用户名: 密码: 验证码:
硫酸盐还原菌治理煤矿酸性废水的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是煤炭生产大国,但又是水资源贫国。采煤生产将宝贵的地下水变成酸性废水排出,排出的酸性废水又再次污染洁净的地表水和地下水资源及土地资源,危害农作物、水生生物和人体的健康。煤矿酸性废水资源化与无害化,既保护了水土环境,又将废水变成可利用的水资源,对我国特别是西部地区有着重要的意义。我国中西部地区为干旱、半干旱地区,水资源严重短缺,水是制约该地区发展的重要因素;中西部地区煤炭资源丰富,是我国煤炭主要产区,也是中西部经济发展的重要组成部分。如何保护水资源、提高水资源的利用率,是中西部经济的重要环节。
     目前硫酸盐还原菌处理高硫酸盐废水,主要通过污水处理厂来实现,而酸性煤矿废水利用污水处理厂来处理的主要缺点是基建工程和设备投资大,运行费用高,耗能大,处理量小,企业很难负担。因此,降低煤矿废水处理成本的研究就显得很有意义。采煤导致地表变形,部分塌陷地带形成积水,本文研究以天然积水洼地作为反应器,通过向其中投加适量微生物以及所需要的基质碳源来处理煤矿废水的可行性。
     本研究试验首先分离出两株硫酸盐还原菌,并对此两种菌进行鉴定,研究了菌株生长和脱硫的适宜条件范围,然后利用敞口反应器模拟煤矿酸性废水的天然条件,人为投加菌种和碳源,创造硫酸盐还原菌治理煤矿酸性废水的环境,通过分析有机酸的利用,pH值变化,硫酸根的去除率以及重金属的去除率,研究天然条件下利用生物法处理煤矿酸性废水的可行性;并对几种廉价碳源作初步试验。以期为今后进一步研究提供思路和方向,对学科发展起推动作用。经过对试验结果整理分析,得到以下结论:
     (1)由太原市杨家堡污水净化厂二沉池回流污泥中分离出两株硫酸盐还原菌,经鉴定,一株为脱硫脱硫弧菌,另一株为脱硫肠状菌;经试验知脱硫脱硫弧菌的生物活性要优于脱硫肠状菌,选取脱硫脱硫弧菌作为修复煤矿酸性废水的试验菌种。
     (2)脱硫脱硫弧菌在以下范围内生长较好:pH值在5~8,温度20℃以上,接种量在20%以上。pH值4时菌体也可以生长;接种量越大SO_4~(2-)的生物去除率越好;SO_4~(2-)的初始浓度对菌体处理SO_4~(2-)绝对量没有影响,SO_4~(2-)的去除率随着初始浓度的升高而降低;随着温度降低,对SO_4~(2-)的生物还原能力依次降低。
     (3)以乳酸钠作碳源脱硫脱硫弧菌处理煤矿酸性废水的模拟试验时发现,使其利用天然积水洼地作为反应器的思路是可行的。使煤矿酸性废水的pH值都达到6.5以上,对SO_4~(2-)的去除率最大为61.98%,并且对铁的去除率为100%,对锰的去除率也都在85%以上。
     (4)碳源选择的试验发现,糖蜜可以做脱硫脱硫弧菌的碳源,在煤矿酸性废水进行中和反应后效果更好,对煤矿废水中SO_4~(2-)的去除率最大为64.75%,并且对锰的去除率最大为90.46%,对铁的去除率为79.5%;生活污水和腐殖质在目前所采用的模拟试验条件下不能被脱硫脱硫弧菌利用。
     通过本文研究,可以印证硫酸盐还原菌治理煤矿废水在理论上是正确的,实践上是可行的。
China is a big coal production country where the water resources are insufficient. The precious underground water is turned into acid waste water through mining and discharged which in turn pollutes clean surface water, underground water and land resources, damages crops, aquatic lives as well as human health. If the acid waste water could be used reasonably and turned to harmless, water and land resources can be protected and waste water can be turned into useful water resources which has significant meaning to our country-especially the western district. Water is of severe shortage in the dry and semi-dry middle and western parts of China, therefore water is a crucial factor for the development of the area. The middle and western parts which are the main coal output districts are abound with coal which are the important components of their economic development. Consequently, it is a significant part for the economy of the districts to protect and raise the utilization of water resources.
