用户名: 密码: 验证码:
复杂山地多波宽频带地震数据采集关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业化水平的提升和经济的快速发展,能源问题已成为我国经济发展的重大制约因素,数据显示至2015年我国石油需求量将达5.4亿吨,对外依存度也将升至60%以上。为应对能源紧缺问题,需要加快油气资源勘探的步伐,扩大能源勘探的领域,而我国中西部主要盆地山前带勘探面积大,勘探程度低,但勘探潜力巨大,因此油气勘探面向复杂山地区域延伸是当前比较有效的解决途径。
     作为当前油气资源勘探的主要方法,地震勘探在长期的实践应用过程中,取得了比较丰硕的成果,尤其是大规模陆上地震勘探设备性能的不断提升,使得地震勘探施工布线更为灵活,勘探效率也不断得到提升。然而在复杂山地地区,由于其地表地形条件和地下构造的复杂性,以及地理环境的特殊性,使得地震资料的采集非常困难,由此也对地震勘探技术和设备的进步与发展提出严峻的挑战。尤其是对设备的可扩展性及便携性、三分量检波器布设的随机性和不确定性、设备整体的兼容性以及在复杂条件下布设的灵活性、恶劣环境的同步问题及地震资料的现场质量控制等诸多关键问题提出了新的要求。同时地震勘探的首要问题是地震资料的科学采集问题,多波地震勘探方法尽管在技术上还有很多问题需要解决,但由于单次投入的成本就可以得到丰富的全波信息,因此纵波和转换波联合勘探代替单纯纵波勘探将成为一种趋势,尤其是其野外的可操作性和低成本特点,更适合复杂山地地震勘探。
     针对上述山地勘探的特殊需求,本文依托于国家自然科学基金重大科研仪器设备研制专项“复杂山地多波宽频带地震数据采集系统研制”和国家杰出青年基金“核地球物理勘探技术仪器开发及应用研究”,从提高地震数据采集质量和勘探效率角度出发,以多波地震勘探方法为主导,开展集成姿态检测的多功能检波器、便携独立式信号采集站、自适应数据传输网络及控制采集软件等几个方面的研究,论文主要关键技术及取得的成果如下:
     (1)多功能检波器姿态检测。采用高灵敏度MEMS加速度计组合正交三分量检波器,并集成高精度陀螺仪及电子罗盘、倾角传感器等,分别用于获取微弱地震信号、检波器方位及倾角等相关信息,以便调整检波器各分量更有效地接收多种地震波成分,更有利于实现检波器各个分量方位角偏差的修正。这种方式取代了传统能量近似估计方法所存在的固有误差。其方位信息能为传感器布设的提供很好支撑,保证震源激发点与接收点的一致性。
     (2)基于FPGA及IP软核的信号采集站开发。将多路ADC(A/D转换器)的逻辑时序完全由硬件控制,利用双缓存技术实现数据的切换式存储,以消除存储延时导致的非均匀采样问题,并以此构建严格并行采集的数据通道。完全基于IP核开发的多任务驱动,使系统的配置和调整更为灵活,更大大提升了整机的集成化程度,从而提高了采集站的便携性。
     系统基于FPGA平台的多功能IP软核驱动方式,从硬件方面提供采集系统的集成化程度,缩小设备体积。而采用单个信号采集站挂接四路三分量检波器,方便采集通道的扩展与裁剪需求,同时配合有线无线混合组网的数据传输方法,保证系统能够结合现场勘探需求,“因地制宜”地选取合理的观测系统,从而提高地震数据采集的质量和勘探的效率。
     (3)系统动态范围的提升和低噪声处理。采用极低失调的固定增益运放级联可编程放大器,实现微伏级信号响应水平,以此提高系统输入动态范围;而干净稳定的电源是系统低噪声的保证,为了兼顾电源效率,采用LC滤波及LDO纹波抑制电路处理电源纹波及噪声,从而降低系统噪声,提高采集系统的保真性。
     (4)提高采集系统兼容性及适应性。实现系统前级放大、滤波功能参数的可动态配置,以此兼容多种检波器和勘探方法,在加大系统带宽的同时,更能消除假频及畸变影响。系统采取有线无线以太网混合组网的数据传输方式,使得系统的施工布线更为灵活。
     (5)基于QT平台和OpenGL的控制采集软件开发。开发易操作的图形化控制平台,并集成控制及传输协议、预处理及分析、二维波形快速切换显示、三维姿态显示等功能;基于矩形填充技术增强波形的可读性,并采用基于双缓冲技术的QWidget自动处理二维波形显示的屏幕闪烁现象;针对三维空间显示则基于OpenGL的3D框架,配合自定义检波器立体模型来实现,实时捕捉检波器姿态。
     总体来说,本文利用独立式采集站,采用分布式远距离遥测采集的设计思想构建地震数据采集网络,集成三分量MEMS加速度计、电子罗盘、陀螺仪、倾角等传感器组成多功能检波器,设计多路可配置信号调理模块,提高系统动态范围及带宽,配合并行采集技术构成可扩展裁剪的多路严格并行采集电路,使得采集站能兼容多种检波器,同时利用有线无线混合组网的以太网传输技术增强系统在各种复杂施工条件下的适应性,提高地震数据传输的实时性和抗干扰能力,从硬件角度提升地震数据采集的品质。从而增强地震勘探设备在复杂山地施工的适应能力,灵活构建观测系统,进一步提高地震数据采集质量和勘探效率。
