用户名: 密码: 验证码:
NGF缓释系统促进大鼠坐骨神经电损伤后再生的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景与总体思路
     现已证实,神经生长因子(nerve growth factor,NGF)具有明确的促进周围神经损伤后再生的作用,但在实际应用中,由于NGF活性半衰期较短,在水溶液中易失活,且易受湿度、酸碱度等多种因素的影响,因而限制了其临床应用。为此,寻找合理有效的给药途径及制剂已成为当务之急。
     近年来神经电损伤发病率越来越高,其损伤机制较复杂,目前临床无合适有效的治疗方法,多为保守疗法,愈后较差,因而采取积极的治疗手段介入,促进受损神经尽快修复,缩短其功能恢复时间,将具有重要意义。
     为此,我们设想:制备一种NGF缓释系统,这种系统能延缓释放NGF,且释放的NGF具有生物活性,将其应用于周围神经电损伤段局部,使其在局部缓慢释放活性NGF,可能在神经再生过程中维持较长时间的作用,促进周围神经再生。
     据此,本工作的总体研究思路为:
     首先,制备β-NGF缓释系统,用ELISA、DRG培养技术验证该系统能否延缓释放β-NGF,释放的β-NGF是否具有生物活性,并检测该系统中各种成分的作用和必要性。
     其次,设计并制备一种稳定的能尽量模拟临床以“真性电损伤”为主的坐骨神经电损伤动物模型,通过光镜、电镜、坐骨神经功能指数、运动神经传导速度等观察其相应的形态、功能学改变,客观评价神经电损伤后的相应变化及再生能力,探讨其影响神经再生能力的可能机制,为下一步的实验研究提供参考。
     最后,将β-NGF缓释系统应用于大鼠坐骨神经电损伤段局部,应用
Background and Research Strategy
    It was conclusively confirmed that nerve growth factor could enhance peripheral nerve regeneration after injury. However, due to the short half-life action of NGF and suffered deactivation easily from humidity and acidity or alkalinity, the clinical application is difficult consequently. It is necessary to search a new reasonable way of drug administration therefore.
    The incidence rate of nerve electrical burn is higher recently. There has no efficient therapy scheme in clinic at present. It is important to search an effective way to heal the impaired nerve as soon as possible to shorten the recovery time.
    Thus, our experiment protocol is that to develop a NGF delivery system for use in repair of peripheral nerve after electric injury and we hypothesize that it would provide localized release of NGF in an active way to enhance peripheral nerve regeneration.
    Based on above hypothesis, we conduce the researches as follows:
    Firstly, we prepared a NGF controlled release system. We evaluated the ability of the delivery system to prolong the release of NGF in absence of cells by Sandwich ELISA and we determined if the delivery system could delivery bioactive NGF in a controlled manner and evaluated the necessity of the composition by DRG culture model.
    Then we design an animal experiment model of peripheral nerve electric injury which mimicry clinical electric burn. By using light microscope and electron microscope to observe the changes of nerve morph and using SFI and NCV to observe the changes
引文
[1] Aloe L. Rita Levi-Montalcini: the discovery of nerve growth factor and modern neurobiology. Trends cell Biol, 2004; 14(7):395-399
    [2] Gravvanis AI, Tsoutsos DA, Tagaris GA, et al. Beneficial effect of nerve growth factor-7S on peripheral nerve regeneration through inside-out vein grafts: an experimental study. Microsurgery, 2004; 24(5):408-415
    [3] Tsai CC, Lu MC, Chen YS, et al. Locally administered nerve growth factor suppresses ginsenoside Rbl-enhanced peripheral nerve regeneration. Am J Chin Med, 2003; 31 (5):665-673
    [4] McCallister WV, McCallister EL, Dubois B, et al. Regeneration along intact nerves using nerve growth factor and ciliary neurotrophic factor. J Reconstr Microsurg, 2004; 20(6):437-451
    [5] Gordon T, Sulaiman O, Boyd JG. Experimental strategies to promote functional recovery after peripheral nerve injuries. J Peripher Nerv Syst. 2003; 8(4):236-250
    [6] Chen ZW, Wang MS. Effects of nerve growth factor on crushed sciatic nerve regeneration in rats. Microsurgery, 1995; 16(8):547-551
    [7] McCallister WV, Tang P, Smith J, et al. Axonal regeneration stimulated by the combination of nerve growth factor and ciliary neurotrophic factor in an end-to-side model. J Hand Surg, 2001; 26(3):478-488
    [8] Rich KM. Nerve growth factor enhances nerve regeneration through silicon chamber. Exp Neurol, 1989; 105:162-168
    [9] Varon S, Conner JM. Nerve growth factor in CNS repair, J Neurotrauma, 1994; 11 (5):473-486
    10] Lewin GR, Mendell LM. Nerve growth factor and nociception. Trends Neurosci 1993; 6:353-359
    11] Yu X, Bellamkonda RV. Tissue-engineered scaffolds are effective alternatives to utografts for bridging peripheral nerve gaps. Tissue Eng, 2003; 9(3):421-430
    [12] Xu X, Yee WC, Hwang PY, et al. Peripheral nerve regeneration with sustainted release of poly(phosphoester) microencapsulated nerve growth factor with nerve guide conduits. Biomaterials, 2003; 24(13):2405-2412
    [13] Haller MF, Saltzman WM. Nerve growth factor delivery systems. J Control Release, 1998; 53(1-3):1-6
    [14] Kim MJ, Cotman SL, Halfter W, et al. The heparan sulfate proteoglycan agrin modulates neurite outgrowth mediated by FGF-2. J Neurobiol, 2003; 55(3): 261-77
    [15] Jockenhoevel ST, Zund GR, Simon P, et al. Fibrin gel-advantages of a new scaffold in cardiovascular tissue engineering. Eur J Cardiothorac Surg, 2001 ; 19:424-430
    [16] Schense JC, Hubbell JA. Three-dimensional migration of neuritis is mediated by adhesion site density and affinity. J Biol Chem, 2000; 10(275):6813-6829
    [17] Herbert CB, Bittner GD, Hubbell JA. Effects of fibinolysis on neurite growth from dorsal root ganglia cultured in two- and three-dimensional fibrin gels. J Comp Neurol, 1996; 365:380-391
    [18] Sara JT, John WM. Sakiyama-Elbert SE. Controlled release of neurotrophin-3 from fibrin gels for spinal cord injury. J Control Release, 2004; 98:281-294
    [19] Schense J, Hubbell J. Cross-linking exogenous bifunctional peptides into fibrin gels with factor ⅩⅢa. Bioconjug Chem, 1999; 10(1); 75-81
    [20] Sakiyama-Elbert SE, Hubbell JA. Development of fibrin derivatives for controlled release of heparin-binding growth factors. J Control Release, 2000; 65:389-402
    [21] Edelman E, Nugent M, Smith L, et al. Basic fibroblast growth factor enhances the coupling of intimal hyperplasia and orikuferatuib if vasa vasiryn on onhyred rat arteries. J Clin Invest, 1992; 89(2): 465-473
    [22] Fields G, Noble R. Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int. J. Pept. Protein Res, 1990; 35(3): 161-214
    [23] Tuszynski MH, Peterson DA, Ray J, et al. Fibroblasts genetically modified to produce nerve growth factor induce robust neuritis in growth after grafting to the spinal cord. Exp Neurol, 1994; 126 (1):1-14
    [24] Aloe L, Manni L, Properzi F, et al. Evidence that nerve growth factor promotes the recovery of peripheral neuropathy induced in mice by cisplatin: behavioral, structural and biochemical analysis. Auton Neurosci, 2000; 86(1-2): 84-93
    
