用户名: 密码: 验证码:
装甲RNA病毒样颗粒的制备及其在荧光PCR检测禽流感病毒中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Armored RNA技术是近几年发展起来的一种新的RNA质控品的制备技术。该技术的原理就是利用基因工程方法将包含有大肠杆菌MS2噬菌体的外壳蛋白基因的序列及外源片段克隆到表达载体中,这一载体能够将外源克隆片段转录成重组RNA,并利用载体上MS2的外壳蛋白基因合成的外壳蛋白将其装配成球状RNA病毒结构的RNA-蛋白质复合体,我们称之为RNA病毒样颗粒。目前Armored RNA技术正逐渐应用于RNA病毒的检测方面。
     首先,根据Armored RNA技术的原理,构建了能表达耐核糖核酸酶病毒样颗粒的载体,选取口蹄疫病毒IRES RNA片断为内标检测基因,克隆到表达载体噬菌体基因的下游,最终得到能够表达病毒样颗粒的原核表达载体,转化大肠杆菌进行诱导表达。通过对表达产物的双酶消化实验进行初步确认。提取表达产物的RNA进行反转录PCR,可以确定表达产物是含口蹄疫病毒IRES RNA的病毒样颗粒。蔗糖密度梯度离心纯化表达产物,透射电镜观察其形态。一系列的实验结果表明,本研究制备得到的病毒样颗粒为含口蹄疫病毒IRES RNA,直径约为26nm的圆形颗粒。该病毒样颗粒具有耐核糖核酸酶的特性,稳定性良好,易保存。
     其次,通过设计荧光双链探针对病毒样颗粒RNA进行一步法反转录实时荧光PCR检测。我们以IRES为检测靶序列,系统优化了检测病毒样颗粒RNA的反应体系和反应条件。结果表明,在最优的检测条件下,荧光双链探针可以在2h内通过一步法反转录荧光PCR检测出病毒样颗粒外壳蛋白包裹的IRES RNA。
     最后本研究通过优化反应体系,以病毒样颗粒为内标,对禽流感病毒进行实时荧光PCR检测。实验结果说明,实时荧光PCR可以迅速准确的检测禽流感病毒,同时由于内标的存在,也避免了在整个病毒检测过程中抑制因子的存在或者人为误差等因素造成的假阴性结果。
     本研究制备的含有口蹄疫病毒IRES RNA的病毒样颗粒,通过对其进行的一系列鉴定实验和应用于禽流感病毒检测的实验,可以看出该病毒样颗粒具有与RNA病毒相似的结构,即都是蛋白外壳包裹核酸的蛋白-RNA复合体,所以可以把该病毒样颗粒与其它病毒一起经历核酸提取、反转录和PCR扩增检测,从而对RNA病毒的检测进行全程监控,避免了假阴性结果的出现。该病毒样颗粒具有耐核糖核酸酶的特性,并且稳定性好、易于储存、安全可靠。因此本研究所制备的病毒样颗粒为以后RNA病毒的检测提供了一个良好的平台。
Armored RNA technology is a new technique of preparation for RNA quality control, which is developed in recent years. The principle is that E.coli bacteriophage MS2 coat protein gene and foreign fragment was cloned into the expression vector by genetic engineering methods, and the foreign fragment can be transcripted into recombinant RNA. The recombinant RNA is packaged by MS2 coat protein as RNA-protein complex. This spherical RNA-protein complex was named as virus-like particles. Now Armored RNA technology is gradually applied to the research of detection of RNA viruses.
     Firstly, according to the principle of Armored RNA technology, a vector that can express RNase-resistant virus-like particles was constructed. The Foot-and-mouth disease virus IRES RNA fragment was selected as the internal standard gene. The gene was cloned into the expression vector, then the prokaryotic expression vector expressing virus-like particles was obtained and was induced. The expression products was confirmed by the enzyme digestion assay. The virus-like particles RNA was extracted and was identified by RT-PCR. Then we confirmed that the expression products were virus-like particles containing foot-and-mouth disease virus IRES RNA. The expression products were purified by sucrose density gradient centrifugation and were observed by transmission electron microscope. A series of experimental results showed that the expression products were circular virus-like particles containing foot-and-mouth disease virus IRES RNA. The diameter of the virus-like particles is about 26nm. The prepared virus-like particles with good stability are easy to preserve because of the RNase - resistant characteristic.
