用户名: 密码: 验证码:
基质金属蛋白酶9在脑皮质发育障碍中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脑皮质发育障碍(MCDs)是一类以大脑皮层细胞构筑异常为表现的神经系统疾病,是临床上儿童药物难治性癫痫的重要病因之一。局灶性皮质发育不良(FCD)和结节性硬化(TSC)是MCDs常见的两种亚型,并且病理学表现非常类似。对FCD的病因研究认为,FCD是一类由胚胎发育期异常的神经细胞增殖、迁移和分化所致的发育性疾病。在FCD三种病理亚型中,IIb型FCD(FCDIIb)具有最典型的病理改变,且与其他类型相比具有临床癫痫发作较早、癫痫发作频率高、发作间期短等特点。TSC是一类有TSC1或者TSC2基因突变造成的多系统多器官常染色体显性遗传病。据统计,在高达70%的TSC患者中有癫痫发作,并且常常药物难以控制。尽管从病因学的角度出发,FCDIIb和TSC并不相同。但是,鉴于他们在组织病理学上共同的改变以及临床表现的相似性,我们自然而然地推测他们在癫痫发作的病理生理学机制上有着某种共性。此外,最近的遗传学研究也发现TSC1基因在FCDIIb的发育过程中可能起到重要作用,也在某种程度上支持了我们的猜想。在对FCDIIb及TSC致痫研究中发现,FCDIIb中局部皮质发育不良区以及TSC的皮层结节是癫痫放电灶,但是具体机制仍不明确。
     迄今为止,神经递质受体及离子通道在癫痫发生中的作用吸引了大多数学者的眼球,很少有研究关注到细胞外蛋白酶在癫痫发生中的可能作用。基质金属蛋白酶(MMPs)是一类具有锌指结构的分泌性或者细胞膜结合性蛋白水解酶,在胚胎发育、血管生成、组织重塑等生理过程中发挥重要的作用。在中枢神经系统中(CNS),MMPs广泛地参与到肿瘤生成、炎症反应、缺血、脑创伤等病理过程。基质金属蛋白酶9(MMP9)是MMPs家族中最被大家所熟知的一员,正常情况下先以酶原(pro-MMP9)形式分泌到细胞外,然后再被分解成活性酶(act-MMP9)形式发挥生理功能。近来的研究发现MMP9在皮层发育、突触重塑和学习记忆等生理功能中发挥重要的作用。鉴于在癫痫发生的过程中伴随着神经网络组织重塑,最近一系列的动物实验证实MMP9参与癫痫的发生发展。然而,MMP9在MCDs中的具体作用仍有待研究。
     为了阐明MMP9在MCDs中的作用及其可能的机制,首先,我们利用半定量RT-PCR、western blot、免疫组织化学技术观察了MMP9在MCDs亚型(FCDIIb和TSC)临床标本中的表达分布情况;其次,我们利用局部冰冻损伤新生大鼠脑皮质建立了一个模拟人类微脑回的MCDs大鼠模型,并且检测了MMP9蛋白及酶活性在不同发育期的表达情况;最后,为了直观的了解MMP9在MCDs中的作用,在课题组前期研究的基础上,我们进一步研究了MMP9对SVZ区来源的神经前体细胞(neural precursor cells,NPCs)向微脑回区迁移的影响。通过这些研究,我们得到以下结果:
     一、MMP9在MCDs患者皮质病灶中的表达分布
     1.FCDIIb及TSC皮层致痫灶中MP9的mRNA水平较正常对照皮层(CTX)明显升高。
     2.FCDIIb,TSC及TLE组中MMP9蛋白的酶原表达水平较CTX明显增高,而活性酶表达量仅见FCDIIb及TSC较CTX明显增高,TLE与CTX无显著差异。
     3.在正常皮层中可检测到MMP9表达,其表达模式与先前报道的一致:呈弱到中等强度表达于神经元及内皮细胞上,在灰质与白质中偶见胶质细胞表达。
     4.FCDIIb病灶内呈现出强MMP9免疫反应。染色强度评分提示FCDIIb中MMP9蛋白表达较CTX明显升高。我们进一步对MMP9的细胞分布表达模式进行了研究,发现:80%±6.5%的BCs (n=352)强表达MMP9;89±3.3%的DNs (n=573)强表达MMP9;83±4.7%的HNs(n=420)强表达MMP9。同时,胶质细胞也呈现强MMP9免疫反应。免疫荧光双标结果证实MMP9分别共定位于vimentin(未成熟胶质细胞标志物,常见BCs表达)阳性的BCs(图1-3H)NF200(神经元标志物)阳性的DNs、HNs。进一步的研究发现,MMP9阳性(MMP9+)的胶质细胞是GFAP+的星形胶质细胞,而非Iba1+的小胶质细胞。
     5.在TSC皮层结节中,MMP9IR呈现出与FCDIIb病灶类似的强反应。染色强度评分提示TSC中MMP9蛋白表达较CTX明显升高。进一步对MMP9的细胞分布表达模式研究发现,77%±5.3%的GCs (n=491)和85%±3.6%的DNs (n=627)呈中等到强MMP9IR。先前的研究发现,GCs是一类分化程度不一的细胞,我们免疫双标的结果也发现一些MMP9+GCs呈vimentin+,而另外一些则是NF200+。进一步的荧光双标实验发现,大多数MMP9+胶质细胞是GFAP+的星形胶质细胞,而非小胶质细胞。
     二、MMP9在FCD大鼠模型微脑回中蛋白、酶活性及细胞定位研究
     1.Western Blotting检测MMP9蛋白在FCD模型及对照组中可见,目的蛋白大小为92kD的MMP9蛋白在各个时相点均可被检测出,在P10和P20两个时相点,FCD组MMP9蛋白表达水平较对照组明显升高。
     2.明胶酶谱法检测MMP9蛋白酶活性发现,在P10和P20两个时相点,FCD组MMP9蛋白酶活性较对照组明显升高。
