in the field ofcomputational intelligence by revealing and simulating the co-evolutionary phenomenon and process ofmulti-populations in the natural ecosystem. So far it has been proven to be effective in solving manycomplex problems of which are difficult by using the traditional evolutionary algorithms, especially forsome NP-Hard problems. In this thesis, the co-evolutionary algorithm is introduced into theoptimization problem of minimum attribute reduction in RST. Some key problems for attributeco-evolutionary reduction such as convergence, cooperation mechanism, model optimization,evolutionary adaptability, large-scale attribute reduction and its representative individual selection arethoroughly investigated, so that theoretical work of attribute reduction in RST is perfected. A series ofmodels and algorithms about attribute reduction are developed under the co-evolutionary frameworkand applied into some practical applications, such as attribute reduction and feature classification,magnetic resonance images (MRI) reduction and segmentation, and so on. Some experimental resultsdemonstrate the effectiveness of proposed algorithms. In this thesis, some key problems on attributeco-evolutionary reduction in RST are systematically and deeply researched, in which the traditionalalgorithms are improved, and some new models and algorithms are put forward. The related researchresults significantly enhanced the performance of attribute co-evolutionary reduction.
     More concretely, the main contributions of this thesis include:
     1. For the problems on traditional attribute evolutionary reduction in the premature convergenceand population neighborhood selection, the niche technology is introduced into the attributeevolutionary reduction, and a niche conic neighborhood particle swarm optimization based attribute co-evolutionary reduction algorithm is proposed. Particle swarm with social cognition behavior ismapped into the attribute approximate space for iterative optimization. It can self-adaptively constructthe niche vector of neighborhood by the layered conic space. And the adaptive penalty function isused to strengthen the convergence ability of population fitness, so that the premature convergencecan be avoided well and the minimum attribute reduction set is obtained quickly. Experimental resultsdemonstrated that performance of proposed algorithm is improved much better, by playing the effectof populations’ co-evolutionary reduction within their respective niche neighborhoods as to avoid thepremature convergence.
     2. In order to improve the co-evolutionary performance for attribute reduction in RST, a noveland efficient self-adaptive evolutionary tree based attribute mixed co-evolutionary reductionalgorithm is put forward by expanding the essence of co-evolutionary mechanism. It constructs a kindof the dynamic population model with the self-adaptive multilevel evolutionary tree. The mixedco-evolutionary mechanism of competitive and cooperative co-evolution is adopted to select therespective excellent individual in each evolutionary sub-tree, and to carry on their attribute subsetvector to share the co-evolutionary searching experience. The proposed algorithm can better balancebetween exploitation in breadth and exploration in depth. Some experiments are presented to show theeffectiveness of the mixed co-evolutionary mechanism with competitive and cooperativeco-evolution.
     3. The quantum-inspired co-evolutionary algorithm is firstly introduced into the research for themodel optimization of attribute reduction in RST, therefore an efficient quantum frog based attributeco-evolutionary reduction algorithm is proposed. In this algorithm, individuals with dynamicmulti-cluster frog structure are represented by multi-state quantum bits, in order to increase thediversity of evolutionary individuals. The self-adaptive adjustment of quantum rotation gate speedsthe search process so that it can keep balance between global search and local refinement during theattribute co-evolutionary reduction. The strategies of quantum mutation and quantum entanglementare applied to accelerate the evolution convergence. The algorithm reconstructs the fitness function ofattribute reduction optimization based on quantum co-evolution, in order to obtain more satisfyingminimum attribute reduction set. And on such basis, the attribute co-evolutionary reduction andclassification learning cascade algorithm based on the quantum frog with adaptive crossovercooperation is proposed so as to further improve the performance of attribute reduction andclassification learning for decision rules. Experimental results indicate it has extremely strong globaloptimization of attribute co-evolutionary reduction and has achieved better high-performance onefficiency and accuracy than traditional algorithms. From the perspective of quantum co-evolution,attribute quantum co-evolutionary reduction algorithm is designed, which will provide a better idea for new framework of attribute evolutionary reduction.
