用户名: 密码: 验证码:
山岭隧道开挖灾害预防与控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着公路建设大力发展高等级公路和完善中西部公路网交通工程的不断进行,高速公路和高等级公路的建设逐渐从平原、微丘区向山岭重丘区等地延伸,公路隧道的建设越来越不可避免,并且在公路建设中所占的比重越来越高。在这种发展趋势下,由于山区复杂的应力场环境和不同岩体结构条件,隧道开挖施工过程中不可避免的会遇到许多工程灾害问题。本文在湖南省交通科技项目和国家自然科学基金重大项目资助下,对山岭公路隧道在开挖施工、建设过程中所遇到的工程灾害问题进行了系统研究。主要研究内容和成果如下:
     (1)基于距离判别分析理论,考虑影响隧道围岩类别的定性和定量因素,选用7项指标作为判别因子,利用大量工程实例的数据作为学习样本,建立了隧道围岩类别判定的距离判别分析模型,并利用回代估计法进行检验。研究结果表明,该模型比较稳定,判别能力较强。将该模型运用实际公路隧道工程的围岩类别判定中,判别结果和实际情况一致。
     (2)基于Bayes判别分析理论,从围岩应力、岩性和能量三个方面出发,选定围岩最大切向应力与岩石单轴抗压强度之比(σ_θ/σ_c)、岩石单轴抗压强度与抗拉强度之比(σ_c/σ_1)和弹性能量指数(W_(e1))作为岩爆预测的判别指标,利用国内外大量典型地下工程岩爆实测资料作为学习样本,建立了岩爆发生可能性及其烈度分级预测的Bayes判别分析模型。将该模型运用到国内深埋公路隧道的岩爆预测中,判别结果完全符合现场岩爆情况,为岩爆预测问题提供了一条有效途径。
     (3)利用有限差分软件FLAC~(3D),对富水地段公路隧道进行三维流固耦合分析,考虑了地下水渗流作用对公路隧道的开挖影响,研究了隧道开挖地下水渗流分布规律。研究发现:围岩孔隙水压力场分布随隧道开挖逐步发展成一个以隧道开挖区域为中心的近似于渗水漏斗的分布形状,围岩类别和隧道埋深对渗流场的分布形式影响不大,流动矢量表明连拱隧道开挖后渗漏水多发部位主要集中在拱部和边墙上,在隧道施工中做好地下水的良性排放十分必要。
     (4)分析了各种工程状况:围岩类别、隧道埋深、地下水水位、施工工法以及偏压对隧道稳定性的影响。研究结果表明:围岩类别对隧道稳定性的影响最大。同一类别围岩在相同的施工工艺情况下,埋深越大,围岩的稳定性越不利,围岩塑性区分布范围随埋深的增大而增加。山体初始地下水位对公路隧道围岩的稳定性存在一定影响,随着地下水位的下降,隧道拱底涌起量基本呈线性减少,且递减幅度较大。围岩塑性区分布范围也随地下水位的下降而减少。通过支护结构受力分析,发现连拱隧道中拱墙和仰拱的接触部位喷射混凝土层的局部受力较大,因此,在初期支护达到一定强度后,应尽早实施二次衬砌,以避免发生局部开裂破坏而导致隧道渗水等不良病害现象。
     (5)根据理论研究成果,提出了一系列针对性极强的防排水综合控制技术措施,具体包括:富水段超前地质预报、超前环向孔帷幕注浆堵水技术、喷射抗渗混凝土、新型粘贴式集水排水系统、隧道底板涌水的盲沟集排水等技术,并把这些防排水措施与初始防排水设计和地下工程防水技术规范要求紧密结合,通过现场实施证明,取得了良好的防排水效果。首次提出的隧道工程新型粘贴式集排水系统,利用泄水孔与弹性集水槽相结合,围岩的渗水流入集水槽,然后引入环向或纵向排水盲管,该系统的集水率达到85%,使得喷射混凝土和防水布安装在无水或小水条件下进行,提高了其施工质量,增强了隧道防排水效果,具有较大的推广应用前景。
     (6)利用连拱隧道周边位移监控量测结果对连拱隧道围岩-支护系统的稳定性进行了分析。从量测断面的水平位移收敛历程基本类似,收敛曲线最终全部趋于收敛,最终收敛位移相差相对较小。利用修正的双曲线函数,对隧道左右洞室总体的水平收敛位移进行了回归分析,分析结果完全满足各项设计规范的规定。最后针对位移判别具有不确定性的特点,利用模糊概率方法对隧道的整体稳定程度进行了分析。
More and more tunnels were built in the mountain highway with the development of the highway construction and transportation net.Due to the complicated geological stress-field and different rock-mass construct condition,some engineering disasters took place in the process of tunnel excavation.Such as the failure of tunnel surrounding rock,rock-burst in deep tunnel,seepage and leakage,and so on.To remedy such engineering problems,the author studied deeply and systematically on the prevention and control technology of engineering disaster with the support of the Hunan province transportation science & technology project and the key project of the natural science foundation of China.The main contents of the dissertation are summarized as follows:
     (1) Based on the principle of distance discriminant analysis theory, a classification model of tunnel surrounding rock was established in this paper and seven indexes reflecting the engineering quality of tunnel surrounding rock were considered.The discriminant functions of model were obtained through training a large set of expansive samples.The re-substitution method was introduced to verify the stability of this model and the ratio of mistake-discrimination is zero.A set of data in two tunnel engineering were used to test the discriminant ability of model and the results show that this model has high prediction accuracy.