    [25] aychaudhuri SP, Sanyal M, Weltman H, et al. K252a, a high-affinity nerve growth factor receptor blocker, improves psoriasis: an in vivo study using the severe combined immunodeficient mouse-human skin model. J Invest Dermatol, 2004; 122(3): 812-819
    [26] Goerges AL, Nugent MA. pH regulates vascular endothelial growth factor binding to fibronectin: a mechanism for control of extracellular matrix storage and release. J Biol Chem. 2004; 279(3): 2307-2315
    
    [27] Schrodeer-Tefft JA, Bentz H, Estridge TD. Collagen and heparin matrices for growth factor delivery. J Control Release, 1997; 9:291-298
    
    [28] Langer R, Moses M. Biocompatible controlled release polymers for delivery of polypeptides and growth factors. J Cell Biochem, 1991; 45(4): 340-345
    [29] Xu X, Yu H, Gao S, et al. Polyphosphoester microspheres for sustained release of biologically active nerve growth factor. Biomaterials. 2002; 23(17): 3765-3772
    [30] Yang Y, De Laporte L, Rives CB, et al. Neurotrophin releasing single and multiple lumen nerve conduits. J Control Release. 2005; 104(3): 433-446
    [31] Chen PR, Chen MH, Lin FH, et al. Release characteristics and bioactivity of gelatin-tricalcium phosphate membranes covalently immobilized with nerve growth factors. Biomaterials. 2005; 26(33): 6579-6587
    
    [32] Jubran M, Widenfalk J. Repair of peripheral nerve transections with fibrin sealant containing neurotrophic factors. Exp Neurol, 2003; 181(2): 204-212
    [33] Sakiyama S, Schense J, Hubbell J. Heparin-binding peptides enhance neurite extension in three-dimensional fibrin gels.FASEB J, 1999; 13(15) in press
    [34] Sakiyama-Elbert SE, Schense JC, Hubbell JA. Incorporation of heparin-binding peptides into fibrin gels enhances neurite extension: an example of designer matrices in tissue engineering, FASEB J, 1999; 13:2214-2224
    