     4. In order to further improve the adaptability of attribute quantum co-evolutionary reduction, aquantum cloud model based attribute self-adaptive co-evolution reduction algorithm is presented,according to outstanding characteristics of the cloud model on the process of transforming aqualitative concept to a set of quantitative numerical values. First, quantum population gene cloud isused to encode the evolutionary frog population, and reversible cloud mode based on attribute entropyweight is designed to adjust the quantum revolving gate adaptively, so the scope of search space canbe adaptively controlled under the guidance of qualitative knowledge. Second, both the quantumcloud mutation and quantum cloud entanglement operators are used to make quantum frog populationbe adaptive to get the optimization attribute reduction sets fast. By using of cloud model, the proposedalgorithm can make attribute quantum co-evolutionary reduction with stronger adaptability and canbetter deal with the vague and incomplete attribute reduction.
     5. Aiming at the optimization problem of application in large-scale attribute reduction and itsrepresentative elitist individual selection, a novel quantum elitist frog based large-scale attributeco-evolutionary ensemble reduction algorithm is proposed by enlightening the elite role attitude underthe collective collaboration model. First, the algorithm designs the multilevel elitist pool of quantumfrogs, in which quantum elitist frogs can fast guide the evolutionary population into the optimal area.Second, a self-adaptive cooperative co-evolutionary model is constructed to decompose thelarge-scale attribute set into reasonable-scale attribute subsets according to the best historicalperformance experience records and assignment credits. Third, some optimal elitists in differentmemeplexs are selected out to evolve their representing attribute subsets, which can increase thecooperation and efficiency of large-scale attribute reduction. Therefore the global minimum attributereduction set can be gained steadily and efficiently. Theoretical analysis and experimental results arepresented to show the feasibility and effectiveness of the proposed algorithm. Finally this proposedalgorithm is applied into magnetic resonance images (MRI) reduction and segmentation, and theeffective and robust segmentation results further demonstrate it has stronger applicability.
引文
[1]陆汝钤.知识科学与计算科学.北京:清华大学出版社,2003.
    [2] T. J. Jech. Set theory. Springer Verlag,2003.
    [3] L. A. Zadeh. Fuzzy Sets. Information and Control,1965,8:338-353.
    [4] A. P. Dempster. Upper and lower probabilities induced by a multivalued mapping. Annals of Mathe-matical Statistics,1967,38(2):325-339.
    [5] A. P. Dempster. Generalization of bayesian inference. Journal of the Royal Statistical Society, SeriesB30,1968:205-247.
    [6] G. A. Shafer. Mathematical theory of evidence. Princeton University Press, Princeton,1976.
    [7] Z. Pawlak. Rough sets. International Journal of Computer and Information Sciences,1982,11(5):341-356.
    [8] Z. Pawlak. Rough sets: theoretical aspects of reasoning about data. Dordrecht: Kluwer AcasemicPublisher,1991.
    [9]张文修,吴伟志,梁吉业,等.粗糙集理论与方法.北京:科学出版社,2001.
    [10]王国胤. Rough集理论与知识获取.西安:西安交通大学出版社,2001.
    [11]刘清. Rough集及Rough推理.北京:科学出版社,2001.
    [12]苗夺谦,李道国.粗糙集理论、算法与应用.北京:清华大学出版社,2008.
    [13] J. W. Grzymala-Busse, W. Ziarko. Data mining and rough set theory. Commun. ACM,2000,43(4):108-109.
    [14] R. W. Swiniarski, A. Skowron. Rough set methods in feature selection and recognition. PatternRecognition Letters,2003,24(6):833-849.
    [15] P. Pattaraintakorn, N. Cercone. Integrating rough set theory and medical applications. AppliedMathematics Letters,2008,21:400-403.
    [16] H. L. Yang, S. G. Li, S. Y. Wang, et al. Bipolar fuzzy rough set model on two different universesand its application, Knowledge-Based Systems,2012,25:94-101.
    [17] R. O. Duda, P. E. Hart, D. G. Stork. Pattern classification (2nd Edition), New York: Wiley,2001.
