用户名: 密码: 验证码:
水杉原生母树种群及群落特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水杉(Metasequoia glyptostroboides Hu & Cheng)是中国著名的杉科孑遗植物。水杉原生种群只局限于鄂西(湖北利川)、渝东(重庆石柱)、湘西(湖南龙山)所形成的极狭窄三角形分布区内。目前对水杉的保护工作还做得很不够。本课题运用种群生态学、群落生态学、数量生态学的基本原理、基本方法,以水杉原生母树种群、群落及其生境为研究对象,在全面调查的基础上,对水杉原生种群的分布格局、年龄结构,水杉群落的类型、结构特征、数量特征、区系成分、物种多样性以及物种生态位等作定量研究。为分析水杉群落的演替规律,探讨外部影响对水杉原生种群及生境的扰动响应机制,提出其生物多样性保护与恢复的科学模式作参考。
     主要研究结论如下:
     (1)5746株水杉原生母树分布在湖北省利川市建南、谋道、汪营和忠路以及福宝山森林管护区的5个乡镇。
     (2)用偏离系数进行水杉原生母树种群聚集强度的测定,结果呈明显的集群分布。
     (3)现存水杉原生母树种群径级结构呈瓮型金字塔,为衰退种群。胸径在40~99cm的母树个体数多,为5 221株。胸径在60~99cm时,胸径生长速率最大;胸径在40cm以下时,树高生长速率最大;胸径在80~99cm时,是水杉旺盛生长期。胸径在120cm以上的母树,仍然生长良好。
     (4)水杉原生母树的生境类型大致可分为住宅旁、路旁、水旁、田旁、山坡等5种。东坡分布多,下坡分布多,0~20度的缓坡和斜坡多,集中分布在海拔高度1 100~1 300m的范围内。生长势最强的是南坡和东南坡。坡位和坡度都与水杉树高、胸径呈显著负相关。海拔高度与树高呈显著正相关,与胸径没有相关性。
     (5)影响水杉原生母树生长的干扰因子主要有砍伐、病虫害、耕作、雷击、大风、水蚀、社区影响和科研、考察等其它因子。这些因子的空间分布、发生频率、面积大小和规模强度等性质各不相同。近二十年来,已经有83株水杉原生母树因为各种原因死亡。
     (6)水杉原生母树群落植物属的地理分布共有173属,缺乏地中海区、西亚至中亚分布和中亚分布两种类型。群落乔木层植物共有64属77种,上层以枫香、柳杉、青冈栎、杉木、香椿、银杏、核桃、黑壳楠等优势种构成。灌木层有124属147种。
     (7)按照群落优势种丰富度指数和重要值可将群落划分为13类典型水杉原生母树群落。优势种分属14科18种,其中常绿4科5种。群落分层现象明显,乔木层树种偏少,灌木层发育完善。不同类型群落物种多样性指数不同。干扰较小的群落多样性高。海拔高度在1 000~1 200m时,物种多样性指数和均匀度指数最大。多样性指数在坡位上的数量分布呈现上坡>下坡>中坡的趋势。坡度在20度以上的群落物种多样性最大,在坡向上的变化趋势不明显。
     (8)在水杉原生母树群落中,生态位宽度较大的种群顺序是水杉、柳杉、杉木、香椿、枫香、锥栗、板栗。主要种群生态位相似性的所有组对中相似比例大于0.6的没有,只有14对相似性比例大于0.3;主要种群生态位重叠值集中在0~0.01之间,各种群对资源的共享趋势不明显。
     (9)自水杉被发现以来,原生生境不断被破坏,群落树种大大减少,林相逐渐单一。母树群落演替指数在4.12至7.86之间,已经完成针叶林先锋群落马尾松群落向针阔混交林的过渡,并将最终演替到顶极常绿阔叶林。如果环境保护好,干扰程度低,在沼泽湿地上、河谷旁完成从次生水杉林到水杉针阔混交林,然后到预顶极湿地水杉林这种发展演替过程是可能的。
     (10)水杉母树生境恶化、生长受到严重干扰的原因主要有人类活动、农业耕作、经费缺乏和自然灾害等。当前要做好资金筹措、资料普查等基础性工作。在此基础上,建立水杉母树数据库,封山育林,运用现代方法和技术努力恢复生境,改善水杉种群结构和群落结构。
The relict plant Metasequoia glyptostroboides Hu & Cheng is a rare Chinese species with a limited distribution around the borders of Hubei Province, Hunan Province and Chongqing Municipality. While the protection for this relict plant is not enough. In this investigation, the basic characteristics of the original Metasequoia glyptostroboides mother trees population such as pattern, age structure, habitat, disturbance and death, and some characteristics of the communities involve succession, niche, species diversity and floristic element will be studied by quantitative analysis, using the methods of the Population Ecology, Community Ecology and Quantitative Ecology. The study will be benefit to analyze the succession of the original Metasequoia glyptostroboides mother trees communities, to discuss the mechanism of reaction of the population and its habitat for exoteric disturbance. And will be useful to protect and renew the biological diversity.