    [35] Currie, Lachlan JM, Sharpe FR, et al. The use of fibrin glue in skin grafts and tissue-engineered skin replacements: a review. Lippincott Williams & Wilkins, Inc. 2001; 108(6): 1713-1726
    [36] Sakiyama-Elbert SE, Hubbell JA. Controlled release of nerve growth factor from a heparin-containing fibrin-based cell ingrowth matrix. J Control Release, 2000; 69:149-158
    [37] 马国军,李东亮.摘取鸡胚背根神经节的方法.新乡医学院学报,1997;14(1):33-34
    [38] Lewin GR, Ritter AM, Mendell LM. On the role of nerve growth factor in the development of myelinated nociceptors. Neurosci, 1992; 12:1896-1905
    [39] Pradat PR Treatment of peripheral neuropathies with neurotrophic factors: animal models and clinical trials. Rev Neurol, 2003; 159(2): 147-161
    [40] Tyler-Cross RM, Sobel MD, Marques DR. Heparin binding domain peptides of antithrombin Ⅲ: analysis by isothermal titration calorimetry and circular dichroism spectroscopy. Protein Sci, 1994; 3:620-627
    [41] Tomita H, Ishiguro SI, Abe T, et al. Administration of nerve growth factor, brain-derived neurotrophic factor and insulin-like growth factor-Ⅱ protects phosphate-activated glutaminase in the ischemic and reperfused rat retinas. Tohoku J EXP Med, 1999; 187:227-236
    [42] 朱刚,楚燕飞,陈菁,等.联合应用神经生长因子和睫状神经营养因子治疗大鼠坐骨神经损伤.中华创伤杂志,2003;19(5):283-285
    [43] Masaki F, Isao T, Aya Y, et al. Extensive thrombosis of the inferior vena cava and portal vein following electrical injury. Burns, 2005; 31 (5): 660-664
    [44] Imanishi N, Nakajima H, Fukuzumi S, et al. Venous drainage of the distally-based lesser saphenous sural veno neuroadipofascial pedicled fasciocutaneous flap: a radiographic pesion study. Plast Reconstruct Surg 1999; 103:494-498
    [45] Dittrich F, Thoenen H, Sendtner M, et al. Ciliary neurotrophic factor pharmacokinetics and acute phase response. Ann Neurol, 1994; 35(2): 151-163
    [46] Zhao JZ, Chen ZW, Chen TY. Nerve regeneration after terminolateral neurorrhaphy: experimental study in rats. J Reconstr Microsurg, 1997,13:31-37
    [47] Chen ZW, Wang MS. Effects of nerve growth factor on crushed sciatic nerve regeneration in rats. Microsurgery, 1995; 16(8): 547-551
    [48] Mohammad JA, Warnke PH, Pan YC, et al. Increased axonal regeneration through a biodegradable amnionic tube nerve conduit: effects of local delivery and incorporation of nerve growth factor hyaluronic acid media. Ann Plast Surg, 2000; 44(1): 59-64
    [49] Shery L, Lewin BA, David S, et al. Simultaneous treatment with BDNF and CNTF after peripheral nerve transaction and repair enhances rate of functional recovery compared with BDNF treatment alone. Laryngoscope, 1997; 107(7): 992-999
    [50] Hadlock, Tessa MD, Sundback, et al. A novel, biodegradable polymer conduit delivers neurotrophins and promotes nerve regeneration. Am Laryngol Rhinol & Otol Soc, Inc. 1999; 109(9): 1412-1416
    [51] Camarata PJ, Suryanarayanan R, Turner DA, et al. Sustained release of nerve growth factor from biodegradable polymer microspheres. Neurosurgery, 1992; 30(3): 313-319
    [52] Pouessel AA, Venier-Julienne MC, Clavreul A, et al. In vitro study of GDNF release from biodegradable PLGA microspheres. J Control Release, 2004; 95:463-475
    [53] Torn H. Sustained -release preparation for administration into the brain. Eur Pat Appl, 1999; 37(10):15-23
    [54] 袁太珍.明胶作载体对NGF生物活性的影响.伤残医学杂志,1998;6(2):7-9
    [55] Lam XM, Duenas ET, Cleland JL. Encapsulation and stabilization of nerve growth factor into poly(lactic-co-glycolic) acid microspheres. J Pharm Sci, 2001; 20(9): 1356-1365
    [56] Chezzo E. Hyaluronic acid derivatives microspheres as carrier for NGF: in vitro characterization. Controlled Release Bioact Mater, 1991; 31 (18):613-624
    [57] Dusica M. Micron capsulated NGF: effects on the forebrain neurons following devascularizing cortical lesions. Neurosce Lett, 1992; 53(140):71-83
    [58] 孙薇,徐永琦,张宪娣.神经生长因子对大鼠坐骨神经损伤修复的影响.中国康复医学杂志,1994;9(1):20-23
    [59] Schense JC, Bloch J, Aebischer P, et al. Enzymatic incorporation of bioactive peptides into fibrin matrices enhances neurite extension. Nature America Inc, 2000; 18:415-419
    [60] Sakiyama-Elbert SH, Panitch A, Hubber JA. Development of growth factor fusion proteins for cell-triggered drug delivery. FASEB J, 2001; 15(14): 2643-2654
    [61] Roghani MA, Mansukhani PA, Dell'Era PP, et al. Heparin increases the affinity of basic fibroblast gowth factor for its receptor but is not required for binding. J Biol Chem, 1994; 9(6):3976-3984
    [62] Onoue S, Nemoto Y, Harada S, et al. Human antithrombin Ⅲ-derived heparin-binding peptide, a novel heparin antagonist. Life Sci, 2003; 73(22): 2793-2806
    [63] Edlich RF, Farinholt HM, Winters KL, et al. Modern concepts of treatment and prevention of electrical burns. J Long Term Eff Med Implants, 2005; 15(5):511-32
    [64] Lee RC, Cravalho EG, Burke JF. Electrical trauma. New York: Cambridge University Press. 1992; 122-132
    [65] Baqain E, Haertsch P, Kennedy P. Complete recovery following a high voltage electrical injury associated with delayed onset of quadriplegia and multiplecranial nerves dysfunction. Burns. 2004; 30:603-605
    [66] Duff K, McCaffrey RJ. Electrical injury and lightning injury: A review of their mechanisms and neuropsychological, psychiatric, and neurological sequelae. Neuropsychology Review. 2001 ; 11:101-116
    [67] 向东,沈祖尧.50年来我国电烧伤治疗研究与发展.中华烧伤杂志,2000;16(1):14-16
    [68] Cawley JC, Gerald T. Occupational electrical injuries in the United States, 1992-1998, and recommendations for safety research. Homce Journal of Safety Research, 2003; 34:241-248
    [69] Ferreiro JI, Melendez J, Regala do, et al. Factors influencing the sequlae of high tension electrical injuries. Burns, 1998; 24:649-653
    [70] Wilbourn AJ. Peripheral nerve disorders in electrical and lightning injuries. Semin Neurol, 1995; 15:241-255
    [71] Noble J, Gomez M, Fish JS. Quality of life and return to work following electrical burns. Burns, 2006; 32(2): 159-164
    [72] Thaventhiran J. Pathogenesis and recovery of tetraplegia after electrical injury. J Neurol Neurosurg Psychiatry, 2001; 71:535-537
    [73] Baqain E, Haertsch P, Kennedy P. Complete recovery following a high voltage electrical injury associated with delayed onset of quadriplegia and multiple cranial nerves dysfunction. Burns, 2004; 11 (30): 603-605
    [74] Lee RC, GottliebLJ, Krizek TJ. Pathophysiology and clinical manifestations of tissue injury in electrical trauma. Advances in plastic surgery, 1992; 21 (1): 537-548
    [75] Yunchuan P, Jiaqin X, Sihuan C, et al. Use of the lateral intercostal perforator-based pedicled abdominal flap for upper-limb wounds from severe electrical injury. Ann Plast Surg, 2006; 56(2): 116-121
    [76] Yildirim S, Mithat A, Gidero K, et al. Distally-based neurofasciocutaneous flaps in electrical burns. Burns, 2002; 28:379-385
    [77] Bain JR, Mackinnon SE, Hunter DA. Functional evaluation of complete sciatic peroneal and posterior tibial nerve lesions in the rat. Plast Reconstr Surg, 1989; 83(1): 129-136
    [78] 沈祖尧.国外电烧伤研究的进展.中华整形烧伤外科杂志,1991;7(2):138-139
    [79] Luce EA. Electrical burns. Clin Plast Surg, 2000; 27:133-143
    [80] Baxter CR. Present concepts in the management of major electrical injury. Surg clin north AM, 1970; 50(8): 1401-1418
    [81] Hunt JL, Mason AD, Masterson TS, et al. The pathophysiology of electrical injuries. J Trauma, 1976; 16(4):335-352
    [82] Ratnayake B, Emmanuel ER, Walker CC. Neurological sequelae following a high voltage electrical burns. Burns; 1996; 22(7): 574-577
    [83] Carleton SC. Cardiac problems associated with electrical injury. Cardiol Clin. 1995; 13(2): 263-266
    [84] Kennedy PJ, Young WM, Deva AK, et al. Burns and amputations: a 24-year experience. J Burn Care Res, 2006; 27(2):183-188
    [85] Robson MC, Murphy RC, Heggers JP, et al. A new explanation forthe progressive tissue loss in electrical injuries. Plast Reconstr Surg, 1984; 73(3): 431-437
    [86] Chen W, Zhongsheng Z, Lee RC. Supramembrane potential-induced electroconformational changes in sodium channel proteins: a potential mechanism involved in electric injury. Burns, 2006; 32(1):52-59
    [87] Chen W. Evidence of electroconformational changes in membrane proteins: field-induced reductions in intra membrane nonlinear charge movement currents. Bioelectrochemistry. 2004; 63(1-2):333-335
    [88] Shebuski RJ, Kilgore KS. Role of inflammatory mediators in thrombogenesis. J Pharmacol Exp Ther, 2002; 300(3):729-735
    [89] 向东,沈祖尧.家兔肢体电烧伤的实验研究.中华整形烧伤外科杂志,1998:14(5):42-45
    [90] Lee RC, Kolodney MS. Electrical injury mechanisms: electrical breakdown of cell memgranes. Plast Reocnstr surg, 1987; 80:672-679
    [91] Bhatt DL, Gaylor DC, Lee RC, et al. Rhabdomyolysis due to pulsed electrical fields. Plast Recon Surg, 1990; 86:1-11
    [92] Lee RC, Astumian RD. The physicochemical basis for thermal and no-thermal injuries. Burns, 1996; 22:509-519
    [93] 李学拥,陈壁.兔坐骨神经实验性电损伤后形态学变化.第四军医大学学报.1999;20(5):445-447
    [94] 李学佣,陈壁.电损伤后局部应用bFGF促进周围神经再生.第四军医大学学报,1999;20(5):448-450
    [95] 李学拥,陈壁,孙怡.兔坐骨神经实验性电损伤后功能评价.第四军医大学学报,2000;21(4):493-495
    [96] 陈国华,吴亚莉,徐雪璋,等.电烧伤动物模型的复制.中华整形烧伤外科杂志,1994;10(3):209-211
    [97] 忻向荣,陈国华,朱维平,等.周围神经高压电击伤后雪旺细胞DNA定量分析及形态学变化.中华烧伤杂志,2001;17(5):292-294
    [98] 陈国华,吴亚莉,朱维平,等.家兔高压电击伤后坐骨神经损伤的实验研究.中华烧伤杂志,2001;17(6):357-359
    [99] Fan KW, Zhu ZX, Den ZY. An experimental model of an electrical injury to the peripheral nerve. Burns, 2005; 31 (6): 731-736
    [100] Domeniconi M, Filbin MT. Overcoming inhibitors in myelin to promote axonal regeneration. J Neurol Sci, 2005; 233(1-2): 43-47
    [101] Seo TB, Han IS, Yoon JH, et al. Growth-promoting activity of Hominis Placenta extract on regenerating sciatic nerve. Acta Pharmacol Sin, 2006; 27(1): 50-58
    [102] Avwenagha O, Campbell G, Bird MM. Distribution of GAP-43, beta-Ⅲ tubulin and F-actin in developing and regenerating axons and their growth cones in vitro, following neurotrophin treatment. J Neurocytol, 2003; 32(9): 1077-1089
    [103] Frey D, Laux T, Xu L, et al. Shared and unique roles of CAP23 and GAP43 in actin regulation, neurite outgrowth, and anatomical plasticity. J Cell Biol, 2000; 149(7): 1443-1454
    [104] Matsuura Y, Ochi M, Uchio Y, et al. The time-dependent difference of GAP-43 expression between sensory neurons and motoneurons after peripheral nerve transection. Scand J Plast Reconstr Surg Hand Surg, 1999; 33(3): 267-272
    [105] Leung MS, Wong CC. Expressions of putative neurotransmitters and neuronal growth related genes in Merkel cell-neurite complexes of the rats. Life Science, 2000; 66(16): 1481-1489
    [106] 杨辉.GAP-43的表达与神经生长可塑性的关系.国外医学生理学,1995;15(20):117-120
    [107] Eng LF, Lee YL, Murphy GM, et al. A RT-PCR study of gene expression in a mechanical injury model. Prog brain Res, 1995; 105:219-227
    [108] Robbins M, Mckinney M. Transeriptional regulation of neruromodulin (GAP-43) in mouse neuroblastoma clon N1E-115 as evaluated by the RT/PCR method. Brain Res Mol,1992;13(1-2):83-92
    [109] 庞清江,罗永湘,房清敏.NGF对脊髓前角运动神经元的保护作用.中华手外科杂志,1999;13(1):19-21
    [110] Grawanis AI, Tsoutsos DA, Tagaris GA, et al. Beneficial effect of nerve growth factor-7S on peripheral nerve regeneration through inside-out vein grafts: an experimental study. Microsurgery, 2004; 24(5): 408-415
    [111] Pu LL, Syed SA, Reid M, et al. Effects of nerve growth factor on nerve regeneration through a vein graft across a gap. Plast Reconstr Surg, 1999; 104(5): 1379-1385
    [112] Schicho R, Skofitsch G, Donnerer J. Regenerative effect of human recombinant NGF on capsaicin-lesioned sensory neurons in the adult rat. Brain Res, 1999; 815(1): 60-69
    [113] Santos X, Rodrigo J, Hontanilla B, et al. Evaluation of peripheral nerve regeneration by nerve growth factor locally administered with a novel system. J Neurosci Methods, 1998; 85(1): 119-127
    [114] Bomze HM, Bulsara KR. Spinal axon regeneration evoked by replacing two growth cone proteins in adult neurons. Nat Neurosci, 2001; 4(1): 38-43
    [115] Benowitz LI, Routtenberg A. GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci, 1997; 20:84-91
    [116] 丁斐,刘梅,顾晓松.神经再生素对背根神经节细胞GAP-43和NF-L基因表达的影响.中国药科大学学报,2001:32(3):231-234
    [117] Anderson KD, Merhege MA. Increased expression and localization of the RNA-binding protein HuD and GAP-43 mRNA to cytoplasmic granules in DRG neurons during nerve regeneration. Exp Neurol, 2003; 183(1): 100-108
    [118] 李澎涛,陶之理.电针、NGF对臂丛前索损伤再生过程中脊髓运动神经元GAP-43表达的影响.神经解剖学杂志,2000;16(1):67-70
    [119] Bomze HM, Bulsara KR, Iskandar BJ, et al. Spinal axon regeneration evoked by replacing two growth cone proteins in adult neurons. Nat Neurosci, 2001; 4:38-43
    [120] Hoffman PN. Expression of GAP-43, a rapidly transported growth-associted protein, and class Ⅱ β-tubulin, a slowly transported cytoskeletal protein, are coordinated in regenrating neurons. J Neurosci, 1989; 9(3) : 893-897
    [121] Chong MS, Bajwa ZH. Diagnosis and treatment of neuropathic pain. J Pain Symptom Manage. 2003; 25(5 Suppl): S4-S11
    [122] Wiese M, Kramer J, Bernsmann K, et al. The related outcome and complication rate in primary lumbar microscopic disc surgery depending on the surgeon's experience: comparative studies. Spine J, 2004; 4(5): 550-556
    [123] 刘梅,王林芳,王东,等.神经生长因子作用于前根神经节细胞过程中神经元基因的表达.中华创伤杂志,2002;18(3):148-151
    [124] Perrone-Bizzozero NI, Victor V, Cansino, et al. Posttranscriptional regulation of GAP-43 gene expression in PC12 cells through protein kinase C-dependent stabilization of the mRNA. J Cell Biology, 1993; 120 (5) : 1263-1270
    [125] Irwin N, Chao S, Goritchenko L, et al. Nerve growth factor controls GAP-43 mRNA stability via the phosphoprotein ARPP-19. Proc Natl Acad Sci U S A. 2002; 99(19): 12427-12431
    [126] Benowitz LI, Routtenberg A. GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci, 1997; 20:84-91
    [127] 刘光久,李振强,殷玉芹,等.神经损伤与再生中GAP-43mRNA表达和蛋白合成的实验研究.第三军医大学学报,2002;24(3):283-285
    [128] Biewenga J E, Schrama LH, Gispen WH. Presynaptic phosphoprotein Gap-43/B-50 in neuronal and synaptic plasticity. Acta Biochim Por, 1996; 43:327-338
    [129] Caroni P. Intrinsic neuronal determinants that promote axonal sprouting and elongation. Bioessays, 1997; 19:767-75
    [130] He Q, Dent EW, Meiri KF. Modulation of actin filament behavior by GAP-43 (neuromodulin) is dependent on the phosphorylation status of serine 41, the protein kinase C site. J Neurosci, 1997; 17:3515-3524
    [131] Liu RY, Schmid RS, Snider William D, et al. NGF enhances sensory axon growth induced by laminin but not by the L1 cell adhesion molecule. Mol Cell Neurosci, 2002; 20(1):2-12
    [132] 罗永湘,方煌,庞清江,等.神经生长因子对周围神经运动纤维再生的影响.中华手外科杂志,1997;13(1):3-5
    [133] Levi-Montalcini R, Skaper SD, Toso RD et al. Nerve growth factor: from neurotrophin to neurokine. Trends in Neurosci, 1996; 19 (11) :514-520
    [134] Heumann R, sigrum K, Christine B, et al. Changes of the nerve growth factor synthesis in non-neuronal cell in response to sciatic nerve transection. J Cell Biol, 1987; 104:1623-1633
    [135] 沈祖尧,向东,王乃佐,等.特重度腕部高压电烧伤治疗的改进.中华整形烧伤外科杂志,1999;15(2):115-116
    [136] Adcock KH, Brown DJ, Shearer MC, et al. Axon behaviour at Schwann cell-astrocyte boundaries: manipulation of axon signalling pathways and the neural adhesion molecule L1 can enable axons to cross. Eur J Neurosci, 2004; 20(6): 1425-1435
    [137] Tanaka A, Wakita U, Kambe N, et al. An autocrine function of nerve growth factor for cell cycle regulation of vascular endothelial cells. Biochem Biophys Res Commun, 2004; 313(4): 1009-1014
    [138] Rossi FM, Sala R, Maffei L. Expression of the nerve growth factor receptors TrkA and p75NTR in the visual cortex of the rat: development and regulation by the cholinergic input. J Neurosci, 2002; 22(3): 912-919
    [139] Moser KV, Reindl M, Blasig I, et al. Brain capillary endothelial cells proliferate in response to NGF, express NGF receptors and secrete NGF after inflammation. Brain Res, 2004; 1017(1-2): 53-60
    [140] Hari A, Djohar B, Skutella T, et al. Neurotrophins and extracellular matrix molecules modulate sensory axon outgrowth. Int J Dev Neurosci, 2004; 22(2): 113-7
    [141] 尹维田,潘清,崔树森,等.神经生长因子促周围神经再生临床应用初步报告.中华手外科杂志,1997;13(1):6-8
    [142] McCallister WV, McCallister EL, Dubois B, et al. Regeneration along intact nerves using nerve growth factor and ciliary neurotrophic factor. J Reconstr Microsurg, 2004; 20(6):473-481
    [143] Witworth IH, Brown RA, Dore CJ, et al. Nerve growth factor enhances nerve regeneration through fibronectin grafts. J Hand Surg, 1996; 218:514-522
    [1] Aloe L. Rita Levi-Montalcini: the discovery of nerve growth factor and modern neurobiology. Trends cell Biol, 2004;14(7):395-399
    [2] Levi-Montalcini R, Hamberger V. Selective growth stimulating effects of mouse sarcoma on the sensory and sympathetic nervous system of the chick embryo. J Exp Zool, 1951; 116(2): 321-61
    [3] Levi-Montalcini R. The nerve growth factor and the neuroscience chess board. Prog Brain Res, 2004; 146:525-527
    [4] Levi-Montalcini R., Angeletti PU. Immunosympathectomy as a new approach to the study of the sympthetic system. Bio Pharma, 1961;8(1): 18-25
    [5] Shampo MA, Kyle RA. Stamp vignette on medical science. Rita Levi-Montalcini-Nobel Prize for work in neurology. Mayo Clin Proc, 2003; 78(12):1448
    [6] Aloe L. Rita Levi-Montalcini and the discovery of nerve growth factor: past and present studies. Arch Ital Biol, 2003; 141(2-3):65-83
    [7] Griffith DL, Keck PC, Sampath TK, et al. Three-dimensional structure of recombinant human osteogenic protein1: Structural paradigm for the transforming growth factor beta superfamily. PNAS, 1996; 93:878-883
    [8] Scott J. Isolation and nucleotide sequence of a cDNA edcoding the precursor of mouse nerve growth factor. Nature, 1983; 302:538-540
    [9] Ullich A. Human beta nerve growth factor sequence highly homologous to that of mouse. Nature, 1983; 303:821-825
    [10] Hempstead BL, Martin-Zanca, Kaplan DR, et al. High-affinity NGF binding requires coexpression or the trk proto oncogene and the low-affinity NGF receptor. Nature, 1991; 350:678-682
    [11] Bothwell M. Keeping track of neurotrophin receptors. Cell, 1991;65:915
    [12] Rabizadeh S, Oh J, Zhong LT. Induction of apoptosis by the low-affinity NGF receptor. Science, 1993; 261:345-351
    [13] Lee, Bachman KFK, Dependence on P~(75) for innevation sympathetic targets. Science, 1994; 263:1447-1449
    [14] Rende M, Hagg T and Manthorpe M. Nerve growth factor receptor immunoreactivity in neurons of the normal about rat spinal cord and its modulation after peripheral nerve lesions. J Comp Neurol, 1992; 319:285-290
    [15] Curtis R, Tonra JR. Neuronal injury increases retrograde axonal transport of the neurotrophins to spinal sensory neurons and motor neurons via multiple receptor mechanisms. Mol Cell Neurosci, 1998; 12(3):105-118
    [16] James W, faw cett and Roger J, Keynes. Peripheral nerve regeneration. Annu Rev Neurosci, 1990; 13:43-60
    [17] Bennett MR., Gibson WG. Lemon G. Neuronal cell death, nerve growth factor and neurotrophic models: 50 years on. Aut Neurosci, 2002; 95(1-2): 1-23
    [18] Levi-Motalcini R. The saga of the nerve growth factor. Neuroreport, 1998; 16; 9(16): R71-83
    [19] Levi-Montalcini R, Skaper SD, Toso RD et al. Nerve growth factor: from neurotrophin to neurokine. Trends in Neurosci, 1996; 19, (11): 514-520
    [20] Sekiya S, Homm A, Miyata Y, et al. Effects of nerve growth factor on differentiation of muscle spindles following nerve lesion in neonatal rats. J Neurosci, 1986; 6(7): 2019-25
    [21] Greene LA, Shorter EM. The nerve growth factor: biochemistry, synthesis, and mechanism of action. Ann Rev Neurosci, 1980; 253:1-9
    [22] Heumann R, sigrum K, Christine B, et al. Changes of the nerve growth factor synthesis in non-neuronal cell in response to sciatic nerve transection. J Cell Biol, 1987; 104:1623
    [23] Dittrich F, Thoenen H, Sendtner M, et al. Ciliary neurotrophic factor harmacokinetics and acute phase response. Ann Neurol, 1994; 35(2): 151-163
    [24] 朱刚,楚燕飞,陈菁等,联合应用神经生长因子和睫状神经营养因子治疗大鼠坐骨神经损伤,中华创伤杂志,2003;19(5):283-285
    [25] Rich KM. Nerve growth factor enhances nerve regeneration through silicon chamber. Exp Neurol, 1989; 105:162-168
    [26] Chen Ynh shying. Facial nerve regeneration in the silicon chamber the influence of nerve growth factor. Exp Neurol, 1989; 103:52-6
    
    [27] Shery L, Lewin BA, David S, et al . Simultaneous treatment with BDNF and CNTF. after peripheral nerve transaction and repair enhances rate of functional recovery compared with BDNF treatment alone. Laryngoscope, 1997; 107(7): 992-999
    
    [28] Derby A, Engleman VW.Heises G, et al. Exogenous nerve growth factor enhances the regeneration of rat sciatic nerve.Soc Neurosci Abstr, 1988; 14:498-503
    [1] Oestreichre AB. Affinity-purified and B-50 protein.antibody: interference with the function of the phosphoprotein B50 in synaptic plasma membrane. Journal Neurochem, 1983; 41:331-342
    [2] Cadina JD. Basics primary structure and transectional regulation of GAP-43: a protein associated with nerve growth. Cell, 1987; 49:781-791
    [3] Karns LR. Cloning of complementary DNA for GAP-43, a neuronal growth-related protein. Science, 1987; 236:597-600
    [4] Melina B, Dawn H. Characterization of murine cDNAs encoding P-57, a neuronal-specific calmodulin-binding protein. Journal Bio Chem, 1987; 262:12158
    [5] Plenninger KH, de la Houssaye BA, Helmke SM, et al, Growth-regulate proteins and neuronal plasticity. A commentary, Mol Neurobiol, 2001; 5(2-4):143-151
    [6] Benowitz LI, Routten A. A membrane phosphoprotein with neural development, axonal regeneration, phospholipid metablism, and synaptic plasticity. Trends Neurosci, 1999; 10:527-532
    [7] Skene JHP. Axonal growth-associated protein. Annual Review of Neuroscience, 1989; 12:127-156
    [8] Kanazir S. GAP-43 mRNA expression in early development of human nervous system. Brain Research Mol Brain Res, 1996; 38:145-155
    [9] Kruger L, Beadotti C. Distrubution of GAP-43 mRNA in the adult rat brain. J Comp Neuralogy, 1993; 333:417-434
    [10] Kapfhammer CJ, Schuab ME. Inverse patterns of myelination and GAP-43 expression in adult CNS: neurology, 1994; 340:194
    [11] 严恒林,生长相关蛋白(GAP-43)与神经发育和再生.神经解剖学杂志,1993;9(2):155-162
    [12] Skene JHP. Axonal Growth-Associated Proteins. Ann Rev Neurosci, 1999; 12:127-146
    [13] Larry, Aryeh R. GAP-43: an intrinsic determinant of neuronal development and plasticity. TINS, 1997; 20 (9) :84-92
    
    [14] He Q, Dent EW, Meiri KF. Modulation of actin filament behavior by GAP-43 (neuromodulin) is dependent on the phosphorylation status of serine 41, the protein kinase C site. J Neurosci, 1997; 17(10): 3515-3534
    
    [15] Gerendasy D. Homeostatic tuning of Ca~(2+) signal transduction by members of the calpacitin protein family. J Neurosci Res, 1999; 58(1): 107-121
    
    [16] Esdar C, Oehrlein SA, Reinhardt S, et al. Theprotein kinase C(PKC) substrate GAP-43 is already expressed in neural precursor cells, colocalizes with PKCeta and binds calmodulin. Eur J Neurosci, 1999; 11(2):503-522
    
    [17] Neve RL, Coopersmith R, McPhie DL, et al. The neuronal growth-associated protein GAP-43 interacts with rabaptin -5 and participates in endocytosis. J Neurosci, 1998; 18(19): 7757-7765
    
    [18] Aigner L, Caroni P. Absence of persistent spreading branching and adhesion in GAP-43-depleted growth cones. J Cell Biol, 1995; 128:647-656
    
    [19] Stewart HJ, Curits T, Curits R, et al. GAP-43 immunoreactivity is wide spread in the autonomic neurons and sensory neurons of the rat. Neurosci, 1992; 47:673-684
    
    [20] Strittmatter SM, Fankbauser C. Neuronal pathfinding is abnormal in mice lacking the neuronal growth cone protein GAP-43. Cell, 1995; 80: 445-452
    
    [21] Aigner L, Caroni P. Absence of persistent spreading branching and adhesion in Gap-43 depleted growth cones . J Cell Biol, 1996; 128:647-660
    
    [22] Hassan SM, Jennekens FG, Veldman H, et al. GAP-43 and P75 NGFR immunoreactivity in presynaptic cells following neuromuscular blockade by botulinum toxin in rat. J Neurocytol, 1994; 23:354-363
    
    [23] Benowitz L1 and Routten A. GAP-43 an intrintsic determinantof neuronal development and plasticity, Trends Neuroscience, 1997; 20:84-91
    
    [24] Mason MR, Campbell G, Caroni P, et al. Overexpression of GAP-43 in thalamic projection never of transgenic mouse dose not enable them to regenerate axons through peripheral nerve graft. Exp Neurology, 2000; 165(1): 143-147
    [25] Wiese UH, Ruth JL, Emson PC. Differential expression of growth associated protein (GAP-43) mRNA in rat primary sensory neurons of peripheral nerve lesion. Brain Res, 1992,592:141-156
    
    [26] Oestreicher AB. Verkade P. Verkleij AJ, et al. The increase in B-50/GAP-43 in regenerating rat sciatic nerve occurs predominantly in unmyelinated axon shafts: a quantitative ultrastructural study. J Comp Neurol, 2002; 356:433-443
    
    [27] Liabotis S, Schreyer DJ . Magnitude of GAP-43 induction following peripheral axotomy of adult rat doural root ganglion neurons is dependent of lesion distance. Exp. Neurology, 2003; 135:28-35

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700