    [18] J. Jacek, K. Krzysztof, S. Roman. Rough set reduction of attributes and their domains for neuralnetworks. International Journal of Computational Intelligence,1995,11(2):339-347.
    [19] J. Stefanowski, A. Tsoukias. Incomplete information tables and rough classification. Computati-onal Intelligence,2001,17(3):545-566.
    [20] W. X. Zhang, J. S. Mi, W. Z. Wu. Approaches to knowledge reductions in inconsistent systems.International Journal of Intelligent System,2003,18(9):989-1000.
    [21] D. G. Chen, W. X. Zhang, D. Yeung, et al. Rough approximations on a complete completelydistributive lattice with applications to generalized rough sets. Information Sciences,2006,176:1829-1848.
    [22] Y. Y. Yao, Y. Zhao. Attribute reduction in decision-theoretic rough set models. InformationSciences,2008,178(17):3356-3373.
    [23] Z. Q. Meng, Z. Z. Shi, Extended rough set-based attribute reduction in inconsistent incompletedecision systems, Information Sciences,2012,204(30):44-69.
    [24] Z. Pawlak, A. Skowron. Rough sets: Some extensions. Information Sciences,2007,177:28-40.
    [25] J. W. Guan, D. A. Bell. Rough computational methods for information systems. Artificial Intelli-gences,1998,105(1-2):77-103.
    [26]刘少辉,盛秋戬,吴斌,等. Rough集高效算法的研究.计算机学报,2003,26(5):524-529.
    [27]徐章艳,刘作鹏,杨炳儒,等.一个复杂度为max(O(|C||U|),O(|C|2|U/C|))的快速属性约简算法.计算机学报,2006,29(3):391-399.
    [28] Y. H. Qian, J. Y. Liang, W. Pedrycz, et al. Positive approximation: an accelerator for attributereduction in rough set theory. Artificial Intelligence,2010,174(9-10):597–618.
    [29] A. Skowron, C. Rauszer. The discernibility matrices and functions in information systems.Intelligent Decision Support handbook of Applications and Advances of the Rough Sets theory.Dordrecht: Kluwer Academic Publisher,1992,331-362.
    [30] J. Wang, J. Wang. Reduction algorithms on discernibility matrix: the ordered attributes method.Journal of Computer Science and Technology,2001,16(6):489-504.
    [31]王国胤,于洪,杨大春.基于条件信息熵的决策表约简.计算机学报,2002,25(7):759-766.
    [32]杨明.决策表中基于条件信息熵的近似约简.电子学报,2007,35(11):2156-2160.
    [33]胡峰,王国胤.属性序下的快速约简算法.计算机学报,2007,30(8):1429-1435.
    [34]胡清华,于达仁,谢宗霞.基于领域粒化和粗糙逼近的数值属性约简.软件学报,2008,19(3):640-649.
    [35]葛浩,李龙澍,杨传健.基于冲突域的高效属性约简算法.计算机学报,2012,35(2):342-350.
    [36] S. K. M. Wong, W. Ziarko. On optimal decision rules in decision tables. Bulletin of PolishAcademy of Science,1985,33(11):693-696.
    [37] J. H. Holland. Outline for a logical theory of adaptive system. Journal of the Association forComputing Machinery,1962,9(3):297-328.
    [38] J. H. Holland. Adaptation in Natural and Artificial System. Ann Arbor: The University ofMichigan Press,1975.
    [39] M. Dorigo. Optimization, learning and natural algorithm (In Italian).[PhD thesis], Dipartimento diElettronica, Politecnico di Milano, Italy,1992.
    [40] M. Dorigo, V. Maniezzo, A. Colorni. The ant system: optimization by a colony of cooperatingagents. IEEE Transactions on Systems, Man and Cybernetics-Part B,1996,26(1):1-13.
    [41] M. Dorigo, L. Ganbardella. Ant colony system: a cooperative learning approach to the travelingsalesman problem. IEEE Transactions on Evolutionary Computing,1997,1(1):53-66.