     The main conclusions:
     1. The original Metasequoia glyptostroboides mother trees with a number of 5 746 distribute in 5 towns in the Lichuan city of Hubei province, which are Jiannan, Moudao, Wangying, Zhonglu and the Fubao mountain forest resource managing and protecting liability section.
     2. The pattern of the original Metasequoia glyptostroboides mother trees population is contagious distribution.
     3. It indicates the original Metasequoia glyptostroboides mother trees population began to wither away that the age pyramid likes an urn. The rejuvenescence of the population is difficult because more of them belong to the middle age class. There are 5 221 individual numbers with the diameter at breast height (DBH) between 40 and 99 centimeters. The growth rate of DBH will be the maximum when DBH is 60 to 99 centimeters. While DBH is less 40 centimeters, the growth rate of height will be the maximum. The fast increase of the tree will appear when DBH is within 80 to 99 centimeters. The original Metasequoia glyptostroboides mother trees still grow well after DBH reaches 120 centimeters.
     4. The original Metasequoia glyptostroboides mother trees distribute abroad, such as the side of house, road or field and on mountain. Most of them distribute in slopes with a gradient of 0 to 20 and the altitude is 1 100 to 1 300. The eastern slope or a downward slope has more distribution. The mother trees have the best growth vigor while in southern slope or south-eastern slope. The correlation between slope position and slope gradient to DBH or height is marked negative. It is marked positive between altitude and height, while having no correlative relationship for altitude and DBH.
     5. The factors of disturbance for the original Metasequoia glyptostroboides mother trees are felling, constructing, blight, cultivation, lightning strike, gale, erosion and so on. The characters of them involve distribution, frequency, interval, intensity, incidence etc are each not same. In the past 20 years, there are 83 original Metasequoia glyptostroboides mother trees died for various reasons.
     6. The total generic areal types in the original Metasequoia glyptostroboides mother trees communities are 173, as the Mediterranean, West Asia to Central Asia and Central Asia are absent. Liquidambar formosana Hance,Cryptomeria fortunei Hooibrenk,Cyclobalanopsis tuldoides,Cunninghamia lanceolata,Toona Sinensis,Ginkgo biloba,Juglans regia and Lindera megaphylla etc make the tree layer. There are 77 species in tree layer and belong to 64 genera, while 147 species in shrub layer and belong to 124 genera.
     7. Thirteen typical communities are distinguished by the abundance and importance value of the dominant populations, which are 18 species and belong to 14 families, including evergreen plants 5 species, 4 families. Stratifications of the community are apparent. The shrub layer is more perfect than the tree layer. Various communities have various diversities. The community has the highest diversity while the height is 1 000 to 1 200, or the slope gradient is bigger than 20. The diversity has a tendency which is in the order of up slope > downward slope > middle slope for slope position, while has no trend for slope aspect.
     8. In the original Metasequoia glyptostroboides mother trees communities, the niche breadth is in the order of Metasequoia glyptostroboides > Cryptomeria fortunei Hooibrenk >Cunninghamia lanceolata Hook > Toona Sinensis > Liquidambar formosana Hance > Castanea henryi > Castanea mollissima Blume. No coefficient of niche similarity in all the species contrast is more than 0.6, while only 14 couples more than 0.3. The coefficient of niche overlap distributes between 0 and 0.01. It indicates that the tendency to share resources is not naked for the dominant populations.
