用户名: 密码: 验证码:
建筑膜结构的找形与裁剪分析及膜内张力的超声波测试方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代膜结构是在新型膜材料基础上发展起来的一种新型结构形式,因其自重轻、施工周期短、透光性好、丰富的建筑表现力等优点而在体育建筑、公共建筑等方面得到了广泛应用。膜材料是一种柔性的,具有强非线性和各向异性的材料,膜结构的设计在很大程度上取决于膜材料的性能,了解膜材料的特性对于膜结构的设计至关重要。建筑膜结构由柔性薄膜张拉而成,依赖于结构的几何曲面和膜内张力来提供必需的刚度,膜结构设计的首要步骤是找形分析,其目的是找出满足建筑要求的空间形状及与之对应的张力分布。裁剪分析是膜结构特有的一个分析步骤,其目的是将由找形得到的预应力状态的空间曲面进行剖分、转换成无应力的平面下料图,以便将平面膜材热合成整体,再施加预应力以张成设计曲面。合适的膜内张力是膜面能够张成并承受荷载的保证,方便快捷的对膜内张力进行现场测量是保证膜结构施工质量的要求。
     针对上述几点,本文的主要内容如下:
     1.概述了建筑膜结构的发展历史及其应用现状,对膜结构的设计内容及其国内外研究现状进行了详尽的论述。
     2.对一种PVDF涂层的聚酯纤维膜材进行实验研究。制作了经向、纬线和45°斜向的条状单轴试件和十字形双轴实验试件,分别进行了单轴拉伸和双轴拉伸实验,其中双轴实验采用了自行设计的实验装置。通过单轴实验确定了膜材不同方向的单轴拉伸强度,全程拉伸曲线。双轴拉伸实验则得到了膜材的弹性模量和泊松比等参数,并深入了解膜材的变形性能,全面理解了膜材的材料特性,为后续的结构分析奠定了基础。
     3.从板壳力学的平衡方程出发,证明了膜内各点处处相等的膜内应力分布将得到最小曲面,而平衡应力分布则得到平衡曲面。
     4.应用动力阻尼的动力松弛法进行了膜结构的找形分析。动力松弛法解几何非线性问题的一个显著优点是不需要计算结构的整体刚度矩阵和求解整体刚度矩阵方程,然而它所需要的迭代次数较多。本文在找形过程中根据结构位形的变化重新计算节点刚度、质量,不断调整计算参数,从而加快计算的收敛。算例说明,用改进后的动力松弛法进行膜结构的找形分析,与在整个找形过程中采用同一计算参数相比较,大大减少了迭代次数。由于忽略膜内剪切刚度,找形过程中单元变形较大,可通过结点坐标多步提升到位来解决问题。
     5.本文给出了两种膜结构曲面模拟的方法,通过对找形得到的散乱节点进行分片二元三次样条插值,得到整体C0连续和C1连续的光滑曲面,适用于任意多边形区域。两种插值方法均能给出膜曲面的满意表现。C1插值曲面的误差远小于C0插值曲面。对两种插值方法,模拟曲面的误差均随着初始网格尺度与平面总尺寸的比值减小而下降,在初始网格尺度与平面总尺寸的比值小于1/8之后,拟合曲面的精度变化随该比值的下降变化值逐渐不明显。
     6.曲面上的测地线与平面上的直线有许多相似的性质,测地线的直线性质使其成为最适宜的也是目前应用最为广泛的裁剪缝。可以证明,连接平滑曲面上任意两点的弹性细丝当拉紧时具有测地线的形状。本文在曲面上指定两点间引入弹性索,使其在曲面上自由滑移,并用动力松弛法寻找其平衡位置,即得测地线轨迹。
     7.采用测地线划分曲面,应用最小极值法进行曲面的展开。首先将曲面离散为空间三角形网格,假设曲面已近似展开为平面,调整展开平面中各节点的位置,使平面网格中各三角形的边长曲面网格中对应的边长之差最小,从而求得空间曲面的平面近似展开。本文将上述展开过程归纳为一个无约束的极值问题,并用蒙特卡洛法求解非线性方程。对于曲面上测地线的寻找和空间曲面展开分别给出了算例,用可展曲面圆柱面验证提出方法的正确性,并应用提出的方法给出了一个菱形马鞍膜面的裁剪样式。
As a newly developed structure, membrane structures are widely used in gymnasiums and public facilities, owing to the excellent characteristic. Behaviors of membrane structures are depended to properties of membrane materials, which is flexible, non-linear and anisotropic. Stiffness of membrane structures is provided by surface curve and pre-stresses, therefore form-finding is the first and foremost step in design of membrane structures. In order to obtaining space surfaces from plane membrane materials, patterning is a peculiarly procedure for membrane structure design. Since proper pre-stress ensures the erection and safety under loads, measurement of membrane tension is a necessity for quality control.