    [42] J. Kennedy, R. C. Eberhart. Particle swarm optimization. Proceedings of IEEE InternationalConference on Neural Networks, Piscataway, NJ, IEEE Service Center,1995:1942-1948.
    [43] F. Glover. Tabu search, Part I. ORSA J. Comput.,1989,1:190-206.
    [44] N. K. Jerne. Toward a network theory of the immune system. Annual Immunology,1974,125C:373-389.
    [45] S. Muller, J. Marchetto, S. Airaghi. Optimization based on bacterial chemotaxis. IEEE Trans.Evolutionary Computation,2002,6(1):16-29.
    [46]李晓磊,邵之江,钱积新.一种基于动物自治体的寻优模式:鱼群算法.系统工程理论与实践,2002,22(11):32-38
    [47] D. Karaboga, C. Ozturk. A novel clustering approach: artificial bee colony (ABC) algorithm.Applied Soft Computing,2011,11(1):652-657.
    [48] D. Slezak, J. Wroblewski. Order based genetic algorithms for the search of approximate entropyreducts. In: Wang, G.Y., et al.(Eds.), RSFDGrC. LNAI2639, Chongqing, China,2003:308-311.
    [49] R. Jensen, Q. Shen. Finding rough set reducts with ant colony optimization. Journal of Fussy Setsand Systems,2005,49:5-20.
    [50] L. J. Ke, Z. R. Feng, Z. G. Ren. An efficient ant colony optimization approach to attributereduction in rough set theory. Pattern Recognition Letters,2008,29:1351–1357.
    [51] Y. M. Chen, D. Q. Miao, R. Z. Wang. A rough set approach to feature selection based on antcolony optimization. Pattern Recognition Letters,2010,31:226-233.
    [52] X. Y. Wang, J. Yang, X. Teng, et al. Feature selection based on rough sets and particle swarmoptimization. Pattern Recognition Letters,28(4)(2007)459-471.
    [53] D. Y. Ye, Z. J. Chen, J. K. Liao. A new algorithm for minimum attribute reduction based on binaryparticle swarm optimization with vaccination. PAKDD2007, LNAI4426, Nanjing, China,2007:1029-1036.
    [54] C. Bae, W. C. Yeh, Y. Y. Chu. Feature selection with intelligent dynamic swarm and rough set.Expert Systems with Applications,2010,37(10):7026-7032.
    [55] A. R. Hedar, J. Wang, M. Fukushima. Tabu search for attribute reduction in rough set theory. SoftComputing,2008,12(9):909-918.
    [56] D. H. Wolpert, W.G. Macready. No free lunch theorems for optimization. IEEE Transaction onEvolutionary Computation,1997,1(1):67-82.
    [57] H. Haken著,戴鸣钟译.协同学——自然成功的奥秘.上海:上海科技普及出版社,1987.
    [58] P. R. Ehrlich, P. H. Raven. Butterflies and plants: a study in coevolution. Evolution,1965,18:586-608.
    [59] D. H. Janzen. When is it coevolution. Evolution,1980,34:611-612.
    [60] M. A. Potter, K. A. De Jong. A cooperative coevolutionary approach to function optimization. Pro-ceedings of the Parallel Problem Solving from Nature-PPSN III, Int’l Conf. on EvolutionaryComputation. LNCS866, Berlin: Springer-Verlag,1994:249-257.
    [61] F. van den Bergh, A. P. Engelbrecht. A cooperative approach to particle swarm optimization.IEEE Transactions on Evolutionary Computation,2004,8(3):225-239.
    [62] N. Kubota, T. Arakawa, T. Fukuda, et al. Trajectory generation for redundant manipulator usingvirus evolutionary genetic algorithm. Proceedings of1997IEEE International Conference onRobotics and Automation, Albuquerque, IEEE,1997:205-210.
    [63] H. Y. Chen, X. F. Wang. Cooperative coevolutionary algorithm for unit commitment. IEEE Trans.on Power Systems,2002,17(1):128-133.