     In recent years, the disposition of high sulfate waste water by sulfate reducing bacteria is carried out mainly passing sewage treatment factory. The main disadvantages of using sewage treatment factory are as follows: the project and equipments need large investment, running fee is high, energy consuming is large, and disposition amount is small, which cause that the enterprises couldn't afford to. It is very necessary to study how to reduce the processing cost of the coal mine drainage.The surface subsidence due to coal mining usually formate accumulating water area. The text research the possibility to dispose the acid coal mine drainage using natural surface subsidence for the reactor and throwing the right amount microorganism as well as carbon source.
     In this research, we first separated and identificated two strains of sulfate reducing bacteria and studied the condition scope of suitable desulphurization and the strain growth. SRB and carbon source were artificially added to the reactor which simulated the natural condition of the coal mine drainage. The feasibility to dispose acid coal mine drainage by sulfate reducing bacteria under the natural condition is researched through the analysis of the organic acid use, the change of pH, the removal efficiency of SO_4~(2-) and heavy metal. The experiment of the cheap carbon sources was also attempted. After the neatening and analyzing of the experimental results, the following conclusions can be drawn:
     (1) Two strains of sulfate reducing bacteria which were isolated from the pond backflow sludge of Taiyuan sewage treatment factory are identified as Desulfovibrio desulfuricans and Desulfotomaculum sp. respectively. It is confirmed that the biological activity of Desulfovibrio desulfuricans is better than that of Desulfotomaculum sp., therefore Desulfovibrio desulfuricans is selected as experimental bacterium.
     (2) The optimum growth range of the Desulfovibrio desulfuricans is pH 5~8, above 20℃, inoculating ammount above 20%. Desulfovibrio desulfuricans also can grow when pH is 4 and the removal efficiency of SO_4~(2-) became higher as the increasment of inoculating amount. The effect of original concentration of SO_4~(2-) on absolute treatment quantity is not significant, but removal efficiency of SO_4~(2-) became lower as the increasment of the original concentration. Bioreduction ability is decreasing with temperature reducing.
     (3)It can be concluded that it is practicable to dispose acid coal mine drainage by sulfate reducing bacteria under the natural condition from the simulating experiment on the disposition of acid coal mine drainage when sodium lactate as carbon source of Desulfovibrio desulfuricans. It can be concluded following resultes after disposition: the pH value is over 6.5, the removal efficiency of SO_4~(2-) is 61.98%, the removal efficiencies of Fe and Mn are 100% and 85% respectively.
     (4)From the experiment of selecting cheap carbon sources, we can concluded that molasses can be used as carbon source of Desulfovibrio desulfuricans and the results are better after the coal mine drainage is moderated. The removal efficiencies of SO_4~(2-), Fe and Mn are 64.75%, 79.5% and 90.46% respectively. Sewage and humic can't be used by Desulfovibrio desulfuricans under the current test conditions.