     According to the aforementioned points, main contents of this dissertation are as follows:
     1. History and application of membrane structures were reviewed , and main steps for design of membrane structures and the state of the art were summarized.
     2. A kind of PVDF membrane material was experimentally studied. Sample strips parallel to the warp, or fill direction, as well as those through 45°angle direction were tailored and tested. Also a kind of crossed sample was tested by a self-made biaxial test equipment. Mono-axis tests give strip strengths and stress-strain curves of the material, while biaxial tests yields elastic module and Poisson’s ratio. These experiments made materials’properties clear and laid foundations for the following analysis.
     3. A conclusion was induced from equilibrium equations of shells as follows: stress distribution in membrane structures can be either homogeneous and isotropic, resulting in a minimum surface or inhomogeneous and anisotropic, resulting in a equilibrium surface.
     4. Form finding of membrane structures was carried out by dynamic relaxation. As one of the most frequently used form finding method for membrane structures, dynamic relaxation features the facility of no need to assemble and solve structure stiffness equations, while the cost is the relatively numerous iterations. In this paper dynamic relaxation was modified to accelerate the convergence. During the form finding procedure the calculating parameters were continuously adjusted according to changes of the structure, and the iteration steps to convergence were greatly reduced comparing with those without parameter adjusting. The excessive distortion of elements, which may occur due to omitting of the in-plane shear stiffness can be overcame by sequential designation of node coordinates.
     5. Two simulating procedures for discrete membrane structures were introduced. By piecewise interpolating of the discrete surface resulted from form finding procedures, continuous smooth curved surfaces were obtained. Samples showed that though both of the simulating processes led to satisfying presentation of curved membrane surfaces, discrepancies of the simulated surfaces from the standard coordinates to the C1 surfaces were much less than that to the C0 surfaces. Discrepancies decreased with the reduce of the grid/span ratio, while as the ratio was less than 1/8 , the discrepancies gradually diminished.
     6. Geodesic of surfaces is similar to straight lines in planes, and thus makes geodesics the mostly frequently used dividing lines in patterning of membranes. It is proved that geodesics can be produced by stretch elastic strings along a smooth surface. Equilibrium of stretched strings were found by dynamic relaxation, thus gave tracks of geodesics.
     7. Adopting geodesics as dividing lines, space surfaces were developed by minimal extremum method. Firstly, curved surfaces were discretized into triangles, and a plane mesh was supposed to be the developed surface, then nodes in the plane mesh were adjusted to minimize distance differences between plane and space surface. The aforementioned procedures were summarized into a non-boundary extremum problem, and the non-linear equations were solved by Monte Carlo iterations. Examples were given to illustrate the stated procedures, and patterning of a rhombic saddle was provided.