     (2) Based on the principle of Bayes discriminant analysis theory,a discriminant analysis model of prediction of possibility and classification of tunnel rock-burst was established in this paper.Three factor indexes including the ratio ofσ_θ/σ_c andσ_c/σ_t,and W_(et) were regarded as discriminant factor of the discriminant model and a series of underground rock projects at home and abroad were taken as the training and testing samples,and the ratio of mistake-distinguish is zero after this model was trained.Rock-bursts of Tongyu tunnel in Cheng-qian highway and Kuo-cang mountain tunnel in Zhu-yong highway were used to verify this model.The results show that the discriminant model can be used to predict the possibility and classification of rock-burst in deep underground engineering and the prediction accuracy is very high.
     (3) Based on the coupled fluid-mechanics theorem,FLAC~(3D)(Fast Lagrangian Analysis of Continua in 3 Dimension) numerical software has been used for the analysis of mountain multi-arch tunnel design in aquiferous stratum.After tunnel excavation,the groundwater will flow through the rock fissures under the different pore pressure in the network and at last the pore pressure of groundwater has a funnel-shaped distribution in excavation regional.The most leaking places around tunnel concentrate on the vault and the side wall.So it is necessary to make the underground water drain actively.
     (4) The coupled fluid-mechanics numerical analysis had been done by considering the effect of rock classes,covering depths,underground water tables,construction methods and initial supporting systems.The results show that the surrounding rock classes have most important influence on the stability of tunnels,and so does the tunnel covering depths.The research indicated that the settlement of the vault derived from coupling analysis when considering the seepage flow effect were bigger than that of the seepage flow effect was not considered and the underground water tables influent the stability of tunnels to some degree. Therefore,it is quite necessary to consider the seepage flow effect of the underground water in aquiferous stratum for multi-arch tunnel design.
     (5) According to the results of theory analysis,the treatment measures which have important pertinence for resolving the problem of tunnel leakage were put forward.The methods include the geology forecast in an aquifer stratum,the technology of grouting and shot concrete with anti-seepage and so on.These treatment measures were adopted to prevent and drain the underground water around the tunnel. The tunnel's construction proved that these measures had achieved a preferable effect to the original design;especially at the places where the leakage always takes place if none treatment measures were adopted.The new gathering and draining groundwater system can gather about 85% underground water which flew into tunnel along the cracks and joint fissures.
     (6) The measuring results of surrounding displacement was used to analyze the stability of rock-supporting system in multi-arch tunnel.The convergence course of horizontal convergence curves was similar for every section and the difference of final displacement between those convergence curves was very little.Then the modified hyperbola function had been used to regress the displacement convergence curves of surrounding rock.Furthermore,the stability of tunnel was calculated with the formula of fuzzy probability.The present formula and experience could be referenced in the design,construction and researches of similar tunnels.
引文
[1].蒋树屏.我国公路隧道工程技术的现状及展望.2001年中国公路学会学术交流论文集,北京:人民交通出版社,2001,353~360
    [2].夏永旭 等.现代公路隧道发展概述.交通建设与管理,2006,(12):66~68
    [3].王梦恕.中国是世界上隧道和地下工程最多、最复杂、发展最快的国家.铁道标准设计,2003,(1):1~4
    [4].Evert Hoek.Rock Engineering.2007:40~41
    [5].Terzaghi K.Rock defects and loads on tunnel supports.In Rock tunneling with steel supports,1946,(1):17~99
