用户名: 密码: 验证码:
水工混凝土结构设计若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水利枢纽工程功能复杂,结构类型多,既包含水工结构建筑物,也包含建筑结构、桥梁结构等建筑物。从业人员包含同为土木工程专业的水工、建筑结构、和桥梁结构等专业人员。由于所学专业的不同,对现有混凝土规范体系的理解不同,水工结构设计中往往存在不同专业的规范混用问题、利用现有建筑结构计算软件设计水工混凝土结构问题和伸缩缝留设等问题。这些问题都容易造成水工混凝土结构的安全隐患和不必要的工程浪费。工程实例也验证了上述结论。
     水工混凝土结构,许多是块体结构,往往很难简化为传统的杆件结构进行计算配筋,需要进行实体建模有限元分析。确定合适的单元密度是进行有限元分析所需解决的主要问题。为了清楚了解进行实体分析时所需要的单元密度,文中详细讨论了平面应力状态下梁、柱单元的划分规律。指出在通常情况下厚度方向采用一阶元划分四层就可满足计算要求。
     块基型泵站温度应力问题是大型泵站的设计计算难点。通过泵站热力耦合分析可知:泵站和地基交界处为混凝土温度梯度较大部位,该部位在施工和设计中需要重点进行监控;混凝土水化热放热阶段最大温度发生在泵站与地基交界处;散热阶段温度表现为顶部混凝土温度分布较为均匀,且由顶部至底部混凝土温度呈现下降趋势;泵站混凝土施工中,放热阶段较容易出现裂缝的部位在泵站与基础相交部位和流道间下部部位。
     建筑结构计算软件虽方便快捷,但直接应用于水工结构设计却存在问题。只有将水工系列规范引入软件的编写中,才能完善地解决问题。在现有条件下,适当利用建筑结构系列软件进行水工混凝土结构的校审,是简单可行的。
     水闸上部机房伸缩缝的设置,没有必要与下部结构对齐。上部结构采用整体结构后,结构简单,受力合理,建筑立面处理方便,节省了工程造价,达到了结构方案经济合理的目的。
     本文的研究成果,可为相近工程的设计提供良好的借鉴作用。
Water control project features a complex structure of many types and both hydraulic structures buildings, also includes building structures, bridges buildings and other structures. Practitioners includ hydraulic structures, building structures, and professionals such as bridge structures. Since the study of different professions on the existing concrete understanding of the different regulatory systems, there are many problems in hydraulic structure design such as different norms of professional mixed problems, use of the existing building structure design software in hydraulic concrete structure calculation, etc. These problems resulted in hydraulic concrete structure of the security risks and unnecessary waste of the project.
     Hydraulic concrete structures, many of which are block structure, is often difficult to simplify the structure of the traditional calculation of reinforcement bars that often require solid modeling, finite element analysis carried out. Determine the appropriate cell density is required for finite element analysis to solve major problems. In order to clearly understand the need for physical analysis of the cell density, are discussed in detail in a state of plane stress beam column element division of the law. Pointed out that under normal circumstances, the thickness of the direction of a first-order element to meet the computing requirements can be divided into four levels.
     Block-based-type pump thermal stress problem is that a large pumping station design and calculation difficulties. Coupled thermo-mechanical analysis shows that through the pump: pumping station and ground-based temperature gradient at the junction of a larger area of concrete, the position in the construction and design need to focus on monitoring; concrete hydration heat heat stage of the maximum temperature occurred in the pump station at the junction with the foundation Department; cooling phase of the temperature showed a more uniform temperature distribution at the top of concrete, and from the top to the bottom of the concrete temperature show a downward trend; pumping concrete construction, the exothermic phase are more prone to thermal expansion cracks located in the pumping station and the basis of intersection between the parts and the lower part of flow channel.
