用户名: 密码: 验证码:
基于散裂中子源的表面muon源设计及相关模拟技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自1936年从宇宙射线中发现muon后,作为基本粒子的它在粒子物理和应用物理中成为广泛研究的对象,特别是利用高能质子束流轰击固体靶得到的高强度μ源,在粒子物理、材料科学、生命医学和地球物理等诸多学科中发挥重要的作用。表面muon作为μ源类型中最基本的一种,它是利用束线系统将μ靶表面逸出动能仅为4.1MeV的μ+进行收集、输运而得到的,其极化率极高(-100%)。将表面muon注入物质材料中,利用自旋极化的muon与物质材料及磁场环境相互作用的物理机制,通过探测静止衰变产生的正电子便能研究材料内部微观结构信息,这便是凝聚态物理、材料物理等领域中常用的μSR谱学技术(Muon Spin Rotation, Relaxation, Resonance and related Research)的基本原理。
     本文主要研究基于散裂中子源的表面muon源的物理设计,通过大量模拟计算对表面muon源的三大组成系统进行研究,主要包括:μ靶Monte Carlo模拟计算、表面muon束流光学计算以及μSR谱仪中探测器系统的Geant4模拟研究。具体研究对象包含建设中的日本muon源装置(J-PARC MUSE)和设计中的国内首个试验型muon源装置(CSNS EMuS)。另外本文对相关模拟分析方法、模拟程序使用等方面也开展了广泛的研究,特别是利用G4Beamline对脉冲慢正电子束流的空间和时间聚焦做了初步模拟探究。
     本博士论文取得的主要研究成果如下:
     (1) MUSE上S-Line和D-Line两条束线的表面muon源物理设计及模拟研究。利用Geant4和Fluka等工具对μ靶的次级粒子产率进行计算:验证了表面muon源的产生机制;μ靶上下表面次级粒子产率值的差异性也解释了MUSE束线的特定布局;比较研究表明靶区高达0.1T的边缘场对表面(?)nuon收集效率影响较小(损失率<10%)。利用多种束流光学计算程序对元件参数、束线布局、束流光学以及寻优模拟等问题进行研究:利用相空间区域划分的方法计算束核区域的发射度(εRMSCore)及其相空间参数,再用εRMSCore内外推演方法得到束流收集处的相关参数,并综合考虑它们与收集系统的关系优化得到合理初始源;计算得到S-Line和D-Line表面muon束流强度能够分别达8×106μ+/s和1.5×107μ+/s,束斑和角散分别在4cm和50mrad之内,结果完全符合最初设计预期值。通过比较D-Line的模拟结果和实验调束结果,发现模拟得到衰变螺线管的最佳电流值和实测值较为接近,调束测量得到的束流强度和束斑特征与模拟结果也有较好的吻合,由此表明本文所采用的表面muon束流模拟分析方法的正确性和可靠性,S-Line的模拟结果也是准确可信的。
     (2)对EMuS的μ靶和表面muon束线进行初步设计。从材料、厚度、长度以及收集位置和角度等方面分析EMuS μ靶的设计思路,结论表明:次级粒子束线中心轴与质子束流成90°更有利于长靶表面muon的收集;石墨、铍、钽和钨等四种材料长度可选定为80mm,厚度分别为17mm、15mm、7mm和5mm,靶表面muon的最佳产率达10-5μ+/(p·GeV)量级。采用MUSE模拟中同样的相空间分析和束流寻优模拟方法,分析表明:长靶以及侧端收集方案能够获得的束流性能优比J-PARC muon源装置布局设计(一个量级),最终能够获得表面muon束流强度达5×105μ+/s,束斑和角散分别在4cm和100mrad之内,性能满足常规μSR谱学研究,达到预期设计目标。
     (3)利用Geant4来模拟研究适用于EMuS表面(?)muon源的μSR谱仪探测器系统。首次提出单路探测单元的模拟设计方案,模拟得到相关结论:正电子在晶体中的能损比与入射能量的非线性关系较好解释了正电子与物质相互作用机理;低能正电子光产额与能量满足线性关系、高能正电子则只与晶体条厚度成正比关系,μSR谱学中将选择性探测较高能量的正电子;长晶体条虽然带来大的探测面积,但是对打在晶体条上不同位置正电子的能量探测分辨率差(高达40%),进而影响电子学信号阈值甑别和能谱选取,合理长度的选取对实验谱学的测量尤为重要;对于脉冲型μSR谱仪,束流强度决定了晶体条的长度和宽度的选择,在设计上必须保证无信号堆积的高计数率探测。综合分析,晶体尺寸选定为长50~60mm、宽10~12mm以及高为5mm,该尺寸的晶体条有较高的传输效率,满足μSR谱的甑别及测量。对于预期105μ+/s量级的表面(?)nuon源,采用总共100~120路前后环阵列对称布局的探测器框架,谱仪计数率达104量级,满足常规μSR谱学的研究。
     (4)利用G4Beamline对升级后脉冲慢正电子束线的空间聚焦和时间聚焦进行模拟分析。主要结论有:升级后系统工作磁场可达200G~300G,均匀性较好,消除了诸多因素带来的束流损失;束线系统具有较好的磁约束和输运能力,束斑可控制在直径5mm以内,输运效率100%;寻优模拟得到脉冲束流时间分辨率小于200ps,分析发现加速电压对时间聚焦有显著影响,给出了高加速电压及低加速电压工作模式时的不同参数设置组合;分析表明低引出电压将导致较低的斩波效率、而且拉宽了束流从斩波器出来后的时间宽度,对后端的集束提出了更高的要求。本文较好地验证了G4Beamline非常适用于脉冲慢正电子的设计,相比于其他模拟程序或者算法有较大的优势,可以为束流调束提供可靠的理论分析。
Since the discovery of muon tracks in the cosmic rays research in1936, muon has been serviced as a popular research object in particle physics and application physics. Especially, the muon source produced by the process of high energy and high power proton beam bombarding solid materials plays an important role in many disciplines, such as particle physics, materials science, biomedical, energy, geography and so on. Surface muon beam, which is produced by the pion decay at the production target surface with energy of4.1MeV, is one of the basic types of muon source and has a high polarization (~100%) after a beamline collection and transport. Material research in microstructure using surface muons depends on the microscopic (atomic-level) interactions of the polarized muon beam with the surrounding particles and magnetic environment in materials, and studies the internal information of materials by detecting the positrons decayed by stopping muons in the experiments. This popular probe technique in the condensed materials research is named as μSR spectroscopy, which stands for Muon Spin Rotation, Relaxation, Resonance and related Research.