    [6].Lauffer H.Gebirgsklassifizierung f(u|¨)r den Stollenba.Geol.Bauwesen,1958,24(1):46~51
    [7].Deere D.U,Miller R.P.Engineering classification and index properties of rock.Technical Report,1966,No.AFNL-TR-65~116
    [8].Bieniawski Z.T.Rock mass classification in rock engineering.Exploration for rock engineering.Proc.of the symp,1976,(1):97~106
    [9].Bieniawski Z.T.The geomechanics classification in rock engineering applications.Int.Soc.Rock Mech.Proc.of the symp,1979,(2):41~48
    [10].Laubsche D.H,Taylor H.W.The importance of geomechanics classification of jointed rock masses in mining operations.Exploration for rock engineering,1976,(1):119~128
    [11].Barton N.R,Lien R,Lunde J.Engineering classification of rock masses for the design of tunnel support.Rock Mech,1974,6(4):189~239
    [12].Barton N.R,L(?)set F,Lien R,et al.Application of the Q-system in design decisions.Subsurface space,1980,(2):553~561
    [13].李凤仪,韩丛发,张国华.岩体开挖与维护.徐州:中国矿业大学出版社,2003
    [14].蔡美峰,何满潮,刘东艳.岩石力学与工程.北京:科学出版社,2002
    [15].中华人民共和国行业标准.公路隧道设计规范(JTG D70-2004).北京:人民交通出版社,2004
    [16].Harun Sonmezv,Candan Gokceoglu,Resat Ulusay.An application of fuzzy sets to the Geological Strength Index(GSI) system used in rock engineering. Engineering applications of artificial intelligence,2003,16(3):251~269
    [17].A.Aydin.Fuzzy set approaches to classification of rock masses.Engineering Geology,2004,74(3-4):227~245
    [18].吴相金,龚建平.公路隧道围岩分类模糊综合评判.公路交通科技,2007,24(1):118~120,125
    [19].郝哲,汪明元.公路隧道岩体分级的模糊综合评判法.长江科学院院报,2005,22(5):55~57,73
    [20].江胜明.基于模糊模式识别的公路隧道围岩级别判定.公路交通科技,2005,22(4):131~133
    [21].李围.模糊理论在公路隧道围岩分类中的应用研究.公路交通科技,2004,21(11):63~65
    [22].李希胜,翟存林.模糊数学围岩分类方法及其在隧道中的应用.南京林业大学学报,2006,30(3):55~58
    [23].程士俊.铁路隧道围岩分类专家系统.中国地质学会工程地质专业委员会编.全国第三次工程地质大会论文集.成都:成都科技大学出版社,1988,167~170
    [24].杨小永,伍法权,苏生瑞.公路隧道围岩模糊信息分类的专家系统.岩石力学与工程学报,2006,25(1):100~105
    [25].杨小永.高速公路隧道围岩稳定性研究:[硕士学位论文].西安:长安大学,2004
    [26].刘长祥,金秀丽.模糊聚类分析在隧道围岩稳定性预测中的应用.山西建筑,2007,33(7):257~258
    [27].刘树棠,丁昆,杨利民.灰色归类模型在隧道围岩稳定性分级中的应用.土工基础,2007,21(3):60~62
    [28].赵卫国.灰色关联分析法在围岩分类中的应用.山西建筑,2007,33(12):100~101
    [29].贾超,肖树芳,刘宁.可拓学理论在洞室岩体质量评价中的应用.岩石力学与工程学报,2003,22(5):751~756
    [30].左昌群,陈建平.基于可拓学理论的围岩分级方法在变质软岩隧道中的应用.地质科技情报,2007,26(3):75~78
    [31].高志亮,黄奇松.公路隧道围岩稳定性评价的改进人工神经网络方法.数学的实践与认识,2002,32(2):241~246
    [32].裘军良,夏永旭.人工神经元网络在公路隧道围岩判别中应用.广西交 通科技,2003,28(4):15-18
    [33].王心飞.深埋隧道稳定性分析的智能化及非线性研究:[博士学位论文].重庆:重庆大学,2006
    [34].郝哲,王来贵,王振伟,等.公路隧道岩体分级的神经网络方法.岩石力学与工程学报,2005,24(增1):5248~5255
    [35].高谦,乔兰,吴顺川,等.地下工程系统分析与设计.北京:中国建材工业出版社,2005
    [36].郭雷,李夕兵,岩小明.岩爆研究进展及发展趋势.采矿技术,2006,6(1):16~20,45
    [37].Brady B.H.G.,Brown E T.地下采矿岩石力学.冯树仁等译.北京:煤炭工业出版社,1990
    [38].Brady B.H.G.,Brown E T.Energy changes and stability in underground mining:design application of boundary element methods.IMM,1981:A61~A67
    [39].姜彤,李华晔,刘汉东.岩爆理论研究现状.华北水利水电学院学报,1998,19(1):45~47
    [40].Kidybinski.A.Bursting liability indices of coal.Int.J.Rock.Mech.Min.Sci.&Geomech.Abstr.,1981,18(4):295~304
    [41].冯涛,潘长良.洞室岩爆机理的层裂屈曲模型.中国有色金属学报,2000,10(2):287~290
    [42].张秉鹤.括苍山特长公路隧道相对浅埋洞段岩爆机理及防治措施研究:[硕士学位论文].长春:吉林大学,2007
    [43].唐礼忠,王文星.一种新的岩爆倾向性指标.岩石力学与工程学报,2002,21(6):874~878
    [44].唐礼忠,王文星.一种新的岩爆倾向性指标.岩石力学与工程学报,2002,21(6):874~878
    [45].S.P.Singh.The influence of rock properties on the occurrence and control of rockbursts.Mining Science and Technology,1987,(5):11~18
    [46].王文星,潘长良,冯涛.确定岩石岩爆倾向性的新方法及其应用.有色金属设计,2001,28(4):42~46
    [47].李夕兵,古德生.岩石冲击动力学.长沙:中南工业大学出版社,1994
    [48].李夕兵,古德生.深井坚硬矿岩开采中高应力的灾害控制与破碎诱变.香山科学会议编.科学前沿与未来(第六集).北京:中国环境科学出版社, 2002:101-108
    [49].朱万成,左宇军,尚世明,等.动态扰动触发深部巷道发生失稳破裂的数值模拟.岩石力学与工程学报,2007,26(5):915-921
    [50].古德生,李夕兵.现代金属矿床开采科学技术.北京:冶金工业出版社,2006
    [51].李夕兵,左宇军,马春德,动静组合加载下岩石破坏的应变能密度准则及突变理论分析.岩石力学和工程学报,2005,24(16):2814~2825
    [52].左宇军,李夕兵,马春德,动静组合载荷作用下岩石失稳破坏的突变理论模型与试验研究.岩石力学与工程学报.2005,24(5):741~747
    [53].ZUO Yu-jun,LI Xi-bing,WANG Wei-hua,et al.Catastrophe model and its experimental verification of static loading rock system under impact load.Journal of Central South University of Techology.2006,13(3),281~285.