     Secondly, the IRES gene was selected as the target, and we tested the virus-like particles RNA by double-stranded fluorescent probes in one-step reverse transcript real-time fluorescence PCR assay. Then we optimized the reaction systems and the reaction conditions. The results showed that double-stranded fluorescent probes could test the virus-like particles IRES RNA in the optimal one-step reverse transcript real-time fluorescence PCR assay.
     Finally, the prepared virus-like particles was selected as internal control, and avian influenza virus was tested through adjusting the reaction system in real-time fluorescence PCR assay. The experiment results showed that avian influenza virus could be quickly tested by real-time PCR. And because of the internal control, we can also avoid the false negative results caused by inhibitors and human error in the assay or other factors.
     The virus-like particles containing foot-and-mouth disease virus IRES RNA prepared in the study were tested by a series of experiments and applied to the detection assay of avian influenza virus. From these experiments, we can know that the structure of the virus-like particles is similar as RNA virus. Both of them are RNA-protein complexes with RNA wrapped by coat proteins. So we can put the virus-like particles together with other virus, then they experience RNA extraction, reverse transcription PCR amplification and detection in order to monitor the whole process and avoid false negative results. The virus-like particles with RNase - resistant characteristics have good stability. They are also secure and easy to store. Therefore, The virus-like particles prepared in the study provide a good platform for the detection of RNA viruses.
引文
[1]Capua I,Alexander DJ. Avian influenza: recent developments [J]. Avian Pathol, 2004, 33(4): 393-404.
    [2] 赵云玲,李振华,柴同杰. 禽流感诊断 [J]. 养禽与禽病防治,2001,10:10-11.
    [3] 侯云德. 分子病毒学 [M]. 北京:学苑出版社,1990.
    [4] Zhou NN, Shortridge KF, Claas EC, et al. Rapid Evolution of H5N1 Influenza Viruse in Chicken in HongKong [J]. Journal of Virology, 1999, 73:3366-3374.
    [5] Hien TT, De Jong M, Farrar J. Avian influenza—a challenge to global health care structures [J]. N Engl J Med,2004, 351(23):2363-2365.
    [6] Selleck PW, Lowther SL, Russell GM, et al. Rapid diagnosis of highly pathogenic avian influenza using pancreatic impression smears [J]. Avian Dis, 2003, 47(3):1190-1195.
    [7] Tumpey TM, Suarez DL, Perkins LE, et al. Evaluationofhigh-pathogenicity H5N1 avian influenza A virus isolated from duck meat [J]. Avian Dis, 2003, 47(3 Suppl):951-955.
    [8] 梁莉,王敦志,李天舒. 禽流感— 一种新的人畜共患传染病 [J]. 预防医学情报杂志,2004,20(2):225-228.
    [9] Horimoto T, Kawaoka Y. Pandemic threat posed by avian influenza A viruses [J]. Clin Microbiol Rev, 2001,14(1):129-149.
    [10] Spackman E,Senne D A,Bulaga L L,et al.Development of real-time RT-PCR for the detection of avian influenza virus.Avian Dis,2003,47(3 Suppl):1079-1082.
    [11] Heid C A,Stevens J,Livak J K,et al.Real time quantitative PCR [J]. Genome Res,1996,6(10):986-994.
    [12] Pasloske B L,Walkerpeach C R,Obermoeller R D,et al. Armored RNA technology for production of ribonuclease-resistant viral RNA controls andstandards[J].J Clin Microbiol,1998,36(12):3590-3594.
    [13] WalkerPeach C R,Winkler M,DuBois D B,et al. Ribonuclease-resistant RNA controls (Armored RNA) for reverse transcription-PCR, branched DNA, and genotyping assays for hepatitis C virus[J].Clin.Chem,1999,45(12):2079-2085.