     In this thesis, a detailed physical design of surface muon source based on spallation neutron source facility has been performed. An intensity simulation has been studied for three main sub-systems, which includes Monte Carlo calculation for muon production target, beam optics calculation for surface muon beam and Geant4simulation for the detector system of μSR spectrometer. All these design and simulation in this work are dedicated to two facilities:J-PARC MUSE (under construction) and CSNS EMuS (planning). Additionally, some simulation methods and simulation tools are extensively studied in this work. Especially, the beam optics simulation tool of G4Beamline was used to study the space and temporal focusing of the pulsed slow positron beamline.
     The main achievements in the thesis are shown as follows:
     (1) Physical design and simulation research for two surface muon beamline (S-Line/D-Line) at MUSE are given. Firstly, Geant4and Fluka were used to calculate the production rate of secondly particles on the J-PARC muon production target. This calculation gives a good verification for the production mechanism of surface muon. The difference of production rate between upper and lower target surface explains the special layout of the four beamline at MUSE. Comparison study shows that the high fringing magnetic field (>0.1T), which is induced by H-Line in the target station area, has only a little affection in the surface muon collection by SQ1, where the beam loss ratio is less than10percent. Secondly, many tools for beam optics calculation have been used to study the optimization issues, such as beam elements parameters configuration, beamline layout option, beam optics optimization and so on. Method of partitioning a2D phase space into beam core and-beam hole has been used to calculate the beam emittance and Courant-Snyder parameters of surface muon beam collected at the entrance of SQ1, and then the beam core ellipse zooming method was used to calculate the beam emittance for any given beam fraction. After these calculations, an optimal matching between the beam emittance and acceptance of collection system has to be considered and then a beam with a reasonable emittance has to been served as an initial beam for beam optics optimization calculation. Finally, a surface muon beam intensity of8×106μ+/s and1.5×107μ+/s with a beam spot Φ=4cm and beam divergence less than50mrad could be obtained for S-Line and D-Line, respectively. These simulation results achieve our expected goals for MUSE project. Additionally, comparison between the simulation results and the experimental results by D-Line beam commissioning has also been given in this thesis. It shows that the optimal current configuration for decay solenoid and final beam characteristics obtained in the simulation have a good consistency with the experimental results. This consistency certainly demonstrates the validity and reliability of the simulation methods used in this thesis, and concludes that the results for S-Line simulation are accurate and reliable.