    [64] J. Liu, W. C. Zhong, L. C. Jiao. An organizational evolutionary algorithm for numerical optimization. IEEE Trans. on Systems, Man, and Cybernetics-Part B: Cybernetics,2007,37(4):1052-1064.
    [65] Z. Y. Yang, K. Tang, X. Yao. Large scale evolutionary optimization using cooperative coevo-lution. Information Sciences,2008,178:2985-2999.
    [66]慕彩红,焦李成,刘逸. M-精英协同进化数值优化算法.软件学报,2009,20(11):2925-2938.
    [67]郑皎凌,唐常杰,徐开,等.基于协同进化的异构种群挖掘混沌迭代函数.计算机学报,2010,30(5):672-686.
    [68] C. K. Goh, K. C. Tan, D. S. Liu, et al. A competitive and cooperative co-evolutionary approach tomulti-objective particle swarm optimization algorithm design. European Journal of OperationalResearch,2010,202:42-54.
    [69] J. W. Gu, M. Z. Gu, C. W. Cao, et al. A novel competitive co-evolutionary quantum geneticalgorithm for stochastic job shop scheduling problem. Computers&Operations Research,2010,37:927-937.
    [70] S. G. Ficici, J. B. Pollack. Challenges in coevolutionary learning: Arms-race dynamics, open-endedness, and mediocre stable states. Proc. of the Sixth Conf. on Artificial Life, Cambridge, MA,MIT Press,1998:238-247.
    [71] S. G. Ficici, J. B. Pollack. A game-theoretic approach to the simple coevolutionary algorithm.Procee-dings of the Sixth International Conference on Parallel Problem Solving from Nature(PPSN VI), Springer-Verlag, LNCS1917, Berlin, Springer,2000:467-476.
    [72] S. G. Ficici, J. B. Pollack. A game-theoretic memory mechanism for coevolution. GECCO2003,LNCS2723, Chicago, USA, Springer,2003,286-297.
    [73] S. G. Ficici, O. Melnik, J. B. Pollack. A game-theoretic and dynamical systems analysis ofselection methods in coevolution. IEEE Trans. on Evolutionary Computation,2005,9(6):580-601.
    [74] M. A. Potter, K. A. De Jong. Cooperative coevolution: an architecture for evolving coadapted sub-components. Evolutionary Computation,2000,8(1):1-29.
    [75] R. P. Wiegand, W. C. Liles, K. A. De Jong. Analyzing cooperative coevolution with evolutionarygame theory. Proceedings of the CSE2002. Piscataway, NJ: IEEE Press,2002:1600-1606.
    [76] R. P. Wiegand, W. C. Liles, K. A. De Jong. Modeling variation in cooperative coevolution usingevolutionary game theory. In Richardo Poli, Jonathan Rowe, and Kenneth De Jong, editors,Foundations of Genetic Algorithms (FOGA) VII, Morgan Kaufmann,2002:231-248.
    [77] D. H. Wolpert, W.G. Macready. Coevolutionary Free Lunches. IEEE Transactions on Evolution-ary Computation,2005,9(6):721–735.
    [78] N. Shadbolt. Nature-inspired computing. IEEE Intelligent System,2004,19(1):1-3.
    [79]董红斌,黄厚宽,印桂生,等.协同演化算法研究进展.计算机研究与发展,2008,45(3):454-463.
    [80] R. P. Wiegand, W. C. Liles, K. A. De Jong. An empirical analysis of collaboration methods incooperative co-evolutionary algorithm. Proceedings of2001Genetic and Evolutionary Computa-tion Conference, San Mateo: Morgan Kaufmann,2001:1235-1245.
    [81] W. D. Hillis. Co-evolving parasites improve simulated evolution as an optimization procedure.Physica D: Nonlinear Phenomena,1990,42(1):228-234.
    [82] C. D. Rosin, R. K. Belew. Methods for competitive co-evolution, finding opponents worth beating.Proceedings of6th International Conference on Genetic Algorithm, San Mateo: MorganKaufmann,1995:373-380.
    [83] M. A. Potter. The design and analysis of a computational model of cooperative co-evolution [PH.DThesis]. Fairfax: George Mason University,1997.