    [14] S. K. Hietala,B. M. Crossley.Armored RNA as Virus Surrogate in a Real-Time Reverse Transcriptase PCR Assay Proficiency Panel[J]. J Clin Microbiol,2006,44(1):67-70.
    [15] Marcel Beld,Rene Minnaar,Jan Weel,et al.Highly Sensitive Assay for Detection of Enterovirus in Clinical Specimens by Reverse Transcription-PCR with an Armored RNA Internal Control[J]. J Clin Microbiol,2004,42(7):3059-3064.
    [16] D. Donia,M. Divizia,A. Pana,,et al.Use of armored RNA as a standard to construct a calibration curve for real-time RT-PCR.Journal of Virological Methods,2005,126:157-163.
    [17] S.Monpoeho,M. Coste-Burel,M. Costa-Mattioli,et al.Application of a Real-Time Polymerase Chain Reaction with Internal Positive Control for Detection and Quantification of Enterovirus in Cerebrospinal Fluid[J].Eur J Clin Microbiol Infect Dis,2002,21:532–536.
    [18] Diane L. Eisler,Alan McNabb,Danielle R,et al.Use of an Internal Positive Control in a Multiplex Reverse Transcription-PCR To Detect West Nile Virus RNA in Mosquito Pools[J]. J Clin Microbiol,2004,42(2):841-843.
    [19] Malek L,Sooknanan R,Compton J. Nucleic acid sequence-based amplification (NASBA)[J].Methods Mol.Biol., 1994, 28:253-260.
    [20] Romano J W,Williams K G,Shurtliff R N et al. NASBA technology: isothermal RNA amplification in qualitative and quantitative diagnostics[J].Immunol.Invest,1997, 26(1-2):15-28.
    [21] Collins M L,Irvine B,Tyner D et al. A branched DNA signal amplification assay for quantification of nucleic acid targets below 100 molecules/ml[J].Nucleic Acids Res., 1997, 25(15):2979-2984.
    [22] Pasternack R,Vuorinen P,Miettinen A. Evaluation of the Gen-Probe Chlamydia trachomatis transcription-mediated amplification assay with urine specimens from women[J].J.Clin.Microbiol., 1997, 35(3):676-678.
    [23] Gurevich V V,Pokrovskaya I D,Obukhova T A et al. Preparative in vitro mRNA synthesis using SP6 and T7 RNA polymerases[J].Anal.Biochem., 1991, 195(2):207-213.
    [24] Krieg P A,Melton D A. In vitro RNA synthesis with SP6 RNA polymerase[J].Methods Enzymol., 1987, 155:397-415.
    [25] Milligan J F,Uhlenbeck O C.Synthesis of small RNAs using T7 RNApolymerase[J].Methods Enzymol., 1989, 18:51-62.
    [26] Cleland A,Nettleton P,Jarvis L et al. Use of bovine viral diarrhoea virus as an internal control for amplification of hepatitis C virus[J].Vox Sang., 1999, 76(3):170-174.
    [27]Jens Dreier,Melanie Stormer, Knut Kleesiek,et al.Use of Bacteriophage MS2 as an InternalControl in Viral Reverse Transcription-PCR Assays[J]. J Clin Microbiol,2005,36(9):4551-4557.
    [28] Peabody D S. Translational repression by bacteriophage MS2 coat protein expressed from a plasmid. A system for genetic analysis of a protein-RNA interaction[J].J.Biol.Chem., 1990, 265(10):5684-5689.
    [29] Peabody D S,Lim F. Complementation of RNA binding site mutations in MS2 coat protein heterodimers[J].Nucleic Acids Res, 1996, 24(12):2352-2359.
    [30] Pickett G G,Peabody D S. Encapsidation of heterologous RNAs by bacteriophage MS2 coat proein[J].Nucleic Acids Res., 1993, 21(19): 4621-4626.
    [31] 贾盘兴. 噬菌体分子生物学–基本知识和技能[M]. 北京: 科学出版社, 2001,2-5.