     (2) Preliminary design for EMuS muon target and beamline is presented in this thesis. In order to obtain a high-intensity surface muon source, structural parameters of target (length, thickness and material) and azimuth angle of beam collection system have been carefully studied. Conclusions can be made as follows:The collection system with a central axis at an angle of90degree with respect to initial proton beamline will be most effective for surface muons collection. The optimal surface muon yield may reach10-5μ+/(p·GeV) when targets with thickness of80mm and radius of17mm (C),15mm (Be),7mm (Ta) and5mm (W) are used. Considering the similar methods of phase space analysis and beam optics optimization used in the MUSE simulation, we got an impressive result that using a thick target (length in proton beam direction) and collecting muons at side right of target surface could be more than one order of magnitude in beam collection efficiency. Finally, it expects a surface muon beam intensity of5×105μ+/s with a beam spot Φ=4cm and beam divergence less than100mrad to be obtained at EMuS. Its performance meets the demands of μSR spectroscopy studies in China for now.
     (3) Geant4was used to study the design of detector system for the prototype μSR spectrometer based on EMuS surface muon source. A simulation method for a single detector unit was first proposed in this thesis. Based on this simulation, it provides much valuable guidance for our future design. The nonlinearity relation between energy loss ratio and incident positron energy has a good explanation for the interaction of positrons with materials. Light yield of low energy positrons (0-5MeV) in plastic scintillator is in proportion to incident energy, whereas the light yield of medium energy positron is only dependent on the size of height, so a reasonable energy range has to be selected while μSR experimenting. Long plastic scintillator has a large solid angle for particle detection but a disadvantage of bad energy resolution (>40%) for positrons stopping at different position along the scintillator strip, which would be bad for signal discrimination and energy spectrum selection. The count rate of spectrometer is so directly dependent on the length and width of scintillator that an optimal structural scintillator strip has to be chosen to ensure no pipe up in a high-rate detecting. Finally, a plastic scintillator strip with length50-60mm, width10-12mm and height5mm was testified as an optimal positron detector unit for our μSR spectrometer. The high light yield and the light transmission efficiency in this scintillator meet the requirements for signal discrimination and μSR spectroscopy measurement. A μSR spectrometer with100-120segmental detection channels and detection rate of~1.0×104events/s is sufficient for the applications of EMuS surface muon.
     (4) Space and temporal focusing has been studied for the updated Pulsed Slow Positron Beam (PSPB) by G4Beamline. According the results, it knows that the updated coil system could provide a magnetic strength up to200~300G and has a so good homogeneity along the beamline that the beam loss by some unexpected factors is eliminated. With the solid Rare Gas (Neon) Moderator system, PSPB has100%transport efficiency and an energy-selective beam with spot less than5mm. After an optimization calculation for the temporal focusing study, a time resolution of pulsed positron beam less than200ps could be obtained for this beamline system. And it found that the high accelerator voltage has a significant affection to the temporal focusing, different parameters configurations have been given for the cases of high and low accelerator voltage, which are used to realize variable-energy positron beam. Many significant parameters related to deteriorate the performance of temporal focusing has also been carefully studied. For example, the low extraction electric voltage induces bad chopper efficiency and extends the pulse width of positron beam after chopping, which requires a better performance bunch system to realize our expected goal. In this thesis, G4Beamline has been testified as a suitable tool for PSPB beamline design and beam commissioning. Undoubtedly, it has more advantages over traditional simulation tools or algorithm-methods in the beam optics calculation.