     3.P10正常大鼠皮层可观察到MMP9表达,且主要呈中等强度表达在锥体神经元上。P10FCD大鼠微脑回区可观察到MMP9表达,光密度值分析提示FCD微脑回区MMP9表达强于正常对照组。进一步的免疫荧光结果提示,微脑回区表达MMP9的细胞为NeuN阳性的神经元,偶见GFAP阳性的胶质细胞表达MMP9。
     4.类似于P10的表达模式,我们观察到MMP9在P20正常大鼠皮层广泛表达,且主要呈中等强度表达在锥体神经元上。而在P20FCD大鼠微脑回区可观察到MMP9表达主要呈强表达于锥体神经元上。光密度值分析提示FCD微脑回区MMP9表达强于正常对照组。进一步的免疫荧光结果提示,微脑回区表达MMP9的细胞为NeuN阳性的神经元,未探及GFAP阳性的胶质细胞表达MMP9。
     三、MMP9对SVZ区NPCs向微脑回区迁移的影响
     1.我们成功地将增强型绿色荧光蛋白腺病毒表达载体(Ad-eGFP)成功地转染到了SVZ区细胞中。并且观察到,FCD皮层冰冻损伤病灶内可见大量散在分布的eGFP+细胞,并且分布趋势类似从喙侧神经干细胞迁移到嗅球的细胞迁移流,称之为SFMS。
     2.免疫荧光双标结果发现,eGFP+细胞与神经干细胞标志物nestin、SVZ区来源的具有迁移能力神经前体细胞标志物DCX共标,提示SFMS中eGFP+细胞是由SVZ区迁移而来。
     3.P10期,运用蛋白酶抑制剂FN-439抑制MMP9活性后,我们发现,FN-439组迁移流(SFMS)中eGFP+细胞数量较对照组(saline)明显下降。酶谱检测也证实,FN-439组微脑回区MMP9活性较saline组确实显著降低。
     在P20时间点,抑制MMP9活性后,观察到类似的结果:FN-439组SFMS中eGFP+细胞数量较saline组明显下降。同时,酶谱检测也证实,FN-439组微脑回区MMP9活性较saline组确实显著降低。
     综上所述,本研究结果表明:第一、人MCDs组织中MMP9表达显著上调,且特征性地高表达于与癫痫放电活性相关的异形细胞(如异形神经元、肥大神经元、巨细胞、气球样细胞)上;第二、我们建立了一个模拟人类微脑回的MCDs大鼠模型,并且证实在P10和P20时刻微脑回区MMP9蛋白表达及酶活性较对照皮层显著上调。第三、与课题组前期研究一致,我们观察到eGFP+SVZ区来源的NPCs不断性微脑回区迁移,形成脑室下区至FCD脑区迁移流。抑制MMP9活性之后,迁移流中eGFP+细胞数量明显减少。总之,我们的结果提示MMP9可能与MCDs的病理发生密切相关。
Malformations of cortical development (MCDs), which are characterized by abnormalcytoarchitecture of the cerebral cortex, are important causes of drug-resistant epilepsy inchildren. Two common subtypes of MCDs, focal cortical dysplasia (FCD) and tuberoussclerosis complex (TSC), have many similar histological features. The pathogenesis of FCD isthought to be mainly caused by embryonic developmental insults that result in the formationof dysplastic lesions with abnormal neuronal proliferation, migration and differentiation.Among the three types of FCD, type IIb (FCDIIb) results in the most typical histologicalchanges and has a younger age of seizure onset, a shorter epilepsy duration, and an increasedseizure frequency compared with the other variants. TSC is an autosomal dominantmultisystem neurocutaneous syndrome that results from mutations of the TSC1or TSC2genes. Seizures occur in more than70to80%of the patients with TSC and are oftenrefractory to treatment. Despite the different etiologies of FCDIIb and TSC, they do share anumber of characteristic cellular and histological abnormalities as well as common clinicalfeatures, which suggest that they could have common pathomechanisms of epileptogenesis.Moreover, human genetic studies linked the TSC1gene to the development of FCDIIb.Recent evidence suggests that seizures originate within the dysplastic cortical lesions inFCDIIb and the cortical tubers in TSC. However, understanding epilepsy in FCDIIb and TSCremains a challenge.