    [54].LI Xi-bing,ZUO Yu-jun,WANG Wei-hua,et al.Constitutive model of rock under static~dynamic coupling loading and experimental investigation Transactions of Nonferrous Metals Society of China.2006,16(3):714~722
    [55].左宇军,李夕兵,赵国彦.洞室层裂屈曲岩爆的突变模型.中南大学学报.2005,36(2),311~316
    [56].李廷介,王耀辉,张海英,等.岩石裂纹的分形特性及岩爆机理研究.岩石力学与工程学报,2000,19(1):6~10
    [57].谢和平.分形岩石力学导论.北京:科学出版社,1996
    [58].徐曾和,徐小荷.柱式开采岩爆发生条件与时间效应的尖点突变.中国有色金属学报,1997,7(2):17~23
    [59].单晓云,徐东强,张艳博.用突变理论预报巷道岩爆发生的可能性.矿山测量,2000,(4):36~37
    [60].王元汉,李卧东,李启光等.岩爆预测的模糊数学综合评判方法.岩石力学与工程学报,1998,17(5):493~501
    [61].秦乃兵.用模糊数学方法对岩爆进行预测预报.工程力学,2001,18(增刊):734~738
    [62].Xia-Ting Feng,S.Webber,M.U.Ozbay,et al.An expert system on assessing rockburst risks for South African deep gold mines.Journal of Coal Science &Engineering,1996,2(2):23~32
    [63].冯夏庭.智能岩石力学导论.北京:科学出版社,2000
    [64].杨莹春,诸静.一种新的岩爆分级预报模型及其应用.煤炭学报,2000, 25(2):169~172
    [65].杨莹春,诸静.物元模型及其在岩爆分级预报中的应用.系统工程理论与实践,2001,20(8):125~129
    [66].姜彤,黄志全,赵彦彦等.灰色系统最优归类模型在岩爆预测中的应用.华北水利水电学院学报,2003,24(2):37~40
    [67].姜彤,黄志全,赵彦彦.动态权重灰色归类模型在南水北调西线工程岩爆风险评估中的应用.岩石力学与工程学报,2004,23(7):1104~1108
    [68].Feng Xia-Ting,Wang Lina Rockburst prediction based on neural networks.Transactions of NFsoc,1994,4(1):7~14
    [69].Xia-Ting Feng,S.Webber,M.U.Ozbay,et al.Neural network assessment of rockburst risks for deep gold mines in South African.Trans.Norferrous Met.Soc.China,1998,8(2):1~7
    [70].杨涛,李国维.基于先验知识的岩爆预测研究.岩石力学与工程学报,2000,19(4):429~431
    [71].陈海军,郦能惠,聂德新,等.岩爆预测的人工神经网络模型.岩土工程学报,2002,24(2):229~232
    [72].白明洲,王连俊,许兆义.岩爆危险性预测的神经网络模型及应用研究.中国安全科学学报,2002,12(4):65~69
    [73].朱宝龙,陈强,胡厚田.基于人工神经网络的岩爆预测方法.地质灾害与环境保护,2002,13(3):56~59
    [74].丁向东,吴继敏,李健等.岩爆分类的人工神经网络预测方法.河海大学学报,2003,31(4):424~427
    [75].郭雷,李夕兵,岩小明,等.基于BP网络理论的岩爆预测方法.工业安全与环保,2005,31(10):32~35
    [76].冯夏庭,赵洪波.岩爆预测的支持向量机.东北大学学报,2002,23(1):57~59
    [77].赵洪波.岩爆分类的支持向量机方法.岩土力学,2005,26(4):642~644
    [78].宫凤强,李夕兵,林杭.隧道岩爆预测的距离判别分析模型研究.中国铁道科学,2007,28(4),25~28
    [79].宫凤强,李夕兵.岩爆发生和烈度分级预测的距离判别方法及其应用.岩石力学与工程学报,2007,26(5),1012~1018
    [80].乐晓阳,谭国焕,李启光,等.节理岩体圆形洞室岩爆过程的离散元分 析与模拟.岩石力学与工程学报,1999,18(16):676~679
    [81].王善勇,唐春安,徐涛,等.矿柱岩爆过程声发射的数值模拟.中国有色金属学报,2003,13(3):754~759
    [82].祝方才,宋锦泉.岩爆的力学模型及物理数值模拟述评.中国工程科学,2003,5(3):83~89
    [83].王青海,李晓红,艾吉人,等.通渝隧道围岩变形和岩爆的数值模拟.地下空间,2003,23(3):291~295
    [84].周卫滨.苍岭隧道岩爆预测和防治研究:[硕士学位论文].杭州:浙江大学,2005
    [85].张志龙.邵怀高速公路雪峰山隧道岩爆与大变形预测研究:[硕士学位论文].成都:成都理工大学,2002
    [86].管海涛.锦屏一级水电站专用公路特长隧道实施方案优化设计研究:[硕士学位论文].成都:西南交通大学,2006
    [87].何满潮,吕晓俭,景海河.深部工程围岩特性及非线性动态力学设计理念.岩石力学与工程学报,2002,21(8):1215~1224
    [88].Lomize G M.Flow in Fractured Rock.Moscow:Gosemergoizdat,1951
    [89].Snow DT.Rock fracture spacings,openings and porosities.J.Soil Mech.Found.Div.ASCE.1968,94:73~91
