用户名: 密码: 验证码:
以大豆为碳源厌氧微生物法处理酸性含铁硫酸盐废水
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳源为硫酸盐还原菌(SRB)的生长提供能源和电子供体,是影响SRB生长的主要因素之一,也是影响SRB处理酸性硫酸盐废水的一个重要经济因素。碳源的经济性以及能够适应广泛的酸度条件是厌氧微生物法处理酸性硫酸盐废水的瓶颈问题,因此寻找一种既经济廉价又适应低酸度硫酸盐废水的碳源,成为本论文研究的主要目的。
     采用静态试验方法,探索了以大豆为碳源的可行性,主要考察了硫酸根去除率随时间的变化、不同的接种菌液浓度、不同的有机碳源、发酵大豆与未发酵大豆以及不同的硫酸根浓度等因素对硫酸根去除率的影响。
     以静态试验结果为依据,确定以发酵大豆为碳源,运用厌氧移动床生物膜反应器进行动态工艺试验。通过测定进水pH,出水pH,氧化还原电位,硫化物浓度,总硫浓度,SO42-去除率,COD去除率,COD/SO42,水力停留时间,硫酸根浓度,重金属离子浓度等条件确定最适宜的工艺参数。
     试验结果表明:以发酵大豆为碳源的进水酸度范围为1.5~7.0,最高的SO42-去除率为96.3%。当SO42-浓度在2500mg/L以下时,SO42-去除效率可达到85%以上。当Fe2+浓度在300mg/L以下时,Fez+去除率在82%以上,SO42-去除率为81%以上。当Fe3+浓度为400mg/L以下时,Fe3+去除率在80.5%以上,SO42-的去除率在82%以上。当最低进水pH为1.5,出水pH达到6.15,符合国家二级污水排放标准。
Anaerobic microbial treatment of acidic iron-containing sulfate is a new technology. The technology makes fully use of the metabolism of sulfate reducing bacteria, which has a lot of advantages, such as simple process unit, low running rate, wide range of applications, treating wastewater with organic waste, conveying no secondary pollution, and so on. So it received extensive attention by environmentalists. The life activities of sulfate reducing bacteria need carbon resource for energy. The carbon resource which can be used for sulfate-reducing bacteria has more than 100 Species. Not only does it provide energy and electron donor for the sulfate-reducing bacteria, but also removal sulfate in a wide range of acidity inexpensively. What's more this kind of carbon resource has not been reported.
     This thesis proposes that using natural organic Soybeans as carbon resource for sulfate-reducing bacteria. Soybeans are rich in protein, fat, carbohydrates and calcium, phosphorus, iron and other mineral elements. Protein is the main material composition of microbes, fat and carbohydrate can provide energy for microbial and mineral elements can maintain a normal life for microbial activities, amino acid-the decomposition product of protein can neutralize the acidity of waste water, reducing its pH.
     We compare fermented soybeans with glucose, using them as carbon resource. First, we use fermented soybeans as carbon resource, in the condition of the surrounding minimum acidity-1.5, the removal rate of sulfate is 73.85%; using glucose as carbon resource, in the condition of the surrounding minimum acidity-2.8, and the removal rate is only 57.5%. Then, we use fermented soybeans as carbon resource, in the condition of the surrounding minimum acidity-3.0, the highest removing rate of sulfate is 96.3%; using glucose as carbon resource, in the condition of the surrounding minimum acidity-7.0, and the highest removal rate of sulfate is 95%. We can find that, when treating fermented soybeans as carbon resource, the best removal rate of sulfate and the best removal rate of COD are lower than that of glucose. Therefore, using fermented soybeans as carbon resource can adapt to lower pH wastewater.
     We did dynamic process test with AMMBR. Taking minimum pH of wastewater, COD/SO42-, hydraulic retention time, maximum sulfate density into consideration, finally, we confirmed the optimal process parameter was that the Minimum pH of wastewater was 2.0, COD/SO42- was 3.0, hydraulic retention time was 28h.
     We studied the ferric iron sulfate wastewater and the ferrous iron sulfate wastewater. When the Fe2+ density lower than 300mg/L, the removal rate of Fe2+ is above 82%, SO42- removal rate is above 81%; then we change the condition, when the Fe3+ density below 400mg/L, Fe3+ removal rate is above 80.5%, and SO42- removal rate is above 82%. It is higher than the removal rate of the anaerobic microbe wastewater dealing method, which is adopted by domestic and abroad companies, whose rate is about 82% with Fe3+ density below 100mg/L.
     In conclusion, we can infer that using soybeans as sulfate-reducing bacteria's carbon resource will be a successful solution for dealing with the economical aspect of carbon resource and low acidity sulfate wastewater problems. Soybeans are cheap, available to gain easily, and also effective. I'm sure that the carbon resource will be widely applied in the wastewater dealing industry industrialization.
引文
[1]王湖坤.复合累托石颗粒材料的制备及处理铜冶炼工业废水的研究[D].武汉理工大学.2007,11,17.