引文
1. Thomas Herzog 著,赵光汉译.充气结构[M].上海:上海科学技术出版社,1994.1-10
    2. Gorokhov Y V,Mushchanov V F. The New Design Concepts for Large-Span Membrane Roofs [J].J. Construct Steel Res,46(1998):335-336
    3. 肖炽, 马少华,王伟成编著.空间结构设计与施工[M].南京:东南大学出版社,1995
    4. Barnes M R.Form-finding analysis and patterning of tension structures [C].In:Proc. of the 3rd Internatioanl Conference on space structures, Guildford,1984,4 (3):31-36
    5. Barnes M R,Wakefield D S.Form-finding analysis and patterning of surface-stressed structures [C].In:Proc. of the 1st Oleg Kerensky Memorial Confrence,London,1988:31-36
    6. Wakefield D S.Engineering Analysis of Tension Structures: Theory and Practice [J].Engineering Structures,21(1999): 680-690
    7. Richard Bradshaw,David Campbell et al.Special structures: past, present and future[J].Journal of structural engineering,6(2002):691-709
    8. Jòrg Schlaich.Cable and membrane Structures for buildings [C].In:Proc. of the 1st Oleg Kerensky Memorial Confrence,Section 3.London,1988.6-13
    9. 齐藤嘉仁(日).膜结构的现状与展望[J].建筑学报,2001 (6):62-64
    10. 周道明.膜结构工程的发展和应用[J].工业建筑,1999,29(11):1-4
    11. 蓝天.当代膜结构发展概述[J].世界建筑,2000(9):17-20
    12. 钟莉莉.膜结构的灵魂—膜材料[J].工业建筑,1999,29(11):4-7
    13. 廖士骏.膜结构今昔面面观[J] .世界建筑,2000(9):55-57
    14. 商欣萍,储才元.建筑用膜结构材料[J].产业用纺织品,2001,19(10):12-15
    15. 郭笑平,李纯.膜结构的空间创造--- 介绍 21 世纪斯图加特火车站创作构思[J].世界建筑,2000 (9):70-72
    16. 黄南翼,黄勇.2002 年世界杯韩国十大比赛场—兼谈对国内的设计启示[J].建筑创作,2002,
    4(3):44-49
    17. 关富玲.膜结构的应用及其展望[J].空间结构,1994,1(2):72-74
    18. 沈世钊.膜结构—发展迅速的新型空间结构[J].哈尔滨建筑大学学报,1999,32(2):11-15
    19. 戴国祥.上海工业展览馆充气结构的分析[M] .见:中国土木工程学会桥梁及结构工程学会空间结构委员会主编.空间结构论文选集.北京:科学出版社,1985.101-112
    20. 石井一夫(日).日本膜结构的发展[J].世界建筑,1999 (3):70-73
    21. Edmund happold.Tensile building development [C].In:Proc. of the 1st Oleg Kerensky Memorial Confrence,London,1988:31-36
    22. Krishna P.Tension roofs and bridges [J].Journal of Constructional Steel Research,57(2001):1123-1140
    23. Riccardo Barsotti,Salvatore S.Ligaro.the web bridge [J].International Journal of Solids and Structures,38(2001):8831-8850
    24. 张其林.索和膜结构[M].上海:同济大学出版社,2002
    25. 钱若军,杨联萍.张力结构的分析·设计·施工[M].南京:东南大学出版社,2003
    26. 林颖儒.上海八万人体育场马鞍型大悬挑钢管空间屋盖结构设计简介[J].空间结构,1996,1(2):47-53
    27. 赵基达,李明顺.大跨度空间结构在我国的发展及其关键技术[J].建筑技术,2002,28(7):483-484
    28. 川口卫(日).奈良大会堂与攀达穹顶体系[J].空间结构,1998,4(4):56-58
    29. 柯长华.日本大跨度公共建筑的结构概念[J].建筑创作,2002, (7):18-27
    30. 冯虹,钱素萍,袁勇.索膜结构分析理论研究综述与展望[J].同济大学学报,2002,30(9):1033-1037
    31. 李国强,薛伟辰.当代建筑工程的新结构体系[J].建筑钢结构进展,2002 (7):22-26
    32. 李中立,吴键生.国外膜结构在大跨度结构中的应用与发展趋势[J].空间结构,1996,2(3):51-55