    [84] M. A. Nowak. Five rules for the evolution of cooperation, Science,2006,314:1560-1563.
    [85] A. D. Cioppa, C. De Stefano, A. Marcelli. Where are the niches? Dynamic fitness sharing. IEEETrans. on Evolutionary Computation,2007,11:453-465.
    [86] Y. Shi, R. C. Eberhart. Fuzzy adaptive particle swarm optimization. Proceedings of the IEEECongress on Evolutionary Computation, Seoul, Korea,2001:101-106.
    [87] M. Clerc, J. Kennedy. The particle swarm-explosion, stability, and convergence in a multidimensi-onal complex space. IEEE Trans. on Evolutionary Computation,2002,6(1):58-73.
    [88] F. van den Bergh, A. P. Engelbrecht. A Convergence Proof for the Particle Swarm Optimiser.Fundamenta Informaticae,2010,105:341-374
    [89] P. N. Suganthan. Particle swarm optimizer with neighborhood topology on particle swarmperformance. Proceedings of the1999Congress on Evolutionary Computation, Piscataway, NJ:IEEE Press,1999:1958-1962.
    [90] T. Peram, K. Veeramachaneni. Fitness-distance-ratio based particle swarm optimization. Proceed-ings Swarm Intelligence Symposium, Indianapolis, Indiana, USA,2003:174-181.
    [91] R. Brits, A. P. Engelbrecht, F. van den Bergh. Locating multiple optima using particle swarmoptimization. Applied Mathematies and Computation,2007,189:1859-1883.
    [92] Y. Wang, Z. X. Cai, G. Q. Guo. Multi-objective optimization and hybrid evolutionary algorithm tosolve constrained optimization problems. IEEE Trans. on Systems, Man and Cybernetics, Part B:Cybernetics,2007,37(3):560-575.
    [93] B. X. Yue, W. H. Yao, A. Abraham, et al. A new rough set reduct algorithm based on particleswarm optimization. The Second International Work-Conference on the Interplay between Naturaland Artificial Computation, IWINAC2007, La Manga del Mar Menor, Spain, Part I, LNCS4527,2007:397-406.
    [94] X. Y. Wang,W. G. Wan, X. Q. Yu. Rough set approximate entropy reducts with order based particleswarm optimization. Proceedings of GEC’2009, Shanghai, China,2009:553-559.
    [95] J. J. Liang, P. N. Suganthan, K. Deb. Novel composition test functions for numerical globaloptimization. In: Proceedings of IEEE International Swarm Intelligence Symposium, Messina,Italy,2005:68~75.
    [96] Z. Yang, K. Tang, X. Yao. Multilevel cooperative coevolution for large scale optimization.Proceeding of IEEE World Congress on Computational Intelligence, June2008:1663-1670.
    [97]黄文奇,许如初.近世计算理论导引: NP难度问题的背景、前景及其求解算法研究.北京:科学出版社,2004.
    [98] M. Nielsen, I. Chuang. Quantum computation and quantum information. London: CambridgeUniversity Press,2000.
    [99]陈汉武编.量子信息与量子计算简明教程.南京:东南大学出版社,2006.
    [100] M. A. Nielsen, I. L. Chuang著.赵千川译.量子计算和量子信息(一)——量子计算部分.北京:清华大学出版,2009.
    [101] R. P. Feynman. Simulating physics with computers. Int. J. Theor. Physics,1982,21(6&7):467-488.
    [102] D. Deutsch. Quantum theory, the Church-Turing principle and the universal quantum computer.Proceedings of the Royal Society of London Ser A,1985, A400:97-117.
    [103] E. Bernstein, U. Vazirani. Quantum complexity theory. Proc. of the25th ACM Symposium onthe Theory of Computation, New York: ACM Press,1993:11-20.
    [104] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms in aquantum computer. SIAM Journal on Computer,1997,26(5):1484-1509.
    [105] L. K. Grover. A fast quantum mechanical algorithm for database search. Proc of the28th AnnualACM Symposium on the Theory of Computing. New York: ACM Press,1996:212-219.