     9. The suited habitat was havoced after the discovery of Metasequoia glyptostroboides. Species in the community decreased sharply and the forest form goes into simple by the lasting destruction. The range of indexes of succession is from 4.12 to 7.86. As the evergreen broad-leaf forest is the climax phase, the coniferous and broad leaf forest has already taken the place of pioneer community. If the environment is protected well, it is possible that the succession is from the secondary Metasequoia glyptostroboides forest to the coniferous and broad leaf forest, then to the preclimax Metasequoia glyptostroboides forest on the swamp wetlands or riverside.
     10. The main reasons of aggravating circumstances are human impacts, cultivation, lack of money and natural disasters. A database about Metasequoia glyptostroboides should be established on the base of financing and survey. It is a practical method to try to renew the habitat of Metasequoia glyptostroboides and ameliorate its structure by the modern ways and techniques.
引文
[1]斯金.林学家郑万钧教授[J].植物杂志,1984, 4:39~41, 43.
    [2]陈建礼.科学的丰碑—20世纪重大科技成就纵览[M].济南:山东科学技术出版社,1998:229~231.
    [3] Chaney R W. The Bearing of the Living Metasequoia on Problems of Tertiany Paleobotany[J]. Proc. Nat. Acad. Sci,1948, 34:503~515.
    [4] Chaney R W. A Revision of Fossil Sequoia and Taxodium in the Western North America Based on the Recent Discovery of Metasequoia[J]. Transactions of American Philosophical Society,1951, 40(3):171~239.
    [5] Fulling E H. Metasequoia-fossil and Living. An Initial Thirty-years (1941-1970) Annotated and Indexed Bibliography with an Historical Introduction[J]. Botanical Review,1976, 4(23):215~315.
    [6] Madsen K. Metasequoia after Fifty years. Arnoldia (Boston).1999:58~59.
    [7] Farjon A P and Conifers C N. Status Survey and Conservation Action Plan. International Union for Conservation of Nature and Natural Resources (IUCN) .Gland. Switzerland, 1999.
    [8]王希群,马履一,郭保香.水杉发现过程的系统研究[J].北京林业大学学报(社会科学版),2004, 3(1):22~28.
    [9]王希群,马履一,郭保香.湖北利川水杉原生种群及其生境1948~2003年间变化分析[J].生态学报,2005, 25(5):972~977.
    [10]马金双.水杉未解之谜的初探[J].云南植物研究,2003, 25(2): 155~172.
    [11]马金双.水杉发现大事记六十年的回顾[J].植物杂志,2006, 6:37~40.
    [12]李媛媛.水杉的系统发育地位及恢复评价[D].华东师范大学博士论文.2006.
    [13]李晓东,黄宏文,李建强.孑遗植物水杉的遗传多样性研究[J].生物多样性,2003, 11(2):100~10.
    [14]李晓东,杨佳,史全芬等. 8个栽培水杉居群遗传多样性的等位酶分析[J].生物多样性,2005, 13(2): 97~104.
    [15]李作洲,龚俊杰,王瑛等.水杉孑遗居群AFLP遗传变异的空间分布[J].生物多样性,2003, 11(4):265~275.
    [16]王日韦,王有为.不同季节水杉叶总黄酮含量变化的研究[J].武汉植物学研究,2003,21(5):449~451.
    [17]龚复俊,王有为,王日韦.吸附法提取分离水杉总黄酮的研究[J].天然产物研究与开发,2005,17(4):478~481.
    [18]刘云,朱欣婷,蔡立等.均匀设计法优化水杉总黄酮提取工艺[J].安徽农业科学,2008,36(3):853~854.
    [19]赵永青,田伟,彭海平.水杉总黄酮对胰岛素样生长因子-Ⅰ诱导的乳鼠心肌细胞肥大的抑制作用[J].中国实验方剂学杂志,2006,12(9):38~40.
    [20]王芳,余恩欣,刘惟莞.水杉总黄酮对大鼠脑缺血再灌注损伤的保护作用[J].中国中药杂志,2004,29(2):179~181.
    [21]敖英,刘惟莞,屠治本等.水杉总黄酮对大鼠血小板聚集、变形功能的抑制作用[J].中药材,2004, 27(6):432~434.
    [22]陈玮,何兴元,王文菲等.水杉在中国北方城市中的应用研究[J].生态学杂志,2003, 22(6):177~180.
    [23]卢义山,梁珍海,吴仲祥等.苏北海堤防护林主要造林树种林分生物量与生产力的研究[J].江苏林业科技, 2000, 27(2):12~15.
    [24]季永华,张纪林,孙金林等.沿海地区水杉林带生物产量的时空结构特征[J].江苏林业科技,1999, 26(4):6~10.
    [25]李晓储,黄利斌,蒋继宏.扬州古运河风光带生态林生态保健型绿化模式[J].中国城市林业,2005, 3(6):12~15.
    [26]殷云龙,徐建华,张光宁等.江苏公路陆地系统的树种结构与发展水平评价[J].植物资源与环境学报, 2002, 11(3):46~52.
    [27]张孝民,吕晓红,王悦梅等.主要气候因子对水杉径生长的影响[J].防护林科技,2001, 3:19~20.
    [28]王希群,马履一,郭保香.中国水杉造林历史和造林技术研究进展[J].西北林学院学报,2004, 19(2):82~88.
    [29]尤冬梅.环境因子对水杉种子萌发与幼苗生长的影响研究[D].华中师范大学硕士论文.2008.
    [30]辛霞,景新明,孙红梅等.孑遗植物水杉种子萌发的生理生态特性研究[J].生物多样性,2004, 12(6):572-577.
    [31]郭宏伟,梁俊波,金会军.水杉北方扦插育苗试验[J].辽宁林业科技,2002, 3:42~43.
    [32]谷尘平,姜高明,王福仲.水杉苗期对氮素营养需求的研究[J].湖北林业科技,2004, 2:19~22.
    [33]王希群,马履一,胡涌等.水杉种苗学研究的重要里程碑[J].北京林业大学学报(社会科学版),2007, 6(1):34~37.
    [34] Wang Y C.Observations on Seed Germination and Seedling Development of Metasequoia glyptostroboides Hu & Cheng[J]. The Chinese Journal of Agricultur,1949, 1(1):81~92.
    [35]马履一,王希群,郭保香.水杉引种及迁地保护进展[J].广西植物,2006, 26(3):235~241.
    [36]马金双.世界栽培水杉的调查(1947~2007) [J].武汉植物学研究,2008, 26(2):186~196.
    [37]汪来宝,薛东,蔡怀春等.水杉尺蛾堵截法防治用具橡胶药环的研制[J].湖北植保,2000, 4: 20~21.
    [38]王柏泉,艾训儒,彭诚.水杉原生群落病虫害及其防治[J].植物保护,2003, 29(2):42~43.
    [39]孙兴全,唐尚杰,吴菊芳等.上海地区为害水杉的茶尺蛾生物学特性研究[J].上海交通大学学报(农业科学版),2002, 20(增刊):72~77.
    [40]文甲举,吴彬,范深厚.水杉原生古树保护工作现状及存在的问题[J].林业科技通讯, 2001, (3):30~31.
    [41]刘毅,李宏军.国家一级珍稀植物水杉原生母树资源调查及其保护[J].湖北林业科技, 2006, (6):46~48.
    [42]程丹丹,葛继稳,赖旭龙等.原生水杉种群的现状及其保护对策[J].环境科学与技术,2007, 30(5):48~51.
    [43]陈绍林,孙云逸,陈世明等.星斗山自然保护区水杉原生母树的生长状况及保护策略[J].林业调查规划,2008, 33(4):72~75.
    [44]郑万钧,曲仲湘.湖北利川县水杉坝的森林状况[J].科学,1949, 31(3):73~80.
    [45]李建华,班继德.中国特产的水杉群落[J].河南师范大学学报(自然科学版),1989, 4:49~54.
    [46] Wratten S D, Fry G L A. Field and Laboratory Exercises in Ecology. London: Edward Arnold:1980.
    [47] Chapman S B. Methods in Plant Ecology. 2nd ed. London:Blackwell Scientific Publications, 1986.
    [48]茹文明,张桂萍,毕润成等.濒危植物脱皮榆种群结构与分布格局研究[J].应用与环境生物学报,2007, 13(1):14~17.
    [49]张峰,上官铁梁.山西翅果油树群落优势种群分布格局研究[J].植物生态学报,2000,24(5):590~594.
    [50]杨慧,娄安如,高益军等.北京东灵山地区白桦种群生活史特征与空间分布格局[J].植物生态学报,2007, 31(2):272~282.
    [51]张金屯.数量生态学[M].北京:科学出版社,2004.
    [52] Lloyd M. Mean Crowding. J Anim Ecol. 1967.
    [53] Morisita R F. Single Factor Analysis in Population dynamics. Ecology, 1959, 40:580~588.
    [54] Greig-Smith P. The Use of Random and Contiguous Quadrats in the Study of the Structure of Plant Communities. Annual Botany. 1952, 16:293~316.
    [55] Greig-Smith P. The Development of Numerical Classification and Ordination. Vegetatio.1980, 42:1~9.
    [56]江洪.云杉种群生态学[M].北京:中国林业出版社,1992.
    [57]曹广侠,林璋德.云冷杉林建群种的种群优势度增长动态研究[J].植物生态学与地植物学学报,1991, 15(3):207~215.
    [58]张卜阳.活化石水杉[M].北京:中国林业出版社, 2000.
    [59]邱扬,张金屯.DCCA排序轴分类及其在关帝山八水沟植物群落生态梯度分析中的应用[J].生态学报, 2000, 20(2):199~207.
    [60]高鲁鹏,粱文举,姜勇等.土壤有机质模型的比较分析[J].应用生态学报,2003, l4(10):l804~1808.
    [61]倪九派,魏朝富,谢德体等.坡度对三峡库区紫色土坡面径流侵蚀的影响分析[J].泥沙研究,2009, (2):29~33.
    [62]梁淑娟,潘攀,孙志虎等.坡位对水曲柳及胡桃楸生长的影响[J].东北林业大学学报,2005, 33(3):18~19.
    [63]王荷生.植物区系地理[M].北京:科学出版社,1992:54~57,88~91,99.
    [64] Turner M G. et al. Predicting the Spread of Disturbance in Heterogeneous Landscape. Oikos.1989, 55:121~129.
    [65]魏斌,张霞,吴热风.生态学中的干扰理论与应用实例[J].生态学杂志,1996, 15(6)50~54.
    [66]戴君虎,白洁.六盘山植物区系基本特征的初步分析[J].地理研究,2007, 26(1): 91~100.
    [67]李跃霞,上官铁梁.山西种子植物区系地理研究[J].地理科学,2007, 27(5): 724~729.
    [68]吴征镒.中国种子植物属的分布区类型[J].云南植物研究,1991(增刊Ⅳ):1~139.
    [69]宁祖林.湖北省利川市种子植物区系研究[D].华南热带农业大学硕士论文.2006:18~24.
    [70] Pielou E C.Ecological Diversity. New York.Wiely.1975.
    [71] Whittaker R H. Evolution and Measurement of Species Diversity. Taxen.1972, 21:213~251.
    [72]吴承祯,洪伟,蓝斌等.万木林群落生态学研究[J].江西农业大学学报,1996, 18(3):292~298.
    [73]刘金福,洪伟.格氏栲群落生态学研究[J].生态学报,1999, 19(3):347~352.
    [74] Levins R. Evolution in Changing Environments: Some Theoretical Explorations. Princeton: Princeton University Press,1968.
    [75]沈作奎.狮子关库区森林群落演替过程和结构动态[J].湖北民族学院学报(自然科学版),2002, 20(2):11~14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700