    33. 刘承宗,周志勇,方立新.现代膜结构发展(I)-建筑形态[J].建筑钢结构进展,2001,3(1):24-41
    34. 刘承宗,周志勇,方立新.现代膜结构发展(II)-结构设计[J].建筑钢结构进展,2001,3(3):24-41
    35. 钟莉莉,张丽叶.TFS 膜材——建筑用织物[J].新型建筑材料,2002,(9):18-21
    36. Houtman R,Orpana M.Materials for Membrane Structures [R].Bauen mit Textilien Heft,Berlin,2000
    37. Birdair 公司技术资料
    38. Textile Architectoniques.法国 Ferrari 公司技术资料
    39. M.R.Wisnom.Size effects in the testing of fibre-composite materials [J].Composite science and technology,1999(59):1937-1957
    40. 沈世钊.大跨空间结构理论研究和工程实践[J].中国工程科学,2001,3(3):51-54
    41. 沈世钊.中国空间结构理论研究 20 年进展[C].见:中国土木工程学会桥梁及结构工程分会空间结构委员会编.第十届空间结构学术会议论文集.北京:中国建材出版社,2002
    42. 蓝天.膜结构的发展及其在中国的应用前景[C].见:第八届空间结构学术会议论文集,1997年 10 月,河南开封
    43. Lewis W J,Gosling P D.Computer modelling of stable minimal surfaces [R].University of Warwick,Research report CE32,1990
    44. Barnes M R.Computer aided design of the shade membrane roofs for EXPO 88 [J].Structural Engineering Review,1988 (1):3-13
    45. Zhang YuanGao,Tabarrok B.Generation of surfaces via equilibrium of forces [J].Computers & Structures,1999,70(5):599-613
    46. Majowiechi M,Tironi G.Geometrical Configuration of Pneumatic and Tent Structures Obtained with Interactive Computer Aided Design [J].Int J Numer Meth Engng.,1976 (10) :347-353
    47. Klaus Linkwitz.About formfinding of double-curved structures [J].Engineering Structures,21(1999):709-718
    48. Bernard Maurin,René Motro.The Surface Stress Density Method as a form-finding Tool for Tensile Membranes[J].Engineering Structures,1998,20(5):712-719
    49. 韩大建,徐其功.张拉膜结构力密度法找形分析中索边界的处理[J].空间结构,2002,8(2):38-42
    50. 徐其功,李澄,韩大建.张拉膜结构力密度法找形分析及若干问题[J].华南理工大学学报(自然科学版),2003,31(5):85-90
    51. Day A S.An introduction to dynamic relaxation [J].Engineer,(1965):219-221
    52. M.R.Barnes.Computer aided design of the shade membrane roofs for EXPO 88 [J].Structural Engineering Review,1988 (1):3-13
    53. Bonet J,Mahaney J.Form Finding of Membrane Structures By the Updated Reference Method With Minimum Mesh Distortion[J].International Journal of Solids and Structures,38(2001):5469-5480
    54. Wood R D.A simple technique for controlling element distortion in dynamic relaxation form-finding of tension membranes [J].Computers and Structures,80(2002):2115-2120
    55. Hiroshi Ohmori,Kenji Yamamoto.Shape optimization of shell and spatial structure for specified stress distribution [R].Memoirs the School of Engineering, Nagoya University,1998,50(1):31-36
    56. 张华,单建.张拉膜结构的动力松弛法研究[J].应用力学学报,2002,19(1):84-87