    [106] A. Narayanan, M. Moore. Quantum-inspireed genetic algorithm. Proc of IEEE InternationalConference on Evolutionary Computation. Piscatawa: IEEE Press,1996.
    [107] K. H. Han, J. H. Kim. Quantum-inspired evolutionary algorithms with a new termination criteri-on, gate, and two-phase scheme. IEEE Trans on Evolutionary Computation,2004,8(2):156-169.
    [108]解光军,范海秋,操礼程.一种量子神经计算网络模型,复旦学报(自然科学版),2004,43(4):700-703.
    [109] L. C. Jiao, Y. Y. Li, M. G. Gong, et al. Quantum-inspired immune clonal algorithm for globalnumerical optimization. IEEE Transactions on System, Man, and Cybernetics, Part B:Cybernetics,2008,38(5):1234-1253.
    [110]王宇平,李英华.求解TSP的量子遗传算法,计算机学报,2007,30(5):748-755.
    [111]汪鹏君,李辉,吴文晋,等.量子遗传算法在多输出Reed-Muller逻辑电路最佳极性搜索中的应用,电子学报,2010,38(5):1058-1063.
    [112]邢焕来,潘炜,邹喜华.一种解决组合优化问题的改进型量子遗传算法.电子学报,2007,35(10):1999-2002.
    [113] T. Najaran, M. Akbarzadeh. Improvement of quantum evolutionary algorithm with functionalsized population. Applications of Soft Computing,2009,46(2):389-398.
    [114] P. C. Li, S. Y. Li. Quantum-inspired evolutionary algorithm for continuous space optimi-zationbased on Bloch coordinate of qubits. Neurocomputing,2008,72(1/2/3):581-591.
    [115] T. C. Lu, J. C. Juang. A region-based quantum evolutionary algorithm (RQEA) for global numer-ical optimization. Journal of Computational and Applied Mathematics,2013,239(1):1-11.
    [116] Z. G. Qu, X. Y. Zhang. A Multi-objective optimization based on hybrid quantum evolutionaryalgorithm in networked control system. Physics Procedia,2012,25:1561-1568.
    [117] M. M. Eusuff, K. E. Lansey. Optimization of water distribution network design using the shuffledfrog leaping algorithm. Journal of Water Resources Planning and Management,2003,129(3):210-225.
    [118] C. S. Yang, L. Y. Chuang, C. H. Ke. A combination of shuffled frog-leaping algorithm and gene-tic algorithm for gene selection. Journal of Advanced Computational Intelligence and IntelligentInformatics,2008,12(3):218-226.
    [119] E. Elbeltagi, T. Hegazy, D. Grierson. A modified shuffled frog-leaping optimization algorithmapplications to project management. Structure and Infrastructure Engineering, Taylor&Francis,2007,3(1):53-60.
    [120] H. A. Shayanfar, R. Jahani, J. Olamaei. Comparison of modified shuffled frog leaping algorithmand other heuristic methods for optimal placement of unified power flow controllers in electricalpower systems. Australian Journal of Basic and Applied Sciences,2010,4(11):5590-5598.
    [121]罗雪晖,杨烨,李霞.改进混合蛙跳算法求解旅行商问题.通信学报,2009,30(7):130-135.
    [122]骆剑平,李霞,陈泯融.基于改进混合蛙跳算法的CVRP求解.电子与信息学报,2011,33(2):429-434.
    [123] E. L. Thorndike. Animal Intelligence:Empirical Studies. New York: MacMillan,1911.
    [124] A. Bandura. Social Foundation of Thought and Action: A Social Cognitive Theory. New Jersey:Prentice Hall,1986.
    [125] B. M. Terhal, M. M. Wolf, A. C. Doherty. Quantum entanglement: a modern perspective. Phys.Today,2003,56:46.
    [126] G. J. Jensen, Rudiger Schack. A simple algorithm for local conversion of pure state. London:Unversity of London,2000.