Along with the upgrading of the level of industrialization and rapid economy, theenergy problem has become the important restriction factor of economic developmentin China, Statistics show that China's oil demand will reach to540million tons to2015, and external dependency also will arise to more than60%. In order to deal withthe energy shortage problem, we need to accelerate the pace of oil and gas resourcesexploration and expand energy exploration areas, and the exploration area is large andlow degree in China’s Midwest basin piedmont zone, but the exploration potential ishuge, Therefore, the oil and gas exploration extends to complex mountainous regionwill be the more effective solutions.
     As the main method of current oil and gas exploration, the seismic explorationhave made more fruitful results in the long-term practice process, especiallycontinuous increase of land seismic exploration equipment performance in a largescale, which make the seismic exploration construction wiring more flexible, andexploration efficiency has been improved continuously. In complex mountainousregion, however, because of the complexity of the surface topography condition andunderground structure, as well as the particularity of geographic environment, whichmakes it is very difficult to acquired the seismic data, and because of these it proposedsevere challenges to progress and development of seismic exploration technology andequipment. Especially proposing some new requirements to those key technologyincluding the calability and portability of the equipment, the randomness anduncertainty to layout three-component geophones, the overall compatibility of thedevice and its laid flexibility under complicated conditions, time synchronization inadverse environments and field quality control of seismic data. The primary problem of seismic exploration is the science of seismic data acquisition problems. Althoughmulti-wave seismic exploration method still has a lot of problems need to solve intechnically, but due to the cost of a single input can get abundant full waveinformation, so it will become a trend that the longitudinal wave and converted wavejoint exploration instead of pure longitudinal wave exploration, especially itsoperability and low cost characteristics in the field, which is more suitable forcomplex mountainous seismic exploration.