    [32] David S Peabody. The RNA binding site of bacteriophage MS2 coat protein. The EMBO Journal, 1993,12(2):595~600
    [33] Peabody DS. Role of the coat protein-RNA interaction in the life cycle of bacteriophage MS2 . Mol Gen Genet, 1997,254:358~364
    [34] Shiba T, Suzuki Y. Localization of A protein in the RNA-A protein complex of RNA phage MS2.Biochim Biophys Acta. 1981,654(2):249-255.
    [35] Deborah A. Kuzmanovic,Ilya Elashvili,Charles Wick,et al.The MS2 Coat Protein Shell is Likely Assembled Under Tension: A Novel Role for the MS2 Bacteriophage A Protein as Revealed by Small-angle Neutron Scattering[J] .J Mol Biol,2006,355:1095-1111.
    [36] C.W.迪芬巴赫,G.S.德维克斯勒. PCR 技术实验指南 [M]. 北京:科学出版社, 1998.
    [37] 吕建新,尹一兵. 分子诊断学[M]. 北京:中国医药科技出版社, 2004.
    [38] Kuschnaroff L M, Valckx D, Goebels J, et al. Effect of Treatments with Cyclosporin A and Anti-Interferon-γ Antibodies on the Mechanisms of Immune Tolerance in Staphylococcal Enterotoxin B Primed Mice [J]. Scand. J. Immunol., 1997, 46:459-468.
    [39] Hanson M S, Cetkovic-Cvrlje M, Ramiya V K, et al. Quantitative thresholds of MHC class II I-E expressed on hemopoietically derived antigen-presenting cells in transgenic NOD/Lt mice determine level of diabetes resistance and indicate mechanism of protection [J]. J Immunol. 1996, 157(3):1279-87.
    [40] Heid C A, Stevens J, Livak J K, et al. Real time quantitative PCR [J]. Genome Res, 1996, 6(10):986-994.
    [41] Desjardin L E, Chen Y, Perkins M D, et al. Comparison of the ABI 7700 system (TaqMan) and competitive PCR for quantification of IS6110 DNA in sputum during treatment of tuberculosis [J]. J Clin Microbiol, 1998, 36(7):1964-1968.
    [42] Chen X, Zehnbauer B, Gnirke A,et al. Fluorescence energy transfer detection as a homogeneous DNA diagnostic method [J]. Proc Natl Acad Sci USA, 1997 ,94(20):10756-10761.
    [43] Lockey C, Otto E, Long Z. Real-time fluorescence detection of a single DNA molecule[J]. Biotechniques, 1998, 24(5):744-746.
    [44] Varga A, James D. Detection and differentiation of Plum pox virus using real-time multiplex PCR with SYBR Green and melting curve analysis: a rapid method for strain typing [J]. J Virol Methods. 2005, 123(2):213-220.
    [45] Giulietti A,Overbergh L,Valckx D,et al.An overview of real-time quantitative PCR:applications to quantify cytokine gene expression[J].Methods,2001,25(4):386-401.
    [46] Morrison L E, Halder T C, Stols L M. Solution-phase detection of polynucleotides using interacting fluorescent labels and competitive hybridization. [J]. Anal Biochem, 1989, 183(2):231-244.
    [47] Nazarenko I A, Bhatnagar S K, Hohman R J. A closed tube format for amplification and detection of DNA based on energy transfer [J]. Nucleic Acids Res. 1997, 25(12):2516-2521.
    [48] Sanjay T, Fred R K. Molecular Beacons:Probes that Fluorescence upon Hybridization [J]. Nat Biotechnol, 1996, 14:303-308.
    [49] Stubner S. Enumeration of 16S rDNA of Desulfotomaculum lineage 1 in rice field soil by real-time PCR with SybrGreen detection [J]. J Microbiol Methods, 2002, 50(2):155-164.
    [50] Varga A, James D. Detection and differentiation of Plum pox virus using real-time multiplex PCR with SYBR Green and melting curve analysis: a rapid method for strain typing [J]. J Virol Methods, 2005, 123(2):213-220.
    [51] Ryncarz A J, Goddard J, Wald A,et al. Development of a high-throughput quantitative assay for detecting herpes simplex virus DNA in clinical samples [J]. J Clin Microbiol, 1999, 37(6):1941-1947.
    [52] Louis M, Dekairelle AF, Gala JL Rapid combined genotyping of factor V, prothrombin and methylenetetrahydrofolate reductase single nucleotide polymorphisms using minor groove binding DNA oligonucleotides (MGB probes) and real-time polymerase chain reaction [J]. Clin Chem Lab Med, 2004, 42(12):1364-1369.
    [53] Sim SJ,Ro JY,Ordonez NG,et al. Metastatic renal cell carcinoma to the bladder: a clinicopathologic and immunohistochemical study.Mod Pathol.1999,12(4):351-355.
    [54] Ormsby AH,Haskell R,Jones D,et al. Primary seminal vesicle carcinoma:an immunohistochemical analysis of four case. Mod Pathol,2000,13 (1):46-51.
    [55]Ordonez NG , Mackay B. Brenner tumor of the ovary : a comparative immunohistochemical and ultrastructural study with transitional cell carcinoma of the bladder. Ultrastruct Pathol,2000,24 (3):157-167.
    [56] Sanjay T, Fred R K. Molecular Beacons:Probes that Fluorescence upon Hybridization [J]. Nat Biotechnol, 1996, 14:303-308.
    [57] Nilsson M, Gullberg M, Dahl F,et al. Real-time monitoring of rolling-circle amplification using a modified molecular beacon design [J]. Nucleic Acids Res, 2002 , 30(14):e66.
    [58] Liu X,FarmerieW,Schuster S,et al. Molecular Beacons for DNA Biosensors with Micrometer to Submicrometer Dimensions[J ]. Anal.B iochem , 2000, 283: 56—63. [59 ] Tyagi S,Bratu D,Kramer F R.Multicolor Beacons for Allele Discrimination [J ]. Nat Biotechnol, 1998, 16: 49—53.
    [60] Rizzo J , Gifford L K, Zhang X et al. Chimeric RNA-DNA Molecular Beacon assay for RibonucleaseH Activity[J ]. Molecular and Cellular Probes, 2002, 16: 277—283.
    [61] Whitcombe D, Theaker J, Guy S P, et al. Detection of PCR products using self-probing amplicons and fluorescence [J]. Nat Biotechnol, 1999, 17(8):804-807.
    [62] Nicola T, Stephen M, Antonio S, et al. Mode of action and application of Scorpion primere to mutation detection [J]. Nucleic Acid Res, 2000, 18(19);3750-3761.
    [63] Kiss I,German P,Sami L,et al.Application of real-time RT-PCR utilising lux (light upon extension) fluorogenic primer for the rapid detection of avian influenza viruses.Acta Vet Hung,2006,54(4):525-533.
    [64] Chen R, Huang W, Lin Z, et al. Development of a novel real-time RT-PCR assay with LUX primer for the detection of swine transmissible gastroenteritis virus [J]. J Virol Methods. 2004, 122(1):57-61.
    [65] Espy M J, Uhl J R,Mitchell P S, et al. Diagnosis of herpes simplex virus infections in the clinical laboratory by LightCyler PCR [J]. J Clin Microbiol, 2000, 38(2):795-799.
    [66] Sakai H, Procop GW, Kobayashi N, et al.Simultaneous detection of Staphylococcus aureus and coagulase-negative staphylococci in positive blood cultures by real-time PCR with two fluorescence resonance energy transfer probe sets [J]. J Clin Microbiol, 2004, 42(12):5739-5744.
    [67] Qingge Li, Guoyan Luan, Qiuping Guo, et al. A new class of homogeneous nucleic acid probes based on specific displacement hybridization [J]. Nucleic Acids Res, 2002, 30(2):e5.
    [68] Wang Shenqi, Wang Xiaohong, Chen Suhong, et al. A new fluorescent quantitative polymerase chain reaction technique [J]. Anal Biochem, 2002, 309:206-211.
    [69] 欧阳松应,杨 冬,欧阳红生.实时荧光定量 PCR 技术及其应用[J].生命的化学,2004,24 (1):74-76.
    [70] Stelzl E, Muller Z, Marth E,et al. Rapid quantification of hepatitis B virus DNA by automated sample preparation and real-time PCR [J]. Clin Microbiol. 2004, 42(6):2445-2449.
    [71] Hazari S, Acharya SK, Panda SK. Development and evaluation of a quantitative competitive reverse transcription polymerase chain reaction (RT-PCR) for hepatitis C virus RNA in serum using transcribed thio-RNA as internal control [J]. J Virol Methods, 2004, 116(1):45-54
    [72] White PA, Pan Y, Freeman AJ, Marinos G, et al. Quantification of hepatitis C virus in human liver and serum samples by using LightCycler reverse transcriptase PCR [J]. J Clin Microbiol, 2002, 40(11):4346-4348.
    [73] Pantaleo G, Fauci AS. New concepts in the immunopathogenesis of HIV infection [J]. Annu Rev Immunol, 1995, 13:487-512.
    [74] Emery S,Bodrug B A, Richardson,et al. Evaluation of performance of the Gen-Probe human immunodeficiency virus type 1 viral load assay using primary subtype A, C,and D isolates from Kenya [J]. J Clin Microb,2000,38(7):2688-2695.
    [75] Gruber F,Falkner FG,Dorner F,et al.Quantitation of viral DNA by real-time PCR applying duplex amplification,internal standardization,and two color fluorescence detection [ J ] . Appl Environ Microbiol , 2001 , 67(6) :2837-2839. [76 ] Vet JA,Majithia AR,Marras SA,et al. Multiplex detection of fourpathogenic retroviruses using molecular beacons[J].Proc Natl Acad Sci USA,1999,96:6394-6399.
    [77] McFarlane R, Sun T. Detection of BCR/ABL fusion product in normoblasts in a case of chronic myelogenous leukemia [J]. Am J Surg Pathol, 2004 , 28(9):1240-1244.
    [78] Mitas M,Mikhitarian K,Walters C,et al.Quantitative real-time RT-PCR detection of breast cancer micrometastasis using a multigene marker panel.Int J Cancer. 2001 Jul 15;93(2):162-171.
    [79] Donohoe GG,Laaksonen M,Pulkki K,et al.Rapid single-tube screening of the C282Y hemochromatosis mutation by real-time multiplex allele-specific PCR without fluorescent probes.Clin Chem,2000 Oct,46(10):1540-1547.
    [80] Funato T,Fujimaki S,Fujiwara J,et al. Genetic diagnosis for drug resistance in cancers[J ] . Rinsho Byori ,2000 ,48 (2) :162-166.
    [81] Bhat HK, Epelboym I. Quantitative analysis of total mitochondrial DNA: competitive poly merase chain reaction versus real-time polymerase chain reaction [J]. Biochem Mol Toxicol, 2004,18(4):180-186.
    [82] Saunders NA. Real-time PCR [J]. Methods Mol Biol, 2004, 266:191-211.
    [83] Garten W,Klenk H D.Understanding influenza virus pathogenicity.Trends in Microbiology,1999,7 (3) :99-100.
    [84] Capua I,Margangon S.The avian influenza epidemic in Italy,1999-2000:a review.Avian Pathology,2000,29 ( 3):289-294.
    [85] Suarez D L,Perdue M L,Cox N,et al.Comparisons of hightly virulent H5N1 influenza A viruses isolated from humans and chickens from Hong Kong.J virology,1998,72 ( 8):6678-6688.
    [86] Vogel G.Sequence offers clues to deadly Flu.Science,1998,279(5349):3-4.
    [87] Selleck PW,Lowther SL,Russell GM,et al.Rapid diagnosis of highly pathogenic avian influenza using pancreatic impression smears[J].Avian Dis,2003,47(3):1190-1195.
    [88] Tumpey TM,Suarez DL,Perkins LE,et al.Evaluation of high-pathogenicity H5N1 avian influenza A virus isolated from duck meat[J].Avian Dis,2003,47(3 suppl):951-955.
    [89] 梁莉,王敦志,李天舒.禽流感-一种新的人畜共患传染病[J].预防医学情报杂志,2004,20(2):225-228.
    [90] Horimoto T,Kawaoka Y.Pandemic threat posed by avian influenza A viruses[J].Clin Microbiol Rev.2001,14(1):129-149.
    [91] Elbers AR,Fabri TH,de Vries TS,et al.The highly pathogenic avian influenza A (H7N7)virus epidemic in the Netherlands in 2003-lessos learned from the first five outbreaks[J].Avian Dis,2004,48(3):691-705.
    [92] Johnston AM.Avian influenza outbreak in south east Asia[J].J R Soc Health,2004,124(2):64-65.
    [93] Capua I,Alexander DJ.Avian influenza and human health[J].Acta Trop,2002,83(1):1-6.
    [94] Yuanji G.Influenza activity in China:1998-1999[J].Vaccine,2002,15(20 Suppl):28-35.
    [95] Brown H.WHO confirms human-to-human avian flu transmission[J].Lancet,2004,363(9407):462.
    [96] Mase M,Tsukamoto K,Imada T,et al.Characterization of H5N1 influenza A viruses isolated during the 2003-2004 influenza outbreak in Japan[J].Virology,2005,332(1):167-176.
    [97] Swayne DE,King DJ.Avian influenza and Newcastle disease[J].J Am Vet Med Assoc,2003,222(11):1534-1540.
    [98] Alexander DJ.The epidemiology and control of avian influenza and Newcastle disease[J].J Comp Pathol,1995,112(2):105-126.
    [99] 林祥梅,赵连增,田国斌,等.间接ELISA、HI及AGP检测鸡血清抗AIV抗体的敏感性比较[J].中国兽医学报,1998,18(5):454-456.
    [100] Shafer AL,Katz JB,Eernisse KA.Development and validation of a competitive enzyme-linked immunosorbent assay for detection of type A influenza antibodies in aviansera[J].Avian Dis,1998,42(1):28-34.
    [101] Lu H.A longitudinal study of a novel dot-enzyme-linked immunosorbent assay for detection of avian influenza virus[J].Avian Dis,2003,47(2):361-369.
    [102] Jin M,Wang G,Zhang R,et al.Developement of enzyme-linked immunosorbent assay with nucleoprotein as antigen for detection of antibodies to avian influenza virus[J].Avian Dis,2004,48(4):870-878.
    [103] 崔尚金, 陈化兰, 唐秀英, 等.禽流感RT-PCR诊断方法的建立.中国畜禽传染病, 1998, 20: 105-107.
    [104] Shan S,Ko LS,Collins RA,et al.Comparison of nucleic acid-based detection of avian influenza H5N1 with virus isolation[J].Biochem Biophys Res Commun,2003,302(2):377-383.
    [105] Lau LT,Banks J,Aherne R,et al.Nucleic acid sequence-based amplification methods to detect avian influenza virus[J]. Biochem Biophys Res Commun,2004,313(2):336-342.
    [106] Munch M,Nielsen LP,Handberg KJ,et al.Detection and subtyping (H5and H7)of avian type A influenza virus by reverse transcription-PCR and PCR-ELISA.Arch Virol, 2001,146:87-97.
    [107] Dybkaer K,Munch M,Handberg K J,et al.Application and evaluation of RT-PCR-EL ISA for the nucleoprotein and RT-PCR for detection of low-pathogenic H5 and H7 subtypes of avian influenza virus[J]. J Vet Diagn Invest,2004,16:51-56.
    [108] Dybkaer K, Munch M , Handberg KJ , et al. RT-PCR-ELISA as a tool for diagnosis of low-pathogenicity avian influenza.Avian Dis,2003,47(3 Suppl): 1075-1078.
    [109] Suarez DL,Spackman E,Senne DA,et al .The effect of various disinfectants on detection of avian influenza virus by real time RT-PCR.Avian Dis,2003,47 (3 Suppl) : 1091-1095.
    [110] Spackman E,Senne DA , Bulaga LL,et al.Development of real-time RT-PCR for the detection of avian influenza virus.Avian Dis,2003,47(3 Suppl) : 1079-1082.
    [111] Ke LD,Chen Z,Yung WK. A reliability test of standard-based quantitative PCR:exogenous vs endogenous standards. Mol. Cell Probes,2000,14(2):127-135.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700