    [127] J. J. Liang, A. K. Qin, P. N. Suganthan, et al. Comprehensive learning particle swarm optimizerfor global optimization of multimodal functions. IEEE Transactions on Evolutionary Computati-on,2006,10(3):281-295.
    [128] N. Friedman, D. Geiger, M. Goldszmidt. Bayesian network classifiers. Machine Learning,1997,29(2):131-163
    [129] D. Meretakis, B. Wuthrich. Extending na ve bayes classification using long itemsets. Proceed-ings of the5th ACM SIGKDD International Conference on Knowledge Discovery and DataMining. San Diego, CA,1999,165-174.
    [130] S. T. Sun, S. C. Chen. Class label versus sample label-based CCA. Applied Mathematics andComputation.2007,185:272-283.
    [131] G. I. Webb, J. R. Boughton, Z. J. Wang. Not so naive Bayes: Aggregating one-dependenceestimators. Machine Learning,2005,58(1):5-24.
    [132] T. D. Do, S. C. Hui, A. C. M. Fong, et al. Associative classification with artificial immunesystem. IEEE Transactions on Evolutionary Computation,2009,13(2):217-228.
    [133] B. Liu, H. A. Abbass, B. McKay. Classification Rule Discovery with Ant Colony Optimi-zation. IEEE Computational Intelligence Bulletin,2004,3(1):31-35.
    [134]李德毅,孟海军,史雪梅.隶属云和隶属云发生器.计算机研究和发展,1995,32(6):16-21.
    [135]李德毅,杜鹢.不确定性人工智能.北京:国防工业出版社,2005.
    [136]李德毅,刘常昱.论正态云模型的普适性.中国工程科学,2004,6(8):28-33
    [137]李德毅,刘常昱,杜鹢,等.不确定性人工智能.软件学报,2004,15(9):1583-592.
    [138]戴朝华,朱云芳,陈维荣,等.云遗传算法及其应用.电子学报,2007,35(7):1419-1424.
    [139]刘禹,李德毅,张光卫,等.云模型雾化特性及在演化算法中的应用.电子学报,2009,37(8):1651-1658.
    [140]张光卫,何锐,刘禹,等.基于云模型的演化算法.计算机学报,2008,31(7):1082-1091.
    [141] B. Niu, Y. L. Zhu, X. X. He, et al. MCPSO: A multi-population cooperative particle populationoptimizer. Applied Mathematics and Computation,2007,185:1050-1062.
    [142] A. Cervantes, I. M. Galván, P. Isasi. AMPSO: A New Particle Swarm Method for NearestNeighborhood Classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics2009,35(9):1082-1091.
    [143] Z. Yang, K. Tang, X. Yao. Differential evolution for high-dimensional function optimization. Pro-ceeding of the2007Congress on Evolutionary Computation,2007:3523-3530.
    [144] Z. Yang, K. Tang, X. Yao. Multilevel cooperative coevolution for large scale optimization. Proc-eeding of IEEE World Congress on Computational Intelligence, June2008:1663-1670.
    [145] T. Ray, X. Yao. A cooperative coevolutionary algorithm with correlation based adaptive variablepartitioning.2009IEEE Congress on Evolutionary Computation (CEC2009),2009:983-989.
    [146] M. N. Omidvar, X. D. Li, X. Yao. Cooperative co-evolution with delta grouping for large scalenon-separable function optimization.2010IEEE World Congress on Computational Intelligence,Barcelona, Spain,2010:1762-1769.
    [147] S. N. Omkar, R. Khandelwal, T. V. S. Ananth. Quantum behaved Particle Swarm Optimization(QPSO) for multi-objective design optimization of composite structures. Expert Systems withApplications,2009,36(8):11312-11322.
    [148] K. Tang, X. D. Li, P. N. Suganthan, et al. Benchmark functions for the CEC'2010special sessionand competition on large scale global optimization. Hefei: Nature Inspired Computation andApplications Laboratory, USTC, China,2009.
    [149] R. Jaccard. The distribution of flora in the alpine zone. New Phytol,1912,11(2):37-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700