     For the special requirements of the mountain exploration, this article relies on the"the development of multi-wave and broadband seismic data acquisition system undercomplicated mountainous condition which belongs to important scientific instrumentsequipment developed special for NSFC, and the "nuclear geophysical prospectingtechnology instrument development and application research" belonging to theNational Science Fund for Distinguished Young Scholar. Improving the quality ofseismic data acquisition and the exploration efficiency as the springboard, anddominated by multi-wave seismic exploration method, launching several research thatmulti-functional sensor integrating the gesture detection, portable self-containedsignal acquisition station, adaptive data transmission network and control acquisitionsoftware and so on. There are the following key technologies and innovativeachievements in this paper:
     (1) Gesture detection for multi-functional gepohone. Assembling the orthogonalthree-component geophone with high sensitivity of MEMS accelerometer, andintegrating high precision gyroscope, electronic compass and angle sensors,respectively for acquire the weak seismic signals, the orientation of geophone and tiltangle and other relevant information, in order to adjust the detector of eachcomponent to receive various seismic composition more effectively, and it isadvantage to implement the amendment of the each components of the detectorazimuth deviation. It replaced the traditional energy approximation estimation methodwhich exist the inherent errors. Its azimuth information can offer a good support forsensor layout of azimuth adjustment in the construction processed. Ensure theconsistency that the shot point of seismic source and acceptance point.
     (2) Signal acquisition station development based on FPGA and IP soft-core. Thelogical sequence of the multi-channel ADC (A/D converter) is controlled by hardware,using the double buffer technology to realize the switch type storage of data toeliminate non-uniform use problem which is caused by the storage time delay caused,and build strict parallel acquisition data channels. Completely based on IP core development of multi-tasking driving, which make the system configuration andadjust more flexible, and enhance the integration degree of the machine greatly, thusimprove the portability of the acquisition station.
     The system was based on FPGA platform, and multi-functional IP soft-core drivemode, it improves integration degree of the acquisition system from the aspects ofhardware, reduce the size of equipment. Using a single signal collection stationconnect four-way three-component geophone, and convenient to the expansion of theacquisition channel and meet the demand of cutting, at the same time, cooperate withdata transmission method of wire and wireless hybrid network, and ensures the systemcan meet with the need of field exploration,"adjust measures to local conditions " toselect reasonable observation system, so as to improve the quality of seismic dataacquisition and the efficiency of exploration.
     (3) Upgrade of the system dynamic range and low noise processing. Achievingmicrovolt level signal response level to improve the input dynamic range adoptingfixed-gain amplifier with very low offset voltage and cascading programmableamplifier. Clean and stable power supply system is the assurance of low noise, inorder to balance the power efficiency, using LC filter and LDO ripple suppressioncircuit to processing power ripple and noise, thereby reducing the system noise andimprove the fidelity of the acquisition system.
     (4) Improve the acquisition system compatibility and adaptability. Achieveprime amplification of the system, filtering function parameters could be configureddynamically. Therefore it is compatible to a variety of detectors and explorationmethods, at the same time, increasing system’s bandwidth, it eliminate aliasing anddistortion effects. The system adopts the mode of data transmission of wired andwireless Ethernet hybrid network, which make the construction and wiring moreflexible.
     (5) The development of control acquisition software based on QT platform andOpenGL. Development of graphical control platform which is easy to operate andintegrated control and transmission protocol, pretreatment and analysis,2d waveformdisplay and switch quickly,3d gesture show and so on. Enhance the readability of thewaveform based on rectangle filling technology, and process the phenomenon oftwo-dimensional waveform display screen flicker automatically using the QWidgetwhich is based on double buffer technique. For the3D display, it is based on the3dframe of OpenGL, coordinating with custom three-dimensional model of the detector,and capturing detector’s gesture real-time.
     Overall, the paper makes use of independent acquisition station, using the designidea of distributed remote telemetry collecting to building seismic data acquisitionnetwork, integrating three-component MEMS accelerometer sensors, electroniccompass, gyroscope, angle sensors to make up multi-functional detector, designingmulti-channel signal conditioning module which can be configured, and improve thesystem dynamic range and bandwidth, cooperating with parallel acquisitiontechnology to form the strict parallel acquisition circuit which can extensible and becutting, and making the acquisition station can be compatible with a variety ofdetector. At the same time, to use the Ethernet transmission technology of wire andwireless hybrid network to enhance the adaptability of system under variouscomplicated construction conditions, and to improve seismic data transmission ofreal-time and anti-interference ability, from the point of hardware to improve thequality of seismic data acquisition. Thus enhance the adaptability of seismicexploration equipment in complex mountainous region construction, and construct theobservation system flexibly, to further improve the quality of seismic data acquisitionand exploration efficiency.