    [90].Kelsall P.C.Kesall J.B.Cass C.R.Chabannes.Evaluation of excavation -induced changes in rock permeability.Int.J.Rock Mech.Min.Sci & Geomech.1984,21(3):123~135
    [91].Witherspoon PA,et al.Mechanical and hydraulic properties of rock related to induced seismicity.Engineering Beol,1977,(11):35~45
    [92].Long J.C.S,J.S.Remer,C.R.Wilson P.A.Witherspoon,Porous media equivalents for networks of discontinuous fractures.Water Resources Research,1982,18(3):645~658
    [93].Long J.C.S.,P.Gilmour P.A.Witherspoon.A model for steady fluid flow in random three-dimensional networks of disc-shaped fractures.Water Resources Research,1985,21(8):1105~1115
    [94].赵阳升.矿山岩石流体力学.北京:煤炭工业出版社,1994
    [95].郑少河,朱维申,赵阳升.复杂裂隙岩体水力学模型的研究.人民长江,1999,30(9):31~33
    [96].王嫒,速宝玉,徐志英.裂隙岩体渗流模型综述.水科学进展.1996,7(3): 276-282
    [97]. Oda. An equivalent continuum model for coupled stress and fluid flow analysis in jointed rock masses. Water Resources Research, 1986, 22(13) : 1845-1856
    [98]. T.S.Nguyen etc. Coupled thermal-mechanical-hydrological behaviour of sparsely fractured rock: Implication for nuclear fuel waste disposal. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr, 1995, 32, 465-479
    [99]. Youngs E.G, Kacimov A.R.; Obnosov Yu.V. Water exclusion from tunnel cavities in the saturated capillary fringe. Advances in Water Resources, 2004, 27 (3): 237-243
    [100]. Shin J.H., Potts David M., Zdravkovic Lidija. The effect of pore-water pressure on NATM tunnel linings in decomposed granite soil. Canadian Geotechnical Journal, 2005, 42 (6): 1585-1599
    [101]. Benmebarek N, Benmebarek S, Kastner Richard. Numerical studies of seepage failure of sand within a cofferdam. Computers and Geotechnics, 2005, 32 (4): 264-273
    [102]. GR(?)V Eivind, NILSEN Bj(?)rn. Subsea tunnel projects in hard rock environment in Scandinavia. Chinese Journal of Rock Mechanics and Engineering, 2007, 26 (11): 2176-2192
    [103]. Henning Jan Eirik, Melby Karl, (?)VSTEDAL Erik et al. Experiences with subsea road tunnels in Norway-Construction, Operation, Costs and Maintenance. Chinese Journal of Rock Mechanics and Engineering, 2007, 26 (11): 2226-2235
    [104]. Molinero Jorge, Samper Javier, Juanes Ruben. Numerical modeling of the transient hydrogeological response produced by tunnel construction in fractured bedrocks. Engineering Geology, 2002, 64 (4): 369-386
    [105]. Liu J, Elsworth D, Brady B.H. Analytical evaluation of post-excavation hydraulic conductivity field around a tunnel. International Journal of Rock Mechanics and Mining Sciences, 1997, 34 (3-4): 181.el - 181.e7
    [106]. Anagnostou G, Elsworth D, Brady B.H. Seepage flow around tunnels in swelling rock. International Journal for Numerical and Analytical Methods in Geomechanics, 1995, 19 (10): 705-724