引文
[1]Neddermeyer SH and Anderson CD.1937. Note on the nature of cosmic-ray particles[J]. Phys. Rev.,51:884-886.
    [2]Lee TD and Yang CN.1956. Question of parity conservation in weak interaction[J]. Phys. Rev.,104:254-258.
    [3]Friedman JI and Telegdi VL.1957. Nuclear emulsion evidence for parity nonconservation in the decay chain π+→μ+→e+[J]. Phys. Rev.,106:1290-1293.
    [4]Garwin RL, et al.1957. Observations of the failure of conservation of parity and charge conjugation in meson decays:the magnetic noment of the free muon[J]. Phys. Rev., 105:1415-1417.
    [5]Komine S, Moroi T, and Yamaguchi M.2001. Recent result from E821 experiment on muon g-2 and unconstrained minimal supersymmetric Standard Model[J]. Phys. Lett. B, 506:93-98.
    [6]Bandyopadhyay A, et al.2009. Physics at a future neutrino factory and super-beam facility[J]. Rep. Prog. Phys.,72:106-201.
    [7]Steven EJ.1986. Muon-catalysed fusion revisited[J]. Nature,321:127-133.
    [8]Blundell SJ.1999. Spin-polarized muons in condensed matter physics[J]. Contemporary Physics,40:175-192.
    [9]Alexander G, et al.1967. Proton-Proton Interactions at 5.5 GeV/c[J]. Phys. Rev., 154:1284-1304.
    [10]Alexander G, et al.1968. Data compilation on baryon-baryon interactions:(I) Proton-proton collisions between 1 and 32 GeV/c[J]. Nuclear Physics B,5:1-28.
    [11]Came A, et al.1990. The ISIS pulsed muon facility:Past, present and future[J]. Hyperfine Interactions,65:1175-1182.
    [12]Miyake Y, et al.2009. J-PARC muon source, MUSE[J]. Nuclear Instruments and Methods in Physics Research A,600:22-24.
    [13]Rafael A, et al.1994. The μSR facilities at PSI[J]. Hyperfine Interactions,87:1105-11110.
    [14]Marshall GM.1992. Muon beams and facilities at TRIUMF[J]. Z. Phys. C-Particles and Fields,56:226-231.
    [15]Morenzoni E, et al.1994. Generation of very slow polarized positron muons[J]. Phys. Rev. Lett.,72:2793-2796.
    [16]Matsuda Y, et al.2003. The first observation of slow muon beam at the RIKEN-RAL muon facility[J]. Physica B:Condensed Matter,326:217-221.
    [17]Bakule P, et al.2009. Prospects for ultra-low-energy muon beam at J-PARC[J]. Nucl. Instr. and Meth. A,600:35-37.
    [18]Alsharoa MM.2003. Status of neutrino factory and muon collider research and development and future plans[J]. Phys. Rev. Spec. Top. Accel. Beams,6:081001.
    [19]Ishida K, et al.2005. Muon catalyzed fusion,[J]. Nuclear Physics B-Proceedings Supplements,19:348-350.
    [20]Nakahara K, et al.2009. The super omega muon beamline at J-PARC[J]. Nucl. Instr. and Meth. A,600:132-134.
    [21]Dalmas P and Yaouanc A.1997. Muon spin rotation and relaxation in magnetic materials[J]. J. Phys. Condens. Matter.,9:9113-9166.
    [22]Shengelaya A, et al.2005. Muon-spin-rotation measurements of the penetration depth of the infinite-layer electron-doped Sr0.9La0.1CuO2 cuprate superconductor[J]. Phys. Rev. Lett., 94:127001.
    [23]Chow KH, et al.2001. Muonium analog of hydrogen passivation:observation of the Mu+-Zn-reaction in GaAs[J]. Phys. Rev. Lett.,87:216403.
    [24]Stoykov A, et al.2009. First experimence with G-APDs in μSR instrumentation[J]. Nucl. Instr. and Meth. A,610:374-377.