引文
[1]2012年国内外油气行业发展报告.中国石油集团经济技术研究院,2013.1.
    [2]高翔.复杂山地地震采集接收技术探讨[J].石油仪器,2011,25(4):64~66.
    [3]邓志文.复杂山地地震勘探[M].北京:石油工业出版社,2006.
    [4]苟量.中国西部复杂山地山前带地震勘探应用技术研究[D].成都理工大学博士论文,2005.
    [5]苟量,贺振华.西部复杂山地勘探走势分析[J].石油地球物理勘探,2005,40(2):248-251.
    [6]张晓斌.西部地区复杂山地地震采集技术[J].天然气工业,2007,27(S):76-78.
    [7]王咸斌.西部复杂山地地震勘探关键技术应用研究[D].成都理工大学博士论文,2008.
    [8]姚姚.多波地震勘探的发展历程和趋势展望[J].勘探地球物理进展,2005,28(3):0169-0173.
    [9]黄中玉.从2007年度EAGE年会看地球物理技术的发展[J].勘探地球物理进展,2007,30(6):0473-0485.
    [10]马昭军.多波多分量地震勘探技术研究进展[J].勘探地球物理进展,2010,33(4):0247-0253.
    [11]李忠.四川盆地多波多分量地震勘探技术研究与进展.天然气工业,2007,27(S):491-494.
    [12]谢明璞.大规模陆上地震仪器结构设计[D].中国科学技术大学博士论文,2009.
    [13]滕吉文.中国地球物理学研究面临的机遇、发展空间和时代的挑战[J].地球物理学进展,2007,22(4):1101-1112.
    [14]滕吉文.当代中国地球物理学向何处去[J].地球物理学进展,2006,21(2):327-339.
    [15]滕吉文.中国地球物理仪器和实验设备研究与研制的发展与导向[J].地球物理学进展,2005,20(2):276-281.
    [16]陆其鹄.我国地球物理仪器发展[J].地球物理学进展,2007,22(4):1332-1337.
    [17]陆其鹄,孙进忠.发展技术,增强基础——地球物理仪器国际化与地球物理技术在工程上的应用研讨会综述[J].地球物理学进展,2004,19(4):726-729.
    [18]程冰洁,唐建明,徐天吉等.转换波3D3C地震勘探技术的研究现状及发展趋势[J].石油天然气学报,2008,30(2):235-238.
    [19] James Gaiser, Colin Macbeth, Simon Spitz, et al. Multicomponent technology: the players,problems, applications, and trends[J].The Leading Edge,2001,20(9):974-977.
    [20] Cafarelli B, Madtson E, Krail P.3D gas cloud imaging of the Donald Field with convertedwaves[J]. SEG Expanded Abstracts,2000,19:1162-1165.
    [21]黄中玉.多分量地震勘探的机遇和挑战[J].石油物探,2001,40(2):131-137.
    [22] John Gibson, Roy Burnett, Shuki Ronen, et al. MEMS sensors: Some issues forconsideration[J]. The Leading Edge,2005,24(8):786-790.
    [23] Johnston R. Converted wave imaging challenges[C]. Houston: SEG International Expositionand Annual Meeting,2009:4226-4270.
    [24] Jack Bouska, Rodney Johnston. The first3D/4-C ocean bottom seismic surveys in theCaspian Sea: Acquisition designed processing strategy[J]. The Leading Edge.2005,24(9):910-921.
    [25] Dominic M., Manley, Sean F., Rowland W. et al. Structural interpretation of the deepwaterGunashli Field, facilitated by4-C OBS seismic data[J]. The Leading Edge.2005,24(9):922-926.