    [107]. C. Zangerl, E. Eberhardt, S. Loew. Ground settlements above tunnels in fractured crystalline rock:numerical analysis of coupled hydromechanical mechanisms.Hydrogeology Journal,2003,(11):162~173
    [108].In-Mo Lee,Seok-Woo Nam.The study of seepage forces on the tunnel lining and tunnel face in shallow tunnels.Tunnelling and Underground Space Technology,2001,(16):31~40
    [109].In-Mo Lee,SeokWoo Nam.Effect of tunnel advance rate on seepage forces acting on the underwater tunnel face.Tunnelling and Underground Space Technology,2004,(19):273~281
    [110].田开铭.对裂隙岩石渗透性的初步研究.地质研究.1980(2):137~143
    [111].田开铭.裂隙水交叉流的水力特性.地质学报.1986(2):202~213
    [112].张有天,张武功.论隧洞水荷载的静力计算.水利学报.1980(3):52~62
    [113].张有天,张武功.裂隙岩体渗流特性、数学模型及系数量测.岩石力学.1982(8):41~52
    [114].郑少河,赵阳升,段康廉.三维应力作用下天然裂隙渗流规律的实验研究.岩石力学与工程学报,1999,18(4):133~136
    [115].刘才华,陈从新,付少兰.剪应力作用下岩体裂隙渗流特性研究.岩石力学与工程学报,2003,22(10):1651~1655
    [116].刘才华,陈从新,付少兰.二维应力作用下岩石单裂隙渗流规律实验研究.岩石力学与工程学报,2002,21(8):1194~1198
    [117].陶振宇,沈小莹.库区应力场的耦合分析.武汉水利电力学院学报,1988,21(1):8~13
    [118].李定方等.裂隙岩体渗流新模型.水利水运科学研究,1996,(4):283~293
    [119].黄涛,杨立中.隧道裂隙岩体温度-渗流耦合数学模型研究.岩土工程学报,1999,21(5):554~558
    [120].朱珍德,孙钧.裂隙岩体的渗流场与损伤场耦合分析模型及其工程应用.长江科学院院报,1999,16(5):22~27
    [121].杨天鸿,唐春安,徐涛等.岩石破裂过程的渗流特性--理论、模型与应用.北京:科学出版社,2004
    [122].任长吉,黄涛.裂隙岩体渗流场与应力场耦合数学模型的研究.武汉大学学报(工学版),2004,37(2):8~12
    [123].黄涛,杨立中.渗流与应力耦合环境下裂隙围岩隧道涌水量的预测研究.铁道学报,1999,21(6):75~80
    [124].吉小明.隧道工程中水力耦合问题的探讨.地下空间与工程学报,2006,2(1):149~154
    [125].吉小明.孔隙裂隙岩体中渗流场与应力场耦合分析:[博士学位论文].武汉:中国科学院武汉岩土力学研究所,2002
    [126].杨永香,刘泉声,焦玉勇.龙潭隧道的流固耦合分析.采矿与安全工程学报.2006,23(3):268~271
    [127].李地元.高速公路连拱隧道围岩应力场和渗流场的耦合作用分析:[硕士学位论文].长沙:中南大学,2006
    [128].高新强,仇文革.隧道衬砌外水压力计算方法研究现状与进展.铁道工程学报,2004,(4):128~131
    [129].李廷春,李术才,陈卫忠等.厦门海底隧道的流固耦合分析.岩土工程学报,2004,26(3):397~401
    [130].陈吉森.连拱隧道地下水渗流场及防排水技术研究:[硕士学位论文].南京:河海大学,2006
    [131].袁勇,姜孝谟,周家明等.我国隧道防水技术的现状.世界隧道,1999,(4):40~44
    [132].熊有言 译.国内外公路隧道工程中使用土工合成材料防水综述.国外公路,1996,12(4):46~51
    [133].熊有言 译.欧美国家在隧道工程中使用土工合成材料作防水密封层.国外公路,1999,17(4):51~55
    [134].崔玖江.日本隧道与地下工程防水技术.中国建筑防水材料,1996,(4):34~37
    [135].兰利敏 译,胡政才 校.日本1994年隧道工程状况.世界隧道,1996,(1):14~28
    [136].Olsen,A.B.,Blindheim,O.T.Prevention is better than cure.Tunnels and Tunnelling,1989,21(3):41~44
    [137].Narduzzo L.Tunnel leak remediation at the Toronto subway.Geotechnical Special Publication,2000,(102):180~189
    [138].Dar-Jen Tseng,Bin-Ru Tsai,Lung-Chen Chang.A case study on ground treatment for a rock tunnel with high groundwater ingression in Taiwan.Tunnelling and Underground Space Technlolgy,2001,16(3):175~183
    [139].Youngs E.G.,Kacimov A.R.,Obnosov Yu.V.Water exclusion from tunnel cavities in the saturated capillary fringe.Advances in Water Resources,2004, 27(3):237~243