    57. Lewis W J,Gosling P D.Computer modelling of stable minimal surfaces [R].University of Warwick,Research report CE32,1990
    58. 单建,蓝天.动力松弛法在张拉结构静力分析中的应用[J].东南大学学报,1994,24(3):94-98
    59. Cassell A C,Hobbs R E.Numerical Stability of Dynamic Relaxation Analysis of Non-linear Structures [J].Int.J.Numer.Meth.Engng.,1976 (10) :1407-1410
    60. Levy R,Spillers W R.Practical methods of shape-finding for membranes and cable nets [J].Journal of structural engineering,1998 (4):456-458
    61. 张志宏,董石麟.空间结构分析中动力松弛法若干问题的探讨[J].建筑结构学报,2002,23(6):79-84
    62. Han Sang-Eul,Lee Kyoung-Su. A study of the stabilizing process of unstable structures by dynamic relaxation method [J].Computers and Structures,81(2003):1677-1688
    63. Bonet J,Wood R D,Mahaney J,Heywood P.Finite element analysis of air supported membrane structures [J].Comput. Methods Appl. Mech. Engrg.,190(2000):579-595
    64. Gosling P D,Lewis W J.Optimal structural membranes--I formulation of a curved quadrilateral element for surface definition [J].Computers & Structures,1996,61(5):871-883
    65. Gosling P D,Lewis W J.Optimal structural membranes --II form-finding of prestressed membranes using a curved quadrilateral finite [J].Computers & Structures,1996,61(5):885-895
    66. Ohsaki M,Uetani K.Shape-stress trade-off design of membrane structures for specified sequence of boundary shapes [J].Comput Methods Appl Mech Engrg,2000(182):73-88
    67. Wu Baoguo,Du Xingwen,Tan Huifeng.A three-dimensional FE nonlinear analysis of membranes [J].Computers & Structures,1996,59(4):601-605
    68. Kazuhide Ando,Jin Mitsugi,Yumi Senbokuya.Analyses of cable±membrane structure combined with deployable truss [J].Computers and Structures,74(2000):21-39
    69. David G Phelan,Robert B Harber.An integrated design method for cable-reinforced membrane structure [J].In:Proceedings IASS Symposium ,volume 2: Shells membrane and Space Frames. Osaka, 1986,Vol.2,103-110
    70. Gosling P D,Korban E A.A bendable finite element for the analysis of flexible cable structures [J].Finite Elements in Analysis and Design, 38(2001):45-63
    71. Li Jin-Jun,Chan Siu-Lai.An integrated analysis of membrane structures with flexible supporting frames [J].Finite Elements in Analysis and Design,40(2004):529-540
    72. Ivar Talvik.Finite element modeling of cable networks with flexible supports [J].Computers and Structures,79(2001):2449-2450
    73. Bonet J,Mahaney J.Form Finding of Membrane Structures By the Updated Reference Method With Minimum Mesh Distortion[J].International Journal of Solids and Structures,38(2001):5469-5480