    [2]蒋永荣,胡明成.硫酸盐废水生物脱硫研究进展[J].环境科学与技术.2008,(9):67~71.
    [3]王浩源,缪应祺.高浓度硫酸盐废水治理技术的研究[J].环境导报.2001,(1):22-25.
    [4]黄继国,张永祥,吕斯壕.重金属废水处理技术综述[J].世界地质.1999,18(4):83~86.
    [5]胡国飞.重金属废水处理[M].北京:化学工业出版社,2000.
    [6]国家统计局.2004年各行业工业废水排放及处理情况.北京,2004
    [7]张小里,陈志听,刘海洪,等.环境因素对硫酸盐还原菌生长的影响[J].中国腐蚀与防护学报.2000,20(4):224~229.
    [8]魏榕,黄健.酸性矿山废水的污染与处理研究.能源与环境.2006,2:31-33.
    [9]饶俊,张锦瑞,徐晖.酸性矿山废水处理技术及其发展前景[J].矿业工程.2005,3(3):47~49.
    [10]赵玲,王荣锌,李官,陈明.矿山酸性废水处理及源头控制技术展望[J].金属矿山,2009,1(397)131~135.
    [11]何绪文,肖宝清,王平.废水处理与矿井水资源化[M].北京:煤炭工业出版社,2002:165-170.
    [12]冯颖.硫酸盐还原菌与Fe0协同处理含重金属酸性废水的研究[D].天津大学.2004.12.
    [13]肖利萍,张春婵,潘纯林,张雪娇.生活污水为碳源处理硫酸盐矿山废水可行性试验[J].水资源与水工程学报.2008,12,19(6)
    [14]郭新愿,苏冰琴.利用硫酸盐还原菌处理酸性矿山废水[J].科技情报开发与经济.2005,3(15):171~172.
    [15]Tuttle J.H.Dugan PR.and RanlesC.I.Microbial sulat fere duction and its Potential
    utility as an acid mine water Pollution bartement Procedure[J].APPI.Micrboiol. 1969,17:297~302.
    [16]Maree JP and Strydom Wilma F.Biological Sulphate Removal in an UP flow Packed Bed Reactor[J].Wat Res.1985,19(9):1101~1106.
    [17]MAREE J P,STRYDOM WILMA F.Biological sulphate removal from Industrial effluents in an up-flow packed bed reactor[J].Water Research.1987,21(2):141~ 146.
    [18]Renze Tetal.Biologieal Sulfate Reduction Using Gas Lift, Reaet or Fed With Hydrogen and Carbon Dioxideas Energy and Carbon Source[J].Bionteeh. Bioeng. 1994,44(5):586~594.
    [19]James M.Castro.Stimulation of sulfate reducing Beacteria in Lake Water from a former Openpit Mine Through Addition of organie waste[J].Water Environ Res.1999,71:218~223.
    [20]李亚新,苏冰琴,等.硫酸盐还原菌和酸性矿山废水的生物处理[J].环境污染治理技术与设备.2000.1(5):1-11.
    [21]万由令,李龙海.玉米芯为碳源实现酸性矿山废水生物处理[J].工业安全与环保.2004,30(5):11~15.
    [22]Mo'nica Martins AE Maria Leonor Faleiro AE Rau Jorge Barros AE Ana Raquel Verl 'ssimo AE Maria Clara Costa,Biological sulphate reduction using food industry wastes as carbon sources[J].ORIGINAL PAPER.2009,20:559~567.
    [23]MARREE JP,A Biological Treatment of Mining Effuents Environ[J].Tech.Letters. 1987,(8):53~64.
    [24]陈威,朱雷,梁华杰.废水厌氧生物处理的研究与进展[J].国外建材科技.2006,27(1):51~53.
    [25]刘开綦,丁桑岚,刘敏.硫酸盐废水厌氧处理中限制因子的探讨[J].资源开发与市场.2007,23(5):398~400.
    [26]杨景亮,赵毅,任洪强,等.含硫酸盐高浓度有机废水生物处理技术[J].中国环境科学.1999,19(3):281-284.
    [27]崔高峰COD/SO42-比值对硫酸盐去除率影响的研究[J].工业水处
    理.2000,20(2):29~31.
    [28]杨景亮,赵毅,任洪强,等.废水中硫酸盐生物还原技术研究[J].环境科学研究.1999,12(3):6~9.
    [29]Andyve Smul,Willy Verst raete. Retention of Sulfate Reducing Bacteria in Expanded Granular Sludge blanket Reactor [J].Water Environ Res.1999,71: 427~482.
    [30]刘轶超,王增长.硫酸盐废水生物处理的影响因素[J].科技情报开发与经济.2008.18(2):126-128.
    [31]刘志勇,陈建中,康海笑,周明罗.酸性矿山废水的处理研究[J].四川环境.2004,23.6:50~57.
    [32]冯颖,康勇,张忠国.含重金属离子酸性废水的厌氧生物处理[J].环境科学与技术.2004,27,6:104~106.