    [140].Dimitrios Kolymbas,Peter Wagner.Grounwater ingress to tunnels-The exact analytical solution.Tunnelling and Underground Space Technlolgy,2007,22(1):23~27
    [141].D.Cesano,B.Olofsson and A.C.Bagtzoglou.Parameters regulating groundwater inflows into hard rock tunnels-a statistical study of the Bolmen tunnel in southern Sweden.Tunnelling and Underground Space Technlolgy,2000,15(2):153~165
    [142].张祉道.山岭隧道地下水处理及结构设计探讨.铁道工程学报,1995,(1):103~111
    [143].陈绍林,李茂竹.四川广(安)-渝(重庆)高速公路华蓥山隧道岩溶突水的研究与整治.岩石力学与工程学报,2002,21(9):1344~1349
    [144].吕康成,崔凌秋.隧道防排水工程指南.北京:人民交通出版社,2005
    [145].交通部.JTG D70-2004公路隧道设计规范.北京:人民交通出版社,2004
    [146].蒲春平,孙耀南.隧道与地下工程渗漏水现状及防治措施综述.现代隧道技术,1999(1):45~49
    [147].张祉道.隧道涌水量及水压计算公式半理论推导及防排水应用建议.现代隧道技术,2006,43(1):1~6
    [148].邓仁清.高压富水隧道注浆堵水施工技术及应用.地下空间与工程学报,2006,2(2):263~266
    [149].Y.Yuan,X.Jiang and C.F.Lee.Tunnel waterproofing practices in China.Tunnelling and Underground Space Technology,2000,15(2):227~233
    [150].李兴高,刘维宁.公路隧道防排水的安全型综合解决方案.中国公路学报,2003,1 6(1):68~73
    [151].张民庆.隧道工程结构防排水技术与渗漏水治理.铁道工程学报,1999,(3):56~64
    [152].刘庭金,朱合华,夏才初等.云南省连拱隧道衬砌开裂和渗漏水调查结果及分析.中国公路学报,2004,17(2):64~67
    [153].赵仕礼.双联拱隧道防排水施工技术与通病防治措施.重庆交通学院学报,2006,25(B06):44~47
    [154].雷双龙.高速公路双连拱隧道渗漏水灾害成因及防治.山西建筑,2006,32(16):299~300
    [155].李武,朱合华.连拱隧道典型裂缝、渗漏水病害调查与分析研究.安徽理工大学学报,2006,26(2):20~25
    [156].卓越,吴全立,沈晓伟.双连拱隧道中隔墙区域渗漏水治理技术.隧道建设,2004,24(4):52~55
    [157].李世煇,吴向阳,尚彦军.地下工程半经验半理论设计方法的理论基础--围岩-支护系统是一种开放的复杂巨系统.岩石力学与工程学报,2002,21(3):299~304
    [158].李永和.孔群支护.自承围岩结构体系的非线性机理分析.岩石力学与工程学报,1995,14(2):161~170
    [159].梁晓丹.地下工程开挖与支护的非线性分析.隧道建设,2005,25(6):9~10,24
    [160].焦斌权,靳晓光,李晓红,等.岩溶区隧道围岩-支护体系稳定性研究.中国地质灾害与防治学报,2004,15(3):78~82
    [161].潘刚.通渝隧道围岩位移及稳定性模拟研究.西部探矿,2005,12:163~164
    [162].刘君,孔宪京.节理岩体中隧道开挖与支护的数值模拟.岩土力学,2007,28(2):321~326
    [163].朱素平,周楚良.地下圆形隧道围岩稳定性的黏弹性力学分析.同济大学学报,1994,22(3):329-333
    [164].许建聪.浅埋风化岩质隧道初支护后黏弹性变形性态分析.岩石力学与工程学报,2007,26(9):1781~1786
    [165].贺建民,戴小平,郭磊.隧道围岩稳定性及安全性分析的位移判别方法.矿业安全与环保,2001,28(5):36~37,45
    [166].胡伟,韦家杰,黄栋良.雪锋山公路隧道围岩类别动态变化分析及治理措施.现代隧道技术,2006,43(5):66~69,73
    [167].林韵梅.岩石分级的理论与实践.北京:冶金工业出版社,1996
    [168].郑颖人,丁恩保,张三旗,等.地下工程喷锚支护设计指南.北京:中国铁道出版社,1988,40~41
    [169].裘军良.公路隧道围岩判别和支护设计人工神经元网络方法的研究:[硕士学位论文].西安:长安大学,2003
    [170].裘军良,夏永旭.人工神经元网络在公路隧道围岩判别中应用.广西交通科技,2003,28(4):15~18
    [171].中华人民共和国行业标准.铁路隧道设计规范(TB10003-2001).北京: 中国铁道出版社,2001
    [172]].范金城,梅长林.数据分析.北京:科学出版社,2002
    [173].陈新瑜,陈广宇.太宁隧道围岩类别的再认识.西北地质,2002,35(2):15~19
    [174].张志龙.邵怀高速公路雪峰山隧道岩爆与大变形预测研究:[硕士学位论文].成都:成都理工大学,2002
    [175].徐则民,黄润秋,范柱国,等.长大隧道岩爆灾害研究进展.自然灾害学报,2004,13(2):16~24
    [176].张斌,符文熹,任光明,等.深埋长隧道岩爆的预测预报及防治初探.地质灾害与环境保护,1999,10(1):25~28
    [177].徐林生,王兰生.二郎山公路隧道岩爆发生规律与岩爆预测研究.岩土工程学报,1999,21(5):569~572
    [178].郭志强.秦岭终南山特长公路隧道岩爆特征与施工对策.现代隧道技术,2003,40(6):58~62
    [179].徐林生,王兰生,李天斌.国内外岩爆研究现状综述.长江科学院院报,1999,16(4):24~27.
    [180].徐林生.二郎山公路隧道岩爆特征与防治措施的研究.土木工程学报,2004,37(1):61~64
    [181].徐林生.通渝隧道岩爆防治工程措施研究.重庆交通学院学报,2006,25(4):1~3
    [182].李忠,汪俊民.重庆陆家岭隧道岩爆工程地质特征分析与防治措施研究.岩石力学与工程学报,2005,24(18):3398~3402
    [183].谷明成,何发亮,陈成宗.秦岭隧道岩爆的研究.岩石力学与工程学报,2002,21(9):1324~1329
    [184].李科.都汶公路福堂坝隧道岩爆及其防治.路基工程,2006,124:123~125
    [185].李忠,杨腾锋.福建九华山隧道岩爆工程地质特征分析与防治措施研究.地质与勘探,2005,41(2):81~84
    [186].何川,汪波,吴德兴.苍岭隧道岩爆特征与影响因素的相关性及防治措施研究.水文地质与工程地质,2007,(2):25~28
    [187].邱道宏,陈剑平,张秉鹤,等.深埋长大公路隧道岩爆预测及防治研究.地下空间与工程学报,2006,2(6):950~955,961
    [188].何满潮,谢和平,彭苏萍,等.深部开采岩体力学研究.岩石力学与工程学报,2005,24(16):2803~2813
    [189].Hoek E.Brown E T.Underground Exavation in Rock.London:Institute of Mining and Metallurgy,1980
    [190].Kidybinski A.Bursting liability indices of coal.Int.J.Rock Mech.Min.Sci.& Geomech,1981,18(4):295~304
    [191].夏彬伟.公路隧道施工地质灾害预测预报研究:[硕士学位论文].重庆:重庆大学,2006
    [192].康勇.深埋隧道围岩破坏机理相关问题研究:[博士学位论文].重庆:重庆大学,1999
    [193].黄伦海,郑学贵,赵清碧,等.通渝公路隧道工程设计.地下空间,2003,23(3):234~239
    [194].ITASCA Consulting Group.Inc.Inc.FLAC3D User's Guide.Version 2.1
    [195].李权.ANSYS在土木工程中的应用.北京:人民邮电出版社,2005
    [196].郝文化.ANSYS土木工程应用实例.北京:中国水利水电出版社,2005
    [197].杨会军,王梦恕.隧道围岩变形影响因素分析.铁道学报,2006,28(3):92~96
    [198].刁天祥,杨惠光.浅埋小间距隧道开挖围岩变形及控制对策.隧道建设,2006,26(3):21~25,31
    [199].唐建新,蔡世明,刘洪洲等.缙云公路隧道围岩位移分析.重庆大学学报,2002,25(12):137~140
    [200].Villy A.KontogianniT,Stathis C.Stiros.Induced deformation during tunnel excavation:Evidence from geodetic monitoring.Engineering Geology,2005,(79):115~126
    [201].李地元,李夕兵,张伟等.基于流固耦合理论的连拱隧道围岩稳定性分析.岩石力学与工程学报,2007,26(5):1054~1064
    [202].吉小明,王宇会.隧道开挖问题的水力耦合计算分析.地下空间与工程学报,2005,1(6):848~852
    [203].Itasca Consulting Group,Inc..FLAC~(3D) Fluid-Mechanical Interaction(Version 2.1):Itasca Consulting Group,Inc,2003
    [204].徐林生.公路隧道围岩稳定位移与突发失稳时间预报研究.重庆交通学院学报,2005,24(5):18~20,24
    [205].于波.隧道新奥法施工中围岩的监控量测技术.山西建筑,2004,30(7):129~130
    [206].朱永全.隧道稳定性位移判别准则.中国铁道科学,2001,22(6):80~ 83
    [207].朱永全,张素敏,景诗庭.铁路隧道初期支护极限位移的意义及确定.岩石力学与工程学报,2005,24(9):1594~1598
    [208].朱永全,刘勇,张素敏.洞室大小和形状对极限位移的影响.岩石力学与工程学报,1998,17(5):527~533
    [209].景诗庭,朱永全,宋玉香.隧道结构可靠度.北京:中国铁道出版社,2002
    [210].申玉生,赵玉光.双连拱隧道围岩稳定性的模糊概率分析研究.岩土工程学报,2005,27(1):1538~1561

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700