    74. 单建,蓝天.索膜结构中的矩形平片协调五力模型[J].工程力学,1994,11(3):69-77
    75. 胡宇峰,聂世华,钱若军.张力膜结构的比拟找形方法[C].见:中国土木工程学会桥梁及结构工程分会空间结构委员会编.第九届空间结构学术会议论文集.2000 年.456-461
    76. 卫东,沈世钊.薄膜结构初始形态确定的几种分析方法研究[J].哈尔滨建筑大学学报,2000,33(4):712-719
    77. 李中立,牛多宝,樊原子.张拉膜结构的找形分析[J].石家庄铁道学院学报,2000,13(2):39-43
    78. 向阳,李君,沈世钊.薄膜结构的初始形态设计分析[J].空间结构,1999,5(3):19-27
    79. 邵小方,吴健生.薄膜结构的找形及荷载分析[J].天津大学学报,1995,28(2):201-207
    80. 黄世敏,魏琏,王森等.具索加强的张拉膜结构的找形方法[J].空间结构,1999,5(4):22-26
    81. 叶小兵,李中立,吴建生.用曲面有限单元建立的膜结构分析理论[J].建筑结构学报,1998,18(5):17-21
    82. 王志明,宋启根.张力膜结构的找形分析[J].工程力学,2002,19(1):52-56
    83. 王启文,吴健生.膜结构初始几何形状模拟与有限元前处理[J].工业建筑,1995,25(11):18-24
    84. 杨联萍,胡宇峰、钱若军.膜结构形状判定和造形[C].见:中国土木工程学会桥梁及结构工程分会空间结构委员会编.第十届空间结构学术会议论文集.北京:中国建材出版社,2002
    85. 聂世华,钱若军,王人鹏等.膜结构的找形分析和裁剪分析评述[J].空间结构,1999,5(3):12-19
    86. 钱基宏,宋涛.张拉膜结构的找形分析与形态优化研究[J].建筑结构学报,2002,23(3):84-88
    87. 罗辉,李沐钢.索膜结构的实用找形方法[J].河北冶金,2002,4(3):21-49
    88. 冯星.张力膜结构形状优化[J].建筑科学,1999,15(4):24-27
    89. 胡加珠,吕令毅.张拉结构的找形方法评述[J].建筑科学,2002,18(5):20-24
    90. 李中立,吴键生,黄达达.膜结构找形受荷与裁剪分析[C].见:第八届空间结构学术会议论文集,1997 年 10 月,河南开封
    91. 郭璐,蓝天.张拉结构初始几何曲面的确定[C].见:中国土木工程学会桥梁及结构工程分会空间结构委员会编.第六届空间结构学术会议论文集.北京:地震出版社,1992
    92. 向阳,沈世钊.薄膜结构的静力性能分析[J].空间结构,1998,4(1):18-24
    93. 叶小兵,袁明武.膜结构的荷载分析[J].空间结构,2000,6(1):9-13
    94. 王起,李芳,张相庭.索膜屋盖结构横风向共振响应的时程分析方法[J].特种结构,2002,19(1):42-45
    95. 卢伟煌.悬索结构的初始态判定和静力分析[C].见:中国土木工程学会桥梁及结构工程分会空间结构委员会编.第八届空间结构学术会议论文集.1997 年.221-226
    96. 曹立岭,罗尧治,沈雁彬,马政纲.索膜结构预张力取值的研究[C].见:中国土木工程学会桥梁及结构工程分会空间结构委员会编.第十届空间结构学术会议论文集.北京:中国建材出版社,2002
    97. 李中立,胡庆卫,赖小燕.膜结构建筑荷载取值问题探讨[C].见:中国土木工程学会桥梁及结构工程分会空间结构委员会编.第十届空间结构学术会议论文集.北京:中国建材出版社,2002
    98. 胡加珠,尹楠.张拉膜结构的动力分析[J].建筑技术开发,2002,19(8):1-3
    99. 王春江,王人鹏,厉平,董石麟,王增春.索膜结构找形分析理论综述[C].见:中国土木工程学会桥梁及结构工程分会空间结构委员会编.第十届空间结构学术会议论文集.北京:中国建材出版社,2002
    100. 顾冬生,吕令毅,宋启根,方立新,王志明.膜结构一体化分析方法[J].建筑技术开发,2003,30(1):15-17
    101. 刘康.索膜结构找形分析的 ANSYS 实现[J].建筑技术开发,2003,30(3):14-16
    102. 叶继红,李爱群,刘先明.动力松弛法在索网结构形状确定中的应用[J].土木工程学报,2002,
    35(6):14-19
    103. 唐建明,卓家寿.张拉结构非线性分析两节点曲线单元有限元法[J].力学学报,1999,31(5):633-640
    104. 向阳,蔡兴东,李君.膜结构成套技术研究[J].建筑技术开发,1999,26(5):42-44
    105. 袁行飞,董石麟.二节点曲线索单元非线性分析[J].工程力学,1999,16(4):59-65
    106. 张其林,张莉.膜结构形状确定的三类问题及其求解[J].建筑结构学报,2000,21(5):33-40
    107. 唐建民,董明,钱若军.张拉结构非线性分析的五节点等参单元[J].计算力学学报,1997,14(2):108-113
    108. 岳昌智,张莉等.矩形边界膜帐篷的合理形体[J].结构工程师,2000(3):10-13
    109. 钱若军.张拉结构形状判定述评[J].河海大学科技情报,1990,10(3):44-58
    110. 谭锋,吕佐超,贾文颍等.张拉膜结构的设计过程及软件化[J].空间结构,2002,8(1):29-36
    111. 孙晓颖,沈世钊.薄膜结构考虑滑移问题的分析[C].见:中国土木工程学会桥梁及结构工程分会空间结构委员会编.第十届空间结构学术会议论文集.北京:中国建材出版社,2002
    112. 张志宏,董石麟.张拉结构中连续索滑移问题的研究[J].空间结构,2001,7(2):26-32
    113. 胥传喜.张力膜结构的全过程集成分析及其策略研究[J].空间结构,1998,4(4):34-38
    114. 向阳,沈世钊,赵臣.张拉式薄膜结构的弹性模型风洞试验研究[J].空间结构,1998,4(3):31-36
    115. 沈世钊,武岳.大跨度张拉结构风致动力响应研究进展[J].同济大学学报,2002,30(5):533-538
    116. 武岳,沈世钊.膜结构风振分析的数值风洞方法[J].空间结构,2003,9(2):38-43
    117. 张华.薄膜结构形状确定及耦合风振响应分析 [D].南京:东南大学,2002
    118. 向阳,沈世钊,李君.薄膜结构的非线性风振响应分析[J].建筑结构学报,1999,29(6):38-47
    119. Gordian Schiling,Michael C. Georgiadis.An algorithm for the determination of optimal cutting patterns [J].Computers & operation research,2002(29):1041-1058
    120. Gründig L,Ekert L,Moncrieff E.Geodesic and semi-geodesic line algorithms for cutting pattern generation of architectural textile structures [C].In:Pro. Asia-Pacific Conference on Shell and Spatial Structures,Beijing,1996
    121. Szostkiewicz C, Courtade R M, Hamelin P.Characterisation and modeling of notch toughness of soft composite membranes – applications to tensile structures[R]. International Workshop on multi-axial Textile Composites, Feb , 2002
    122. Ohsaki M, Fujiwara J.Developability conditions for prestress optimization of a curved surface [J].Comput. Methods Appl. Mech. Engrg.,192(2003):77-94
    123. Wang Charlie C L,Smith Shana S-F,Yuen Matthew M F.Surface flattening based on energy mode [J].Computer-Aided Design,34(2002):823-833
    124. Günter Aumann.A simple algorithm for designing developable Bézier surfaces [J].Computer Aided Geometric Design,20(2003):601-619
    125. Yu Guoxin,Nicholas M. Patrikalakis, Takashi Maekawa. Optimal development of doubly curved surfaces [J].Computer Aided Geometric Design,17(2000):545-577
    126. Jae-Yeol Kim,Jang-Bog Lee.A new technique for optimum cutting pattern generation of membrane structures [J].Engineering Structures,2002(24):745-756
    127. Gordian Schiling,Michael C. Georgiadis.An algorithm for the determination of optimal cutting patterns [J].Computers & operation research,2002(29):1041-1058
    128. Houtman R, Orpana M.Materials for membrane structures.Workshop ”Textile Roofs 2000", June
    22-24,2000,Berlin
    129. 卫东,沈世钊.薄膜结构裁剪分析新方法[J].建筑结构,2002,32(7):70-72
    130. 王启文,吴键生.膜结构裁剪下料分析[J].工业建筑,1995,25(11):50-54
    131. 向阳,沈世钊.薄膜结构的实用裁剪设计方法[J].空间结构,1996,5(2):46-50
    132. 赵杰,杨庆山.膜曲面裁剪及平面展开的二次测地线法[C].见:中国土木工程学会桥梁及结构工程分会空间结构委员会编.第十届空间结构学术会议论文集.北京:中国建材出版社,2002
    133. 罗斌. 张拉膜结构的非线性分析和织物膜材的拉伸实验研究[D]:[博士学位论文]. 南京:东南大学土木工程学院,2003
    134. 马明,蓝天.膜结构裁剪分析中曲面的模拟与短程线的生成[J].土木工程学报,2002,35(5):20-23
    135. 马明旭,毛昕,王哲英.提高曲面近似展开精度的方法与实现[J].工程图学学报,2002(2):127-132
    136. 张其林,张莉,罗晓群.任意空间曲面近似展开成平面的增量有限元法[J].计算力学学报,2001,18(4):498-500
    137. 张莉,张其林,龚铭,罗晓群.任意空间曲面近似展开成平面的板单元有限元算法[C].见:中国土木工程学会桥梁及结构工程分会空间结构委员会编.第九届空间结构学术会议论文集.2000年.273-280
    138. 钱基宏,宋涛.膜结构裁剪分析中具有边界约束条件的膜曲面弹性展平最小变形能原理[J].建筑结构学报,2001,22(4):17-19
    139. 吴健生,邵小方,陈志华.薄膜结构材料拉伸性能对裁剪加工的影响[J].空间结构,1995,1(2):51-54
    140. 李中立,吴健生,肖雪峰.膜结构裁剪分析[J].空间结构,1997,3(3):55-60
    141. 马明,钱基宏,蓝天.膜结构裁剪分析中考虑预张力释放的计算方法[J].建筑结构学报,2002,23(6):75-78
    142. 邵小方,吴健生.薄膜结构最优化裁剪分析[J].Transactions of Tianjin University,1995,1(2):186-189
    143. 杨维国,徐国彬.膜结构的实用裁剪下料研究[C].见:中国土木工程学会桥梁及结构工程分会空间结构委员会编.第九届空间结构学术会议论文集.2000 年.313-318
    144. 聂世华,胡宇峰,钱若军.张力膜结构的等效节点力裁剪方法[C].见:中国土木工程学会桥梁及结构工程分会空间结构委员会编.第九届空间结构学术会议论文集.2000 年.462-468
    145. С.П.芬尼可夫著, 施祥林等译.微分几何教程[M].北京:高等教育出版社,1954:264
    146. 沈永欢,梁在中等.实用数学手册[M].北京:国防工业出版社,1995:442
    147. 苏步青,华宣积,忻元龙.实用微分几何引论[M].北京:科学出版社,1998
    148. 马明旭,毛昕,王哲英.提高曲面近似展开精度的方法与实现[J].工程图学学报,2002(2):127-132
    149. 马明.非线性动力有限元法及其在膜结构裁剪分析中的应用[J].建筑科学,2002,5(18):18-20
    150. 向阳.膜结构设计软件 MCAD 与国外软件 EASY 的比较[J].建筑技术开发,2000,27(6):15-18
    151. 龚景海,邱国志.膜结构设计系统 SMCAD 的研制与开发[C].见:中国土木工程学会桥梁及结构工程分会空间结构委员会编.第十届空间结构学术会议论文集.北京:中国建材出版社,2002
    152. 宋涛,马明,钱基宏.膜结构设计程序 MEMBS 的研究开发与应用[C].见:中国土木工程学会桥梁及结构工程分会空间结构委员会编.第十届空间结构学术会议论文集.北京:中国建材出版社,2002
    153. 徐芝纶.弹性力学 [M].北京:高等教育出版社,1994.
    154. Cassell A C,Hobbs R E.Numerical Stability of Dynamic Relaxation Analysis of Non-linear Structures [J].Int.J.Numer.Meth.Engng.,1976 (10) :1407-1410
    155. Holland J A.Dynamic Relaxation Applied to Local Effects, Conf. On Pre-stressed Concrete Pressure Vessels, Inst. Civ. Engrs., London, 587-595, 1976
    156. Rushton K R..DR Solution for The Large Deflection of Plates with Specified Boundary Stresses, J. Stru. Anal. 1969(4):75-80,
    157. 中国钢结构协会空间结构分会等.膜结构技术规程 CECS158:2004[S].北京:中国计划出版社,2004
    158. Tuma F Y , Galletly G D.Large Deflection Analysis of Plates Using DR, 4th Canadian Congress of Applied Mechanics.
    159. Day A S,J H Bunce.Analysis of cable networks by dynamic relaxation [J].Civil Eng. & Public Review,1970,(4):383-386.
    160. 黄友谦,李岳生.数值逼近.北京:高等教育出版社 ,1987
    161. 熊振翔.插值多项式与插值样条.北京:国防工业出版社,1995.
    162. 美国无损检测学会. 美国无损检测手册:超声卷[M]. 上海:世界图书出版公司, 1996.
    163. 余红发. 混凝土非破损测强技术研究[M]. 中国建材工业出版社, 北京:1999
    164. 中国工程建设标准化标准,CECS 02:88 超声回弹综合法检测混凝土强度技术规程
    165. 中国工程建设标准化标准,CECS 21:90 超声法检测混凝土缺陷技术规程
    166. 蔡正詠,王足献。正交设计在混凝土中的应用[M]。中国建筑工业出版社,北京:1985,16-90

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700