     Through the research, it can be concluded that it is feasible in theory and practice treating acid coal mine drainage by sulfate reducing bacteria.
引文
[1] 胡文容.煤矿矿井水及废水处理利用技术.北京.煤炭工业出版社.1998.2:219-221
    [2] 华凤林,王姗,王则成.矿山酸性废水的形成机理及防治途径探.河海大学学报,1993,21(5):55~61
    [3] 陈海峰.酸性矿井水的成因和防治对策.煤矿环境保护,1992,7(1):7~10
    [4] 丛志远,赵峰华,郑晓燕.煤矿酸性矿井水研究进展.煤矿环境保护,2002,16(5):8~11
    [5] 康凤先,伦世仪.硫酸盐还原——甲烷发酵两步厌氧法处理含高浓度硫酸盐有机废水可行性研究[J].工业水处理,1993,Vol.13,No.1:13~16
    [6] 胡文容,高廷耀.酸性矿井水的处理方法和利用途径[J].煤矿环境保护,1994.8(1),17~19
    [7] 刘心中,姚德,董风芝.煤矿酸性废水处理方法研究[J].淄博学院学报(自然科学与工程版),2000.2(3):29~32
    [8] 崔玉川,杨石龙,谢锋.煤炭矿井水处理利用技术进展[J].工业用水与废水2000.31(2):1~3
    [9] 张子间.酸性矿山废水处理技术研究进展.金属矿山.2005.9:10~13
    [10] 谢光炎,戴文灿.硫化沉淀浮选法处理矿山井下废水研究.有色金属(选矿部分),2003,(2);21~24
    [11] 黄万抚,王淑君.硫化沉淀法处理矿山酸性废水研究.环境污染治理技术与设备2004.5(8):60~62
    [12] 张建平.粉煤灰处理废水机理及应用[J].粉煤灰综合利用,1996,10(4):33~35
    [13] 马志毅,任志宏,刘瑞强.用粉煤灰中和酸性废水的试验研究[J].太原工业大学学报,1997,41(1):78~83
    [14] 刘心中,姚德,董风芝等 粉煤灰在废水处理中的应用[J]化工矿物与加工,2002.31(8):4~7,41
    [15] 格鲁德夫S N.重金属和砷污染土壤的微生物净化.国外重金属选矿.1999(10):40~42
    [16] M.Kalin Biogeochemical and ecological consideration in designing wetland treatment systems in post-mining landscapes. Waste Management.2001,21: 191~196
    [17] Kyle M.StepHens,John C.Senicindiver, Jeffery G.Skousen.Characterization of natural wetland soils receiving acid mine drainage.20th National Conference-ASMR/9th billings Land Reclamation Symposium. 2003.P:1240~1265
    [18] 阳承胜.等.宽叶香蒲人工湿地对铅/锌矿废水净化效能的研究.深圳大学学报,2000(17):2~3
    [19] 唐述虞.铁矿酸性排水的人工湿地处理.环境工程,1996,14(4):17~20
    [20] 钱泽澎,莫文英,阂航,等.硫酸盐浓度与不同基质有机废水厌氧消化的关系.中国沼气,1993,11(1):7~11
    [21] 丘建辉,氧化亚铁硫杆菌在酸性工业气体生物脱硫中的固定化及其氧化Fe~(2+)动力学的研究.河北工业大学硕士论文,2001
    [22] Silverman M P, Lundgren D G. Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans. J.Bacteriol, 1959, 77:642~6470
    [23] 王炜,屠传经,胡亚才.微生物烟气脱硫技术的展望[J].环境污染与防治,1997,19(2):28~31
    [24] Postgate J R. The Sulfate Reducing Bacteria. Cambridge. UK:Cambridge University Press, Cambridge, UK, 1984
    [25] Maree J.P.,Gerber A.And Hill E.,An Integrated Process for Biological Treatment of Sulphate-Containing Industrial Effiuents,WPCF, 1987,59(12)
    [26] Maree J.P.and Strydom Wilma E,Biological Sulphate Removal in an Upflow Packed Bed Reactor, Wat.Res., 1985,19(9): 1101~1106
    [27] Maree J.P.,Gerber A.,Melaren A.R.and Hill E.,An Biological Treatment of Mining Effluents,Environ.Tech.Letters, 1987(8):53~64
    [28] Maree J.P. and Strydom Wilma E,Biological Sulphate Removal from Industrial Effluents in an Upflow Packed Bed Reactor, Wat.Res., 1987,21(2):141~146
    [29] Jukka A.Rintala,Sulphate Reduction on Acetate in Thermophilic Upflow Anaerobic Sludge Bed Reactor at 55 and 70℃,Proc.8th International Conf.on anaerobic Digestion,Vol.3,May 25~29,1997,Sendai,Japan
    [30] Maree J.P.and Hill E.,Biological Removal of Sulphate from Industrial Effluents and Concomitant Production of Sulphur, Sci.Tech., 1989,(21):265~276
    [31] Du Preez L A, et al. Biological Removal of Sulphate from Industrial Effluents Using Producer Gas as Energy Source. Environmental Technology, 1992 (13):875~882
    [32] Maree J P and Hulse G. Pilot Plant Studies on Biological Sulphate Removal from Industrial Effluent. War.Sci. Tech, 1991(23):1293~1300
    [33] Renze T, et al. Biological Sulphate Reduction Using Gas-Lift Reactor Fed with Hydrogen and Carbon Dioxide as Energy and Carbon Source. Biotech. Bioeng,1994,44 (5):586~594
    [34] Renze T. Van Houten and G. Lettinga. A Novel Reactor Design fox Biological Sulphate Removal. Proc. 8th International Conf. on An-aerobic Design, Vol. 3, May 25-29,1997, Sendai, Japan
    [35] Sergey Kalyuzhnyi. Claudia de Leon Fragoso and Jesus Rodriguez Martinez. Investigation of Sulphate Reduction in a UASB Reactor U-sing Ethanol as Electron Donor, Proc. 8th International Conf. on Anaerobic Digestion, Vol. 3, May 25-29,1997, Sendai, Japan
    [36] James M. Castro, et al; Stimulation of sulfate-Reducing Bacteria in Lake Water from a former Open-pit Mine Through Addition of organic Waste; Water Environ Res 1999,71:218~223
    [37] 李亚新,苏冰琴,等.硫酸盐还原菌和酸性矿山废水的生物处理.环境污染治理技术与设备.2000.1(5):1~11
    [38] 李由令,含硫酸盐矿井废水的资源化处理研究.江苏大学硕士论文,2003
    [39] Jukka A. Rintala. Sulphate-Reducing Bacteria(second edition). Cambridge Uiversity Press. 1984
    [40] 李新荣,沈德中.硫酸盐还原菌的生态特性及其应用[J].应用与环境生物学报,19999 No.5:10~13
    [41] 李再资,黄肖容,谢逢春.生物化学工程基础(第二版).北京.化学工业出版社.2006.1:25~39
    [42] 张小里,陈志听,刘海洪等.环境因素对硫酸盐还原菌生长的影响.中国腐蚀与防护学报,2000,(8):224~229
    [43] 缪应祺.废水生物脱硫技术[M].北京.化学工业出版社,2004,7:5~37
    [44] 付玉斌.硫酸盐还原菌诱发腐蚀的研究特点[J].材料开发与应用,1999,Vol.14,No.5:45~47
    [45] 缪应祺,水污染控制工程[M],东南大学出版社,2002
    [46] 范秀容,李广武,沈萍.微生物学试验.北京:高等教育出版社,1988.6
    [47] 穆军,张肇铭.一种分离纯化厌氧细菌的新方法—平皿夹层厌氧法.山西大学学报(自然科学版).1998,21(4):363~367
    [48] John G.Holt. Bergey's Manual of Determinative Bacteriology(9th Edition). Williams and Wilkns Co., Baltimore. 1994
    [49] 刘广民,任南琪,王爱杰,等.产酸-硫酸盐还原系统中产酸菌的发酵类型及其与SRB的协同作用.环境科学学报.2004.9,24(5):782~788
    [50] 匡欣,王菊思.硫酸盐在厌氧生物过程中的行为.环境科学学报,1993,13(4):405~419
    [51] 沈德中.污染环境的生物修复.北京:化学工业出版社,2002.3:26~29
    [52] JIM NEWTON P E. Rernediation of petroleum contaminated soils[J]. Pollution Engineering, 1990, 12: 46~52
    [53] Postgate J. R., Frs, The Sulphate-Reducing Bacteria,Cambridge Universuty Press, 1984
    [54] 吴烈,潘志平.含重金属离子废水的生物处理.中国给水排水.2001.17(10):31~34
    [55] 刘玉秀,刘贵昌,战广深.硫酸盐还原菌引起的微生物腐蚀的研究进展[J].腐蚀与防护,2002,Vol.23,No.6:245~248
    [56] 赵字华,叶央芳硫酸盐还原菌及其影响因子[J].环境污染与防治>1997,Vol.19,No.5:41~43
    [57] 施华均,钱泽澎,阂航.硫酸盐对厌氧消化产甲烷的影响[J].浙江农业大学学报,1995,Vol.21.NO.1:27~32
    [58] S Kalyuzhnyi,et al.Inwestigationg of Sulfate Reduction in a UASB Reactor Using Ethanol AS Electron Donor Proc.8th International Conf on Anaerobic Digestion.Sendai Japan, 1997,3(5):25~29
    [59] Yonebayashi K, Hattori T. Soil Sci. Plant Nutr., 1988, 34(4):571~584
    [60] Watannbe A, Itoh K, Arai S, Kulvatsuka S. Soil Sci. Plant Nutr.,1994, 40(4):601~608
    [61] 黎海彬,赵颖怡,雷雨.化学絮凝分离净化甘蔗废糖蜜研究.韶关学院学报.2001.6,22(6):104~107
    [62] 卫杨保.微生物生理学[M].北京:高等教育出版社:80~105
    [63] RenN,WangB,Huang J.Ethanol-type Fermentation from Carbohydrate in High Rate Acidongenicractor[J].Biotechnol & Bioeng. 1997,54:428~433.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700