     Until now, most of our interest has focused on the role of neurotransmitter receptors andion channels in the epileptogenesis of MCDs; little attention has been paid to the potentialrole of extracellular proteinases. Matrix metalloproteinases (MMPs) are a large family ofstructurally related zinc-dependent secreted or cellular membrane-bound proteinases. MMPsare essential for various normal biological processes such as embryonic development,angiogenesis and tissue remodeling. In the central nervous system (CNS), they are involved inseveral pathologies, including tumorigenesis, inflammation, ischemia, trauma and epilepsy.MMP9, one of the best characterized members in MMP family, is synthesized and secreted into the extracellular space as the inactive zymogen pro-MMP9, then converted to the activeform, act-MMP9. Recent studies have suggested that MMP9plays important roles in corticaldevelopment, synaptic plasticity, learning and memory. As epileptogenic plasticity involvesextensive nervous tissue remodeling, a series of experiments with animal models haveindicated that MMP9is intimately involved in epileptogenesis. However, little is known aboutthe role of MMP9in MCDs.
     To address the above concerns: First, we identified the expression and distribution ofMMP9in epileptic lesions of FCDIIb and TSC patients by means of RT-PCR, westernblotting and immunohistochemistry. Second, we tested the expression, activity anddistribution of MMP9in a FCD rat model. Third, to reveal the role of MMP9in thepathogenesis of MCDs, we further investigated the effect of MMP9on the migration ofSVZ-derived neural precursor cells (NPCs) to the microgyrus. The main results are asfollows:
     1.Expression and cellular distribution of MMP9in cortical lesions of patiens withMCDs
     1.1RT-PCR analysis showed the expression of MMP9mRNA in total homogenates ofFCDIIb and TSC lesions was dramatically higher than that in CTX samples.
     1.2Western blotting analysis indicated that the pro-MMP9protein levels weresignificantly higher in the epilepsy groups (including FCDIIb, TSC and TLE) than in the CTXsamples. However, only in FCDIIb and TSC, the act-MMP9protein levels were significantlyelevated compared with CTX.