     Structural calculation software although fast and convenient, but it is not proper appling to hydraulic structure design. Only the introduction of the hydraulic series of standardized preparation software can perfectly solve the problem. Under existing conditions, the appropriate use of building structures series of software to the school trial hydraulic concrete structure is simple and feasible.
     Expansion joints of the upper sluice room settings, there is no need to align with the lower part of the structure. After the adoption of the overall structure of the upper structure, simple structure, reasonable force, building facades to facilitate processing, saving construction costs, to achieve a structural economic and reasonable purpose of the program.
     This study results provide a good reference for similar engineering design.
引文
1.DL/T 5057-1996《水工混凝上结构设计规范》.北京:中国电力出版社,1997
    2.SDJ20-78《水工钢筋混凝上结构设计规范》.北京:水利电力出版社,1979
    3.赵国藩.工程结构可靠性理论与引用.辽宁:大连理工大学出版社,1996
    4.李继华,林忠民,李明顺等编著.建筑结构概率极限状态设计.北京:中国建筑工业出版社,1990
    5.杜拱辰编著.现代预应力混凝土结构[M].北京:中国建筑工业出版社,1988
    6.苏小卒.预应力混凝土框架框架抗震性能研究[M].上海:上海科学技术出版社,1998.10
    7.胡庆昌.钢筋混凝土框架的抗震设计[M].北京:地震出版社,1991
    8.工正霖,李唐宁.竖向预应力框架节点的实验分析[J].重庆大学学报,1998,(12)
    9.余志武等.竖向低周反复荷载作用下无粘结预应力框架抗震性能的实验研究[J].建筑结构学报,1999,(9)
    10.吕志涛、杨宗放.现代预应力工程实践与研究[M].光明口报出版社,1989.5
    11.中国建筑科学研究院.混凝土结构研究报告选集[C].北京:中国建筑工业出版社,1994.6,pp452-537
    12.赵国藩,李树瑶,廖婉卿等.钢筋混凝土结构的裂缝控制[M].北京:海洋出版社,1991
    13.袁勇.混凝土结构早期裂缝控制[M].北京:科学出版社,2004
    14.唐九如.钢筋混凝土框架节点抗震[M].南京:东南大学出版社,1989
    15.王勖成,邵敏.有限单元法基木原理和数值方法[M].北京:清华大学出版社,1997
    16.陈惠发著,余天庆,王勋文译.土木工程材料的木构方程(第一卷弹性与建模)[M].华中科技大学出版社,2001
    17.陈惠发著,余天庆,王勋文译.土木工程材料的木构方程(第二卷塑性与建模)[M].华中科技大学出版社,2001.5
    18.江见鲸.混凝土结构工程学[M].北京:中国建筑工业出版社,1998
    19.工铁梦.T程结构裂缝控制[M].北京:中国建筑工业出版社,1997
    20.GBJ68-84建筑结构设计统一标准[S]
    21.GB50009-2001建筑结构和在规范[S]
    22.GB50010-2002混凝土结构设计规范[S]
    23.JGJ3-2002高层建筑混凝上结构技术规程[S]
    24.GB50011-2001建筑抗震设计规范[S]
    25.JGJ140-2004预应力混凝土结构抗震设计规程[S]
    26.195.吴京,孟少平.预应力混凝土极限抗弯承载力计算的等效荷载法[J].工业建筑,1999,29(9):24-28
    27.196.熊学玉,孙宝俊.有效预应力作用下预应力混凝上超静定结构的次弯矩计算[J].建筑结构学报,1994,29(9):24-28
    28.197.郑毅敏,熊学玉等.预应力混凝土结构设计的综合内力法(一)[J].建筑技术开发,2000,27(5):17-20
    29.198.李俊华,工新堂,薛建阳,赵鸿铁.低周反复荷载下型钢高强混凝土柱受力性能试验研究.土木工程学报,2007,40(7):11-18
    30.199.薛伟辰.预应力钢骨混凝上梁低周反复荷载试验研究,2003
    31.泵站设计规范(GB/T50265-97)[S]
    32.水工建筑物抗震设计规范(SL203-97)[S]
    33.水工混凝土结构设计规范(SL/T191-96)[S]
    34.水工建筑物荷载设计规范(DL5077-1997)[S]
    35.中国地震动参数区划图(GB18306-2001)[S]
    36.建筑地基处理技术规范(JGJ79-2002)[S]
    37.水闸设计规范(SL265-2001)[S]
    38.建筑抗震设防分类标准(GB50223-2004)[S]
    39.建筑结构荷载规范(GB50009-2001)[S]
    40.混凝土结构设计规范(GB50010-2002)[S]
    41.建筑抗震设计规范(GB50011-2001)[S]
    42.建筑地基基础设计规范(GB50007-2002)[S]
    43.地下工程防水技术规范(GB50108-2001)[S]
    44.混凝土结构工程施工质量验收规范(GB50204-2002).中国建筑工业出版社2002
    45.水工混凝土施工规范(DL/T5144-2001)[S]
    46.Lin T Y.,Burns N.H..Design of Prestressed concrete Structures[M]:Third Edition.New York:John Wiley and Sons,1981
    47.Collins M. P.,Mitchell.D..Prestressed concrete structures[M],Pretice-Hall,Inc, 1991
    
    48. Ramaswamy G. S.. Modern Prestressed concrete Design[M]. Pitman publishing Ltd,1976
    
    49. Despeyroux J. On the use of prestressed concrete in earthquake resistant design. Proc.3rd WCEE[C].Vol.Ⅲ:Ⅳ-203-Ⅳ-215
    
    50. Lin T Y. Design of prestressed concrete buildings for earthquake resistance. Proc.Asce,J.struct.Div.,Oct 1965,Vol.91, No.ST5:1-17

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700