    [33]PHILLIP ELLIOTT,SANTO RAGUSA,DAVID CATCHESIDE.Growth of Sulfate reducing Bacteria UnderAcidicConditions In an Upflow Anaerobic as a Treatment System For Acid Mine Drainage[J].Pergamon.1998,12,32:3724~ 3730.
    [34]Asa Kolmert,DBarrie Johnson.Remediation of Acidic Waste Waters Using Immobilised,Acidophilic Sulfate Reducing Bacteria[J]. Journal of Chemical Technology and Biotechnology.2001,76:836~843.
    [35]Singleton J.R.The sulfate reducing bacteria:an overview In:Odom J M Singleton J Red,The sulphate reducing bacteria:Contemporary Per spectives[M]. SpringVerlag, New York,1~20.
    [36]Jan Weijma,Alfons J M Stams,Look WHul Shoff Pol,etal.ETL:The mophilic Sulfate Reduction and Methangenesis with Methanol in A High Rate Anaerobic Reactor[J].Biotechnol bioeng.2000,67:354~363.
    [37]Pomeroy R, etal.Sew Works [J].1946,(18):597.
    [38]Marec J P.etal[J].Water Res.1987,21(2):141.
    [39]Jan Weijma,Alfons J M Stams,Look WHul Shoff Pol,etal.ETL:The mophilic Sulfate Reduction and Methangenesis with Methanol in A High Rate Anaerobic Reactor [J].Biotechnol bioeng,2000,67.
    [40]KHAN A W.TROTTIER T M.Effect of sulfur containing compounds on anaerobic degradation of cellulose to methane by mixed cultures obtained from sewage sludge[J].Appl Environ Microbiol,1978,35:1027~1034.
    [41]张小里,陈志听,刘海洪,等.环境因素对硫酸盐还原菌生长的影响[J].中国腐蚀与防护学报,2000,20(4):224~229.
    [42]尚文燕.厌氧微生物法处理酸性含锌硫酸盐废水[D].吉林大学化学学院,2009,4.
    [43]CHEN L, LIU M Y,GALL J L.Characterization of electron transfer proteins [A]. Larry L Barton.Sulfate Reducing Bacteria[J].New York:Plenum Press,1995: 113~149.
    [44]苏冰琴,李亚新.硫酸盐生物还原的影响因素[J].水处理.2006,5,32(5):5-7.
    [45]易正戟,谭凯旋,澹爱丽,赵龙云.硫酸盐还原菌及其在工业和矿山废水治理中的应用[J].云南师范大学学报.2006,5,26(3):39~44.
    [46]万里,郑连爽,陈丽娥,张俊杰,沈中峰,刘金辉,尹丹丹.嗜热硫酸盐还原菌的分离及生长影响因素研究[J].环境科学与技术.2009,10,32(10):57-59.
    [47]OLIVER J HAO,LI HUAN,JIN M CHEN.Effect of metal additions on sulfate reduction activity in wastewater[J].Toxicological and Environmental chemistry, 1994,46:197~212.
    [48]Tony J.and Dvaid L.P.Removal of sulatfe and heavy metals by sulatfe reducing bacteria in short term bench scale up flow an anerobic Packed bed reactor urns[J]. Water Research.2003,37:3379~3389.
    [49]冯易君,谢家理.共存离子对硫酸盐还原菌处理含铬废水的影响研究[J].环境污染与防治.1995,17(4):15-17.
    [50]马晓航,华尧熙,等.硫酸盐生物还原法处理含锌废水[J].环境科学,1995,16(4):19-22.
    [51]福田.利用硫酸盐还原菌处理含重金属废水的方法[J].公看特许公报.62-193697,1987,593~597.
    [52]马晓航,贾小明,赵宇华.用硫酸盐还原菌处理重金属废水的研究[J].微生物学杂志,2003,23(1):36-39.
    [53]冯颖,康勇,张忠国.含重金属离子酸性废水的厌氧生物处理[J].环境科学与技术.2004,27(6):104-106.
    [54]尹秀贞.硫酸盐还原菌治理煤矿酸性废水的试验研究[D].太原理工大学,2004,6.
    [55]缪应棋.水污染控制工程[M].东南大学出版社,2002.
    [56]胡凯光,汪爱河,冯志刚,史文革,熊日新.硫酸盐还原菌及在处理硫酸盐废水中的作用[J].铀矿冶.2007,2,26(1):48-52.
    [57]方艳,闵小波,柴立元,等.硫酸盐还原菌生理特性及其在废水处理中的应用[J].污水处理,2006,32(5):17~20.
    [58]司胜敏,李滦宁,柴社立,马玖彤,崔玉果,尚文燕,刘海音.厌氧生物法处理高浓度酸性硫酸盐废水研究[J].世界地质.2008,27(3).
    [59]方世杰.硫酸盐还原菌对AZ91镁合金腐蚀行为的影响[D].吉林大学.2008.6.
    [60]刁立慧.AZ91镁合金在硫酸盐还原菌溶液中耐蚀性研究[D].吉林大学.2008,5.
    [61]方善康,高东.微生物试验技术[M].山东大学出版社,1986.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700