    [26] Boechat J B, Bulcao A. A3D reverse time migration scheme for offshore seismic data [C].Houston:77th Annual International Meeting,2007:2427-2431.
    [27] S.P.Peng, D.K.He, J.W.Gou, et al. Quantitative evaluating offset and azimuth uniformity baseon entropy[C]. EAGE Developments in Land Seismic Acquisition for Exploration,2010,129-133.
    [28]姚桃.地震波场与地震勘探[M].北京:地质出版社,2006.
    [29]李录明,李正文.地震勘探原理、方法和解释[M].北京:地质出版社,2007.
    [30]张玉芬.反射波地震勘探原理与资料解释[M].北京:地质出版社,2007.
    [31]谢金娥,改善地震资料品质的几种数字技术及应用[D].吉林大学博士论文,2009.
    [32]黄绪德,杨文霞.转换波地震勘探[M].北京:石油工业出版社,2008.
    [33]袁子龙,狄帮让,肖忠祥.地震勘探仪器原理[M].北京:石油工业出版社,2006.
    [34]孙歧峰,杜启.多分量地震数据处理技术研究现状[J].石油勘探与开发,2011,38(1):67-73.
    [35]李忠,李亚林,王鸿燕等.四川盆地多波多分量地震勘探技术研究与进展[J].天然气工业,2007,27(增刊A):491-494.
    [36]马昭军,唐建明,徐天吉.多波多分量地震勘探技术研究进展[J].勘探地球物理进展,2010,33(4):247-252.
    [37]赵邦六.多分量地震勘探在岩性气藏勘探开发中的应用[J].石油勘探与开发,2008,35(4):397-409+423.
    [38]刘振武,撒利明,张明等.多波地震技术在中国部分气田的应用和进展[J].石油地球物理勘探,2008,43(6):668-672.
    [39]赵邦六.多分量地震勘探技术理论与实践[M].北京:石油工业出版社.2007.
    [40] James E. Gaiser. Enhanced PS-wave images and attributes using prestack azimuthprocessing[J]. SEG Expanded Abstracts,1999,18(1):699.
    [41]周建新,姚姚.海上多波地震勘探检波器方位误差校正[J].中国海上油气(地质),1999,(1-6):355-35.
    [42]傅旦丹,刘一峰,温书亮等.海上多分量地震勘探水平分量方位校正[J].石油物探,2003,(4):460-463,468.
    [43]温书亮,朱宏彰,沈丽丽.海上多分量地震资料静校正[J].中国海上油气,2004,(5):302-305.
    [44]王炳章,王丹,陈伟.油气地震勘探技术发展趋势和发展水平[J].中外能源,2011,(5):46-55.
    [45]韩晓泉,穆群英,易碧金.地震勘探仪器的现状及发展趋势[J].物探装备,2008,(1):1-6.
    [46] Freed D. Cable-free nodes: The next generation land seismic system [J]. The Leading Edge,2008,27(7):878-881.
    [47]马昭军,唐建明,徐天吉.多波多分量地震勘探技术研究进展[J].勘探地球物理进展,2010,(4):247-253.
    [48] Hua, Y., Da-xing, W.,&Meng-bo, Z.(2011, November). Application of multi-wave seismicexploration in Sulige. In H. Hao, J. Zhang, H. Hao,&J. Zhang (Eds.), Nonrecurring Meetings,Society of Exploration Geophysicists.2011,36-36.
    [49] Johnston, R., Younger, J., Lyons, E., and Barrett, R.(2011) Acquisition and processing of acable‐less3D3C survey in East Texas. SEG Technical Program Expanded Abstracts2011:pp.1313-1317.
    [50]王文良.从428XL的推出看地震数据采集系统的新发展[J].物探装备,2006,16(1):1-15.
    [51] Savazzi S, Spaqnolini U. Wireless geophone networks for high-density land acquisition:Technologies and future potential[J]. The Leading Edge,2008,27(7):882-886.
    [52]胡刚,何正勤,叶太兰等.浅VSP技术应用研究进展[J].工程地球物理学报,2009,6(3):283-288.
    [53] J Andres Chavarria, Alex Goertz, Martin Karrenbach, et al. The use of VSP techniques forfault zone characterizatio n: An example from the San Andreas Fault [J]. The Leading Edge,2007,26(6):770-776.
    [54] Ge J. Determination of Shallow Shear Wave Velocity at Mississippi Embayment Sites UsingVertical Seismic Profiling Data[J]. Bulletin of the Seismological Society o f America,2007,97(2):614-623.
    [55]刘杰.基于独立分量分析的地震盲反褶积方法及应用研究[D].中国石油大学硕士论文.2008.
    [56]刘秀娟,梁立锋.多分量地震勘探技术新进展[J].西部探矿工程,2007,(1):123-124+127.
    [57]夏竹,刘超顺,魏文博等.地震道时间域频率属性特征和地层层序划分[J].石油地球物理勘探,2005,(5):550-560.
    [58]李庆忠.地震高分辨率勘探中的误区与对策[J].石油地球物理勘探,1997,32(6):751-783.
    [59]罗福龙.地震勘探仪器技术发展综述[J].石油仪器,2005,19(2):1~5.
    [60] Stotter Christian, Angerer Erika. Evaluation of3C microelectromechanical system data on a2D line: Direct comparison with conventional vertical-component geophone arrays andPS-wave analysis[J]. Geophysics,2011,76(3): B79-B87.
    [61]李怀良.无线遥测48道高分辨率浅层数字地震仪的研制[D].成都理工大学优秀硕士论文,2010.
    [62]汪海山.大型地震数据采集记录系统中数据传输的关键技术研究[D].清华大学博士论文,2010.
    [63]王兵.高分辨率地震勘探仪器设计研究[D].中国科学技术大学博士论文,2008.
    [64]李兆源,汪庆华,张海兵.多套地震仪器同步采集研究[J].物探装备,2008,18(3):153-156.
    [65]任家富,李怀良,陶永莉.地震数据采集无线同步技术研究[J].中国测试技术,2008,34(6):1-3.
    [66]王珂.检波器组合对高分辨率地震勘探的影响[J].中国煤炭地质,2010,22(7):61-65.
    [67]曹务详.检波器组合问题分析[J].石油物探,2008,47(5):505-510.
    [68]李庆忠,魏继东.高密度地震采集中组合效应对高频截止频率的影响[J].石油地球物理勘探,2007,42(4):363-369.
    [69]张永刚.目前多分量地震勘探中的几个关键问题[J].地球物理学报,2004,47(1):151-155.
    [70]夏颖,祝彩霞,孙灵群.地震勘探仪器在高密度采集中的应用[J].物探装备,2008,18(1):7-10+21.
    [71]刘二鹏.高密度地震采集技术研究[D].太原理工大学硕士论文,2011.
    [72]靳春光.数字三分量检波器在油藏精细勘探中的应用[J].物探装备,2009,19(增刊):32~37.
    [73]季玉新.关于多波多分量地震资料极性问题的讨论[J].石油物探,2010,49(1):0099-0103.
    [74]何可登.多波地震勘探中观测系统设计与数据处理关键技术研究[D].中国矿业大学(北京),2011.
    [75]冯宇瀚,殷晓冬,王少帅等.基于三角网构建海底DEM的抽稀算法[J].海洋测绘,2012,(6):33-35+39.
    [76]李怀良,庹先国,任家富等.小型化多道地震信号采集系统设计与实现[J].中国测试,2013(1):97-100.
    [77]阎世信.山地地球物理勘探技术[M].北京:石油工业出版社,2000.
    [78]崔树果,刘怀山,魏继东.山地地震勘探采集方法研究[J].西北地质,2004,37(4):71-78.
    [79]秦顺亭.当前中国西部新区物探工作的几点思考[J].中国西部石油地质,2005,1(2):124-127.
    [80]陈国忠,王金泉,何黄生.山地复杂地形条件下的三维地震勘探方法[J].2009,(5):73-74+112.
    [81]刘新文,严峰,施海峰等.复杂山地提高信噪比地震采集方法探讨[J].天然气工业,2007,27(增刊A):61~62.
    [82]姬小兵,尚应军,张帆.山地地震勘探采集技术研究[J].2005,16(1):114-116.
    [83]敬朋贵.南方复杂山地三维地震勘探实践与效果分析[J].石油物探,2010,(49)5:495-0499.
    [84]赵殿栋,郭建,王咸彬等.基于模型面向目标的观测系统优化设计技术[J].中国西部石油地质,2006,2(2):119-122.
    [85]陈旭光,杨平,陈意. MEMS陀螺仪零位误差分析与处理[J].传感器技术学报,2012,(5):628-632.
    [86] Hons M S, Stewart R R, Lawto D C, et al. Field data comparisons of MEMS accelerometersand analog geophones[J]. Leading Edge,2008,27(7):896-903.
    [87] Tilt Sensing Using Linear Accelerometers, Freescale Semiconductor Application Note,AN3461, Rev.4,2012.
    [88]杨培科.基于SOPC的磁阻电子罗盘的设计实现及其误差补偿[D].哈尔滨工程大学硕士论文,2009.
    [89]郭晓鸿,杨中,陈哲等. EKF和互补滤波器在飞行姿态确定中的应用,传感器与微系统,2011(30),149-152.
    [90]苏毅,齐昕,刘阳等.基于陀螺仪的随钻姿态测量新算法[J].传感器与微系统,2013,32(1):137-140.
    [91]赵翔,杜普选,李虎等.基于MEMS加速度计和陀螺仪的姿态检测系统[J]铁路计算机应用,2012,21(3):15-18.
    [92]李成,王鹏,丁天怀等,RS_485总线的高速串行远距离数据传输[J],清华大学学报(自然科学版),2009,29(5):684-687.
    [93]李怀良,庹先国,刘勇等.数字微VSP自适应数据传输系统设计(C),中国地球物理学会第28届年会论文集,北京,2012.10:373.
    [94]王慧,李伟,张婷玉.一种改善SSO的LC电源滤波电路算法与设计[J].电源技术,2010:137-138+162.
    [95] Altera. NIOS II Processor Reference Handbook.2009.
    [96]李兰英. NIOS II嵌入式软核SOPC设计原理及应用[M].2006.
    [97]赵擎天.基于SOPC的多路并行同步数字信号采集系统设计[J].机械工程学院学报,2011,23(3):60-64.
    [98]陈友祥,廖声刚.震源同步器同步精度的讨论[J].石油地球物理勘探,1999,34(增刊):125-128.
    [99]宋志翔,苏凌,酬正兰.数字地震仪精确时间同步的实现方法[J].石油仪器,2011,2:24~26+29.
    [100] Li Huailiang, Tuo Xianguo, Zhu Lili. A Multi-pipe and Multi-address Switching WirelessNetwork for Distributed Seismic Data Acquisition System[J], Sensors&Transducers journal,2012,16(s):92-100.
    [101]游雪峰,文玉梅,李平.以太网分布式数据采集同步和实时传输研究[J].仪器仪表学报,2006,27(4):384~388.
    [102]王玉亭,孙剑.基于MVC的Qt应用程序框架的设计与实现[J].计算机与数字工程,2007,35(4):179-180+186.
    [103]卢华伟,秦品健,郑锐.基于Qt/Qwt的操作监控系统的设计与实现[J].微计算机信息,2010,26(1):72-74.
    [104]唐云,邓飞,黄地龙.基于Qt和OpenGL的三维地质建模[J].计算机科学,2012,38(2):281-283.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700