用户名: 密码: 验证码:
高温超导磁阻电动机的理论研究与样机设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高温超导(High Temperature Superconductor, HTS)磁阻电动机与传统磁阻电动机相比,能够以更小的体积和重量实现更大的输出功率、更高的功率因数和效率。国外有关超导磁阻电动机的研究目前还处于初级阶段,国内在这一领域更为滞后。
     论文以普通磁阻电动机的电磁关系为基础,结合超导材料特殊的电磁特性,初步提出了超导磁阻电动机电磁设计的一般原则;并尝试进行了一台额定功率为150W的内反应式HTS磁阻电动机的电磁设计。
     论文以实际设计的一台内反应式HTS磁阻电动机样机作为分析实例,基于第二类超导体临界态Kim模型和电磁场的有限元方法,提出了一般HTS磁阻电动机的内部磁场及交、直轴同步电抗的分析与计算方法。并在此基础上进一步研究了如何借助HTS磁阻电动机的电抗曲线分析HTS磁阻电动机的稳态工作特性。
     论文对常规磁阻电动机与HTS磁阻电动机进行了比较。计算结果表明,在电机尺寸、结构不变的前提下,超导磁阻电动机比常规磁阻电动机明显地提高了电机X_d/X_q值,因而以更小的尺寸获得了更大的输出转矩、更高的效率和功率因数,同时电机的稳定运行区间也有所增大。计算结果还表明,采用抗磁性更强的YBCO块材作为交轴阻磁介质,能够保证转子在获得较大的直、交轴磁阻差异的同时不必牺牲较大的极弧系数和气隙宽度,从而气隙磁密有较好的波形,电机具有较好的同步性能。
     论文也对几种具有相同定子但转子结构不同的HTS磁阻电动机做了比较,比较结果显示,ALA式HTS磁阻电动机比内反应式HTS磁阻电动机具有更大的输出转矩;当输出功率较大时,ALA结构的HTS磁阻电动机还比内反应结构具有更好的稳态工作特性。另外发现,thin-zebra ALA式HTS磁阻电动机的同步性能比thick-zebra ALA式HTS磁阻电动机更好。在进行内反应式HTS磁阻电动机的设计时,内反应槽既要尽量阻隔交轴磁通,又要分布的比较均匀,这样才能既获得足够的直、交轴同步电抗比,又削弱转矩脉动,从而最终改善电机的同步性能。
High Temperature Superconductor (HTS) reluctance motors have higher output power, power factor and efficiency than traditional reluctance motors at the same size and weight. However, the HTS reluctance motor is still strange to many researchers in China.
    The paper advanced some principles on how to improve the performance of the HTS reluctance motors. Conforming to these principles, a HTS reluctance motor of 150 W is designed.
    By use of the Finite Element Method (FEM) and the Kim model for critical state of type II superconductors, the paper demonstrated how to compute the magnetic field and synchronizing reactance of the designed model. The method can be applied to generate HTS reluctance motors. Furthermore, the paper studied how to analyze the working performance of HTS reluctance motors by means of synchronizing reactance curves.
    The paper compared the HTS reluctance motor with the traditional reluctance motor. It's seen that, when the sizes and structures are identical, the HTS reluctance motor possesses higher ratio of Xd to Xq than the traditional reluctance motor. And the higher Xd/Xq leads to the higher output torque, power factor and efficiency. The operation stability of the HTS motor also excels the traditional reluctance motor of the same size and structure.
    The paper also compared several types of HTS reluctance motors which have different structures. Some conclusions are drawn: ALA (axially-Laminated Anisotropic) HTS reluctance motor possesses higher output torque than reactive-inside HTS reluctance motor. The ALA HTS reluctance motor has better steady working performance than reactive-inside HTS reluctance motor when the output power is high. It's also seen that the thin-zebra ALA HTS reluctance motor excels the thick-zebra ALA HTS reluctance motor in synchronizing performance.
引文
[1] L. K. Kovalev, B. Oswald, W.Gawalek et al. "Superconducting Reluctance Motor with YBCO Bulk Materials". IEEE Transactions on Applied Superconductivity, June 1999, Vol. 9, No. 2, Part one of three parts, pp. 1201-1204.
    [2] L. K. Kovalev, W.Gawalek, B.Oswald et al. "Hysteresis and Reluctance Electric Machines with the Bulk HTS Rotor Elements". IEEE Transactions on Applied Superconductivity, June 1999, Vol. 9, No. 2, Part one of three parts, pp. 1261-1263.
    [3] L. K. Kovalev, W. Gawalek, B.Oswald et al. "New types of electric machines on the basis of the bulk HTS elements". Recent result and future development. Proc. of ICEC-18. 21-25 February 2000, Bornbay. India.
    [4] L. K. Kovalev, K. V. Ilushin, et al. "High Output Power Reluctance Electric Motors with Bulk HTS Elements". Electrical Machines and Systems, 2001. ICEMS 2001. Proceedings of the Fifth International Conference, Volume: 2, 18-20 Aug. 2001.
    [5] 电机工程手册。第4卷 电机.机械工业出版社,1982.
    [6] 辜承林,李朗如.“转子轴向叠压各向异性(ALA)磁阻电机磁场、参数及性能的分析与计算”.中国电机工程学报,Vol.14 No.3 May 1994.
    [7] 1962.朱仁初 何秀伟 励鹤鸣合译,机械工业出版社.
    [8] Istvan Vajda, Laszlo Mohacsi. "Advanced hysteresis model for levitating applications of HTSC materials". IEEE Transactions on Applied Superconductivity, v 7, n 2 pt 1, Jun, 1997, Large Scale, p 916-919.
    [9] 辜承林.“电力变压器铁心磁场、损耗和温度场的理论与计算”.武汉:华中理工大学出版社.1993.
    [10] 汤蕴璆.“电机内的电磁场”.科学出版社
    [11] L. K. Kovalev, K. V. Ilushin, V. T. Penkin, K. L. Kovalev. "Hysteresis electrical machines with high-temperature superconducting rotors". Electrical Technology, No. 2, pp. 145-170.
    [12] L. K. Kovalev, K. V. Ilushin, W. Gawalek, K. L. Kovalev et al. "Hysteresis electrical machines with bulk melt-textured YBCO". Materials Science & Engineering, B53, pp. 216-219, 1998.
    [13] 梁艳萍.同步电机参数的理论与数值计算.哈尔滨工程大学出版社.
    [14] D. X. Chen and R. B. Goldfarb. "Kim model for magnetization of type-Ⅱ superconductors". Journal of Applied Physics-September 15, 1989-Volume 66, Issue 6, pp. 2489-2500.
    [15] D. Camacho, J. Mora, J. Fontcuberta, X. Obradors. "Calculation of levitation forces in permanent magnet-superconductor systems using finite element analysis". Journal of Applied Physics, v 82, n 3, Aug 1, 1997, p 1461-1468.
    [16] H. K. Huo, "Analysis of HTS Bulk During Pulsed Field Magnetization With Experimental And Numerical Methods", The 18th Conference on Magnetic Technology.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700