    [25]Salman Z, et al.2009. HiFi-A new high field muon spectrometer at ISIS[J]. Physica B, 404:978-981.
    [26]Shiroka T, et al.2009. Scintillating fibres for future uSR spectrometers[J]. Physica B, 404:982-985.
    [27]Chao CY.1930. Scattering of hard gamma-rays[J]. Phys. Rev.,36:1519-1522.
    [28]Anderson CD.1933. The positive electron[J]. Phys. Rev.,43:491-494.
    [29]韩荣典,et al.1988.慢正电子束产生实验[J].物理学报,37:1517-1521.
    [30]Wang BY, et al.2004. The slow positron beam based on Beijing Electron-Positron Collider[J]. Materials Science Forum,445:513-515.
    [31]Wu YC, Wang B, and Wang S J.2006. Design of a new type positron beam system[J]. Appl. Surf. Sci.,252:3121-3125.
    [32]Ohdaira T, et al.2007. Development of a Na-22 based pulsed slow positron beam for depth-selective PALS [J]. Phys. Stat. Sol. (c),4:4020-4022.
    [33]Mills AP.1995. Positron and positronium sources[J]. Meth. in Exp. Phys.,29:39-68.
    [34]Mills AP and Gullikson EM.1986. Solid neon moderator for producing slow positrons[J]. Appl. Phys. Lett.,49:1121-1123.
    [35]Willutzki P, et al.1994. An improved pulsed low-energy positron system[J]. Meas. Sci. Technol,5:548-554.
    [36]Suzuki R, et al.1994. An intense pulsed positron beam[J]. Hyperfine interactions 84:345-353.
    [37]Fallstrom K and Laine T.1999. Construction of the Helsinki University of Technology (HUT) pulsed positron beam[J]. Appl. Surf. Sci.,149:44-48.
    [38]Merrison JP, et al.2003. Development and applications of time-bunched and velocity selected positron beams[J]. Rev. Sci. Instrum.,74:3284-3292.
    [39]Oshima N, et al.1997. Design of a high-efficiency short-pulsed positron beam system[J]. Appl. Surf. Sci.,116:82-86.
    [40]Okada S, et al.1999. The Japanese Positron Factory[J]. AIP Conf. Proc.,475:349-356.
    [41]Baerdemaeker J and Dawe C.2002. Development and application of the Ghent pulsed postiron beam[J]. Appl. Surf. Sci.,194:52-55.
    [42]Mileshina L, et al.2009. Design and performance of the pulsed positron beam at Chalmers University of Technology [J]. Nucl. Instr. and Meth. B,267:2934-2937.
    [43]Alberola N, et al.2006. Development of a high-efficiency pulsed slow positron beam for measurements with orthopositronium in vacuum[J]. Nucl. Instr. and Meth. A,560:224-232.
    [44]Wang BY, et al.2008. Performance of the Beijing pulsed variable-energy positron beam[J]. Appl. Surf. Sci.,255:119-121.
    [45]熊涛.2010.基于反射源的慢正电子脉冲装置的研制[D]:[博士].合肥:中国科学技术大学,1-139.
    [46]Nagae T.2008. The J-PARC Project[J]. Nuclear Physics A,805:486c-493c.
    [47]Kadono R and Miyake Y.2012. MUSE, the goddess of muons, and her future[J]. Rep. Prog. Phys.,75:026302.
    [48]Miyake Y, et al.2005. An edge-cooled graphite target for J-PARC Muon Science Facility[J]. Journal of Nuclear Materials,343:21-26.
    [49]Kawamura N, et al.2013. The H line:a brand new beam line for fundamental physics at the J-PARC muon facility[J]. Journal of Physics:Conference Series,408:012072.
    [50]Strasser P, et al.2012. New muon kicker system for the decay muon beamline at J-PARC[J]. Physics Procedia,30:65-68.
    [51]Banford AP.1966. The transport of charged particle beam[M]. London:E. and F.N. Spon Ltd.,11-49.
    [52]Brown KL and Servranckx RV.1985. First-and second-order charged particle optics[J]. AIP Conference Proceedings,127:62-138.
    [53]Brown KL, et al.1973. Transport, a computer program for designing charged particle beam transport systems[J]. CERN yellow reports 73:16.
    [54]吕建钦.2004.带电粒子束光学[M].北京:高等教育出版社,321-348.
    [55]Rohrer U.2001. Computer programs for designing, investigating and commissioning charged particle beam lines[J]. PSI Scientific and Technical Report 2000,6:24-25.
    [56]G4beamline-http://g4beamline.muonsinc.com
    [57]Matsuda H and Wollmk H.1972. Third order transfer matrices for the fringing field of magnetic and electrostatic quadrupole lenses[J]. Nucl. Instr. and Meth.,103:117-124.
    [58]Enge HA.1967. Focusing of charged particles[M]. New York:Academic Press Inc.,203.
    [59]Lapostolle PM.1971. Possible emittance increase through filamentation due to space charge in continuous beams[J]. IEEE Transactions on Nuclear Science,18:1101-1104.
    [60]Stockli MP, Welton RF, and Keller R.2003. Self-consistent, unbiased exclusion methods of emittance analysis[J]. Proceedings of the Particle Accelerator Conference,1:527-529.
    [61]Stockli MP.2006. Measuring and analyzing the transverse emittance of charged particle beams[J]. AIP Conference Proceedings,868:25-62.
    [62]Sun JL, Tang JY, and Jing HT.2011. Courant-Snyder invariant density screening method for emittance analysis[J]. Chinese Physics C,35:1059-1065.
    [63]Shimomura K, et al.2009. Superconducting muon channel at J-PARC[J]. Nucl. Instr. and Meth. A,600:192-194.
    [64]Matsuzaki T, et al.2001. The RIKEN-RAL pulsed muon facility[J]. Nucl. Instr. and Meth. A, 465:365-383.
    [65]Higemoto W, et al.2010. JAEA-ASRC muon research at J-PARC MUSE[J]. Journal of Physics: Conference Series,225:012012.
    [66]Ninomiya K, et al.2010. Development of elemental analysis by muonic X-ray measurement in J-PARC[J]. Journal of Physics:Conference Series,225:012040.
    [67]Reiser M.2008. Theory and design of charged particle beams[M]. New York:Wiley-VCh, 189-190.
    [68]Strasser P, et al.2010. J-PARC decay muon channel construction status[J]. Journal of Physics: Conference Series,225:012050.
    [69]Wei J, et al.2009. China spallation neutron source:Design, R&D, and outlook[J]. Nucl. Instr. and Meth. A,600:10-13.
    [70]Tang JY, et al.2010. Proposal for muon and white neutron sources at CSNS[J]. Chinese Physics C,34:121-125.
    [71]唐靖宇.2008.CSNS质子束的应用扩展[R].第四届CSNS应用研讨会.东莞.
    [72]Tang JY, et al.2006. Extraction system design for the CSNS/RCS[J], Proceedings of EPAC, 2006:1777-1780.
    [73]Oram CJ, et al.1981. Commissioning of a new low energy π-μ at triumf[J]. Nucl. Instr. and Meth.,179:95-103.
    [74]Brewer JH.1981.μ+SR with surface muon beams[J]. Hyperfine Interactions,8:831-834.
    [75]Pifer AE, Bowen T, and Kendall KR.1976. A high stopping density μ+ beam[J]. Nucl. Instr. and Meth.,135:39-46.
    [76]刘艳芬,et al.2012.中国散裂中子源上试验型Muon产生靶的设计优化[J].中国科学:物理学力学天文学,42:1204-1211.
    [77]Jing HT, et al.2012. Production target and muon collection studies for an experimental muon source at CSNS[J]. Nucl. Instr. and Meth. A,684:109-116.
    [78]Tomono D, et al.2009. Progress in development of new μSR spectrometer at RIKEN-RAL[J]. Journal of Physics:Conference Series,225:012056.
    [79]Suzuki SY, et al.2009. Development of a pipelined data acquisition system for MUSR experiments at J-PARC[J]. Physica B:Condensed Matter,404:1002-1006.
    [80]Lynch MC, et al.2003. Measuring small samples at the ISIS muon source[J]. Physica B: Condensed Matter,326:270-274.
    [81]Shiroka T, et al.2009. GEANT4 as a simulation framework in μSR[J]. Physica B: Condensed Matter,404:966-969.
    [82]Agostinelli S, et al.2003. GEANT4 — a simulation toolkit[J]. Nucl. Instr. and Meth. A, 506:250-303.
    [83]EJ:http://www.eljentechnology.com ET:http://www.et-enterprises.com BCF:http://www.detectors.saint-gobain.com
    [84]Levin A and Moisan C.1996. A more physical approach to model the surface treatment of scintillation counters and its implementation into DETECT[J]. IEEE Nuclear Science Symposium 2:702-706.
    [85]Janecek M and Moses WW.2010. Simulating scintillator light collection using measured optical reflectance[J]. IEEE Transactions on Nuclear Science,,57:964-970.
    [86]Tanaka HKM, et al.2005. Construction and performance of 128-channel segmented pulsed μSR and me detection system at Dai Omega[J]. Nucl. Instr. and Meth. A,554:201-211.
    [87]Groce DE, et al.1968. Time-of-flight observation of low-energy positrons[J]. Bull. Am. Phys. Soc,13:1397.
    [88]Canter KF, et al.1972. Measurement of total cross sections for low energy positron-helium collisions.(Positron backscattering from metal surface)[J]. J. Phys. B:At. Mol. Phys., 5:167-169.
    [89]Stein TS, Kauppila WE, and Roellig LO.1975. Near-thermal energy width of moderated high energy positrons[J]. Phys. Rev. A,51:327-329.
    [90]Vehanen A, et al.1983. Improved slow-positron yield using a single crystal tungsten moderator[J]. Appl. Phys. A,32:163-167.
    [91]Weng HM, et al. 2002. a compact mono-energetic positron beam for re-emitted positron measurement[J]. Applied Surface Science,194:24-28.
    [92]Weng HM, et al.2004. Tungsten mesh as positron transmission moderator in a monoenergetic positron beam[J]. Nucl. Instr. and Meth. B,225:397-401.
    [93]Zecca A.2002. Positron beam development and design[J]. Appl. Surf. Sci.,194:4-12.
    [94]Oshima N, et al.2000. A new positron accumulator with electron plasma[J]. RIKEN Review, 31:65-69.
    [95]Wu YC, et al.2007. High moderation efficiency positron beamline[J]. Phys. Stat. Sol. (c), 4:4032-4035.
    [96]Xu HX, et al.2012. SIMION simulation of a slow pulsed positron beam[J]. Chinese Physics C,36:251-255.
    [97]Schodlbauer D, et al.1988. A pulsing system for low energy positrons[J]. Nucl. Instr. and Meth. A,34:258-268.
    [98]Suzuki R, et al.1991. Slow positron pulsing system for variable energy positron lifetime spectroscopy[J].30:532-534.
    [99]Fischer DA, Lynn KG, and Gidley DW.1986. High-resolution angle-resolved positron reemission spectra from metal surfaces[J]. Phys. Rev. B,33:4479-4492.
    [100]Greaves RG and Surko CM.1996. Solid neon moderator for positron-trapping experiments[J]. Canadian Journal of Physics,74:445-448.
    [101]Gao CB, et al.2008. Simulation of time bunching for a pulsed positron beam[J]. Chinese Physics C,17:4149-4152.
    [102]gminuit-http://www.muonsinc.com/muons3/gminuit
    [103]James F and Roos M.1975. Minuit-a system for function minimization and analysis of the parameter errorsand correlations[J]. Computer Physics Communications,10:343-367.
    [104]Iijima H, et al.2002. Time bunching of slow positrons for lifetime and time-of-flight measurements of ortho-positronium[J]. Nucl. Instr. and Meth. A,483:641-648.
    [105]Laakso A.2005. Construction of a pulsing system for low-energy positrons[D]:[Doctoral]. Espoo, Finland Helsinki University of Tecnology,5-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700