     1.3As described in the previous studies, weak to moderate MMP9IR was observed inneurons and endothelial cells, and MMP9IR-positive glial cells were occasionally seen in theGM and WM of the CTX tissues
     1.4A strong MMP9IR was observed in the FCDIIb cortical lesions. The intensity scoresindicated a higher expression of MMP9in the FCDIIb samples compared with the CTXsamples. Moreover, the MMP9IR showed a specific cellular distribution pattern: i.e. in allFCDIIb tissues (n=9) there was a strong staining of MMP9in80%±6.5%of the BCs (n=352)and in89±3.3%of the DNs (n=573) and83±4.7%of the HNs (n=420), and also glial cells.Double labeling experiments confirmed that the MMP9IR was colocalized with vimentin (amarker of less mature glial cells commonly expressed by BCs)and NF200(a neuronalmarker). Further immunofluorescent studies demonstrated that most of the MMP9+glial cells were theGFAP+astrocytes and not the microglia.
     1.5A strong MMP9IR was present in the TSC tubers (n=14), which was similar to thatin the FCDIIb lesions. The intensity scores of MMP9IR in the TSC tubers were dramaticallyhigher than those in the CTX samples. For the cellular MMP9IR, there was a moderate tostrong IR in77%±5.3%of the GCs (n=491) and in85%±3.6%of the DNs (n=627). Inagreement with the abnormal differentiation of the GCs, our double labeling experimentsindicated that some of MMP9+GCs were vimentin+, and that some are NF200+. Furtherimmunofluorescent studies revealed that, as in the FCDIIb lesions, most MMP9+glial cells inthe TSC tubers were the GFAP+reactive astrocytes and not microglia.
     2.Expression, activity and cellular distribution of MMP9in FCD rat model
     2.1Western blotting analysis indicated that the MMP9protein levels were significantlyhigher in the FCD groups than in the control rats at postnatal10(P10) and postnatal20(P20).
     2.2Zymography assay indicated that the activity of MMP9was dramatically higher inmicrogyrus of FCD rats than in the control cortices at P10and P20.
     2.3Immunohistochemical studies suggested a stronger MMP9IR was observed inmicrogyrus of FCD rats than in the control cortices at P10. Further immunofluorescent studiesdemonstrated NeuN+neurons are the major sources of MMP9. MMP9IR-positive GFAP+glial cells were occasionally seen in the microgyrus.
     2.4Similar to the observation of P10, a stronger MMP9IR was observed in microgyrusof FCD rats than in the control cortices. Double labeling experiments indicated that MMP9colabelled with NeuN, and not GFAP.
     3.Effect of MMP9on the migration of SVZ-derived NPCs to the microgyrus
     3.1We successfully transfected the Ad-eGFP into the cells in the SVZ, and observed theSFMS as our previous research.
     3.2Immunofluorescent studies demonstrated the eGFP+cells colabelled with nestin (aneural stem cell marker) and DCX (a cytoskeletal protein expressed by the migrating NPCsfrom SVZ), suggesting that the eGFP+cells in the SFMS were derived from SVZ.
     3.3Inhibition of MMP9by FN-439significantly attenuated the number of eGFP+cellsin the SFMS at P10and P20.
     In summary, in the present study, we found an obvious increase of MMP9mRNA and protein expression in MCDs specimens compared with the CTX samples. The IHC studiesdetected MMP9at characteristically high levels in misshapen cells (e.g. DNs, HNs, GCs andBCs), which may be the intrinsic “pacemakers” that initiate and drive the epileptiform activityin MCDs. Further, we established a rat model of microgyral malformation and confirmed thatthe protein levels and activity of MMP9were dramatically higher in microgyrus than in thecontrol cortices at P10and P20. Consistent with our previous researches, we observed themigration of eGFP+SVZ-derived NPCs to the microgyrus, and inhibition of MMP9significantly attenuated the number of eGFP+cells in the SFMS at P10and P20. Takentogether, our findings suggest that MMP9may be linked with the pathogenesis of MCDs.
引文
1. Aronica, E., A.J. Becker, and R. Spreafico, Malformations of cortical development. BrainPathol,2012.22(3): p.380-401.
    2. Cepeda, C., et al., Epileptogenesis in pediatric cortical dysplasia: the dysmature cerebraldevelopmental hypothesis. Epilepsy Behav,2006.9(2): p.219-35.
    3. Sisodiya, S.M., Malformations of cortical development: burdens and insights fromimportant causes of human epilepsy. Lancet Neurol,2004.3(1): p.29-38.
    4. Lerner, J.T., et al., Assessment and surgical outcomes for mild type I and severe type IIcortical dysplasia: a critical review and the UCLA experience. Epilepsia,2009.50(6): p.1310-35.
    5. Ying, Z., et al., Expression of neural stem cell surface marker CD133in balloon cells ofhuman focal cortical dysplasia. Epilepsia,2005.46(11): p.1716-23.
    6. Mizuguchi, M., et al., Doublecortin immunoreactivity in giant cells of tuberous sclerosisand focal cortical dysplasia. Acta Neuropathol,2002.104(4): p.418-24.
    7. Lamparello, P., et al., Developmental lineage of cell types in cortical dysplasia withballoon cells. Brain,2007.130(Pt9): p.2267-76.
    8. Rosenberg, G.A., Matrix metalloproteinases and their multiple roles in neurodegenerativediseases. Lancet Neurol,2009.8(2): p.205-16.
    9. Page-McCaw, A., A.J. Ewald, and Z. Werb, Matrix metalloproteinases and the regulationof tissue remodelling. Nat Rev Mol Cell Biol,2007.8(3): p.221-33.
    10. Rosenberg, G.A., Matrix metalloproteinases in neuroinflammation. Glia,2002.39(3): p.279-91.
    11. Manicone, A.M. and J.K. McGuire, Matrix metalloproteinases as modulators ofinflammation. Semin Cell Dev Biol,2008.19(1): p.34-41.
    12. Vaillant, C., et al., MMP-9deficiency affects axonal outgrowth, migration, and apoptosisin the developing cerebellum. Mol Cell Neurosci,2003.24(2): p.395-408.
    13. Wilczynski, G.M., et al., Important role of matrix metalloproteinase9in epileptogenesis.J Cell Biol,2008.180(5): p.1021-35.
    14. Lee, S.R., et al., Involvement of matrix metalloproteinase in neuroblast cell migrationfrom the subventricular zone after stroke. J Neurosci,2006.26(13): p.3491-5.
    15. Piao, Y.S., et al., Neuropathological findings in intractable epilepsy:435Chinese cases.Brain Pathol,2010.20(5): p.902-8.
    16. Crino, P.B., K.L. Nathanson, and E.P. Henske, The tuberous sclerosis complex. N Engl JMed,2006.355(13): p.1345-56.
    17. Blumcke, I., et al., The clinicopathologic spectrum of focal cortical dysplasias: aconsensus classification proposed by an ad hoc Task Force of the ILAE DiagnosticMethods Commission. Epilepsia,2011.52(1): p.158-74.
    18. Wong, M., Mechanisms of epileptogenesis in tuberous sclerosis complex and relatedmalformations of cortical development with abnormal glioneuronal proliferation.Epilepsia,2008.49(1): p.8-21.
    19. Becker, A.J., et al., Focal cortical dysplasia of Taylor's balloon cell type: mutationalanalysis of the TSC1gene indicates a pathogenic relationship to tuberous sclerosis. AnnNeurol,2002.52(1): p.29-37.
    20. Monsonego-Ornan, E., et al., Matrix metalloproteinase9/gelatinase B is required forneural crest cell migration. Dev Biol,2012.364(2): p.162-77.
    21. Barkho, B.Z., et al., Endogenous matrix metalloproteinase (MMP)-3and MMP-9promote the differentiation and migration of adult neural progenitor cells in response tochemokines. Stem Cells,2008.26(12): p.3139-49.
    22. Nagy, V., et al., Matrix metalloproteinase-9is required for hippocampal late-phaselong-term potentiation and memory. J Neurosci,2006.26(7): p.1923-34.
    23. Szklarczyk, A., et al., Matrix metalloproteinase-9undergoes expression and activationduring dendritic remodeling in adult hippocampus. J Neurosci,2002.22(3): p.920-30.
    24. Michaluk, P., et al., Matrix metalloproteinase-9controls NMDA receptor surfacediffusion through integrin beta1signaling. J Neurosci,2009.29(18): p.6007-12.
    25. Dityatev, A., Remodeling of extracellular matrix and epileptogenesis. Epilepsia,2010.51Suppl3: p.61-5.
    26. Schwartz, R.A., et al., Tuberous sclerosis complex: advances in diagnosis, genetics, andmanagement. J Am Acad Dermatol,2007.57(2): p.189-202.
    27. Michaluk, P. and L. Kaczmarek, Matrix metalloproteinase-9in glutamate-dependentadult brain function and dysfunction. Cell Death Differ,2007.14(7): p.1255-8.
    28. Yamanouchi, H., et al., Evidence of abnormal differentiation in giant cells of tuberoussclerosis. Pediatr Neurol,1997.17(1): p.49-53.
    29. Leppert, D., et al., Matrix metalloproteinase (MMP)-8and MMP-9in cerebrospinal fluidduring bacterial meningitis: association with blood-brain barrier damage andneurological sequelae. Clin Infect Dis,2000.31(1): p.80-4.
    30. Ichiyama, T., et al., Matrix metalloproteinase-9and tissue inhibitors ofmetalloproteinases1in influenza-associated encephalopathy. Pediatr Infect Dis J,2007.26(6): p.542-4.
    31. Mizoguchi, H., et al., Matrix metalloproteinase-9contributes to kindled seizuredevelopment in pentylenetetrazole-treated mice by converting pro-BDNF to matureBDNF in the hippocampus. J Neurosci,2011.31(36): p.12963-71.
    32. Alonso-Nanclares, L., et al., Microanatomy of the dysplastic neocortex from epilepticpatients. Brain,2005.128(Pt1): p.158-73.
    33. Han, J.M. and M. Sahin, TSC1/TSC2signaling in the CNS. FEBS Lett,2011.585(7): p.973-80.
    34. Ljungberg, M.C., et al., Activation of mammalian target of rapamycin in cytomegalicneurons of human cortical dysplasia. Ann Neurol,2006.60(4): p.420-9.
    35. Schick, V., et al., Differential Pi3K-pathway activation in cortical tubers and focalcortical dysplasias with balloon cells. Brain Pathol,2007.17(2): p.165-73.
    36. Wong, M., Mammalian target of rapamycin (mTOR) inhibition as a potentialantiepileptogenic therapy: From tuberous sclerosis to common acquired epilepsies.Epilepsia,2009.51(1): p.27-36.
    37. Chen, J.S., et al., Involvement of PI3K/PTEN/AKT/mTOR pathway in invasion andmetastasis in hepatocellular carcinoma: Association with MMP-9. Hepatol Res,2009.39(2): p.177-86.
    38. Das, G., et al., Rictor regulates MMP-9activity and invasion through Raf-1-MEK-ERKsignaling pathway in glioma cells. Mol Carcinog,2011.50(6): p.412-423.
    39. Shu, H.F., et al., Expression of the interleukin6system in cortical lesions from patientswith tuberous sclerosis complex and focal cortical dysplasia type IIb. J Neuropathol ExpNeurol,2010.69(8): p.838-49.
    40. Ravizza, T., et al., The IL-1beta system in epilepsy-associated malformations of corticaldevelopment. Neurobiol Dis,2006.24(1): p.128-43.
    41. Zurolo, E., et al., Activation of toll-like receptor, RAGE and HMGB1signalling inmalformations of cortical development. Brain,2011.134(Pt4): p.1015-32.
    42. He, Z.J., et al., Effects of matrix metalloproteinase9inhibition on the blood brain barrierand inflammation in rats following cardiopulmonary resuscitation. Chin Med J (Engl),
    2009.122(19): p.2346-51.
    1. Sisodiya, S.M., Malformations of cortical development: burdens and insights fromimportant causes of human epilepsy. Lancet Neurol,2004.3(1): p.29-38.
    2. Wong, M., Animal models of focal cortical dysplasia and tuberous sclerosis complex:recent progress toward clinical applications. Epilepsia,2009.50Suppl9: p.34-44.
    3. Chen, H.X., H. Xiang, and S.N. Roper, Impaired developmental switch of short-termplasticity in pyramidal cells of dysplastic cortex. Epilepsia,2007.48(1): p.141-8.
    4. Colciaghi, F., et al., Status epilepticus-induced pathologic plasticity in a rat model offocal cortical dysplasia. Brain,2011.134(Pt10): p.2828-43.
    5. Takase, K., et al., Cortical kindling in a focal freeze lesion rat model. J Clin Neurosci,
    2009.16(1): p.94-8.
    6. Jacobs, K.M., M.J. Gutnick, and D.A. Prince, Hyperexcitability in a model of corticalmaldevelopment. Cereb Cortex,1996.6(3): p.514-23.
    7. Scantlebury, M.H., et al., Freeze lesion-induced focal cortical dysplasia predisposes toatypical hyperthermic seizures in the immature rat. Epilepsia,2004.45(6): p.592-600.
    8. Zeng, L.H., et al., Tsc2gene inactivation causes a more severe epilepsy phenotype thanTsc1inactivation in a mouse model of tuberous sclerosis complex. Hum Mol Genet,2011.20(3): p.445-54.
    9. Pramparo, T., et al., Novel embryonic neuronal migration and proliferation defects in Dcxmutant mice are exacerbated by Lis1reduction. J Neurosci,2010.30(8): p.3002-12.
    10. Wenzel, H.J., et al., Abnormal morphological and functional organization of thehippocampus in a p35mutant model of cortical dysplasia associated with spontaneousseizures. J Neurosci,2001.21(3): p.983-98.
    11. Vaillant, C., et al., MMP-9deficiency affects axonal outgrowth, migration, and apoptosisin the developing cerebellum. Mol Cell Neurosci,2003.24(2): p.395-408.
    12. Wilczynski, G.M., et al., Important role of matrix metalloproteinase9in epileptogenesis.J Cell Biol,2008.180(5): p.1021-35.
    13. Mizoguchi, H., et al., Matrix metalloproteinase-9contributes to kindled seizuredevelopment in pentylenetetrazole-treated mice by converting pro-BDNF to matureBDNF in the hippocampus. J Neurosci,2011.31(36): p.12963-71.
    14. Wang, C.J., et al., Survivin expression quantified by Image Pro-Plus compared with visualassessment. Appl Immunohistochem Mol Morphol,2009.17(6): p.530-5.
    15. Jacobs, K.M., V.N. Kharazia, and D.A. Prince, Mechanisms underlying epileptogenesis incortical malformations. Epilepsy Res,1999.36(2-3): p.165-88.
    16. Rosen, G.D., G.F. Sherman, and A.M. Galaburda, Birthdates of neurons in inducedmicrogyria. Brain Res,1996.727(1-2): p.71-8.
    17. Cepeda, C., et al., Epileptogenesis in pediatric cortical dysplasia: the dysmature cerebraldevelopmental hypothesis. Epilepsy Behav,2006.9(2): p.219-35.
    18. Cowen, D., L.M. Geller, and A. Wolf, Healing in the cerebral cortex of the infant rat afterclosed-head focal injury. J Neuropathol Exp Neurol,1970.29(1): p.21-42.
    19. Page-McCaw, A., A.J. Ewald, and Z. Werb, Matrix metalloproteinases and the regulationof tissue remodelling. Nat Rev Mol Cell Biol,2007.8(3): p.221-33.
    20. Hayashi, T., et al., Quantitative analyses of matrix metalloproteinase activity aftertraumatic brain injury in adult rats. Brain Res,2009.1280: p.172-7.
    21. Vilalta, A., et al., Moderate and severe traumatic brain injury induce earlyoverexpression of systemic and brain gelatinases. Intensive Care Med,2008.34(8): p.1384-92.
    22. Leonardo, C.C., et al., Delayed administration of a matrix metalloproteinase inhibitorlimits progressive brain injury after hypoxia-ischemia in the neonatal rat. JNeuroinflammation,2008.5: p.34.
    23. Zhao, B.Q., et al., Role of matrix metalloproteinases in delayed cortical responses afterstroke. Nat Med,2006.12(4): p.441-5.
    24.马勋泰, et al.,局灶性皮质发育障碍模型鼠大脑皮质病灶组织的超微结构观察.第三军医大学学报,2006.28(15): p.1570-03.
    25. Redecker, C., et al., Differential downregulation of GABAA receptor subunits inwidespread brain regions in the freeze-lesion model of focal cortical malformations. JNeurosci,2000.20(13): p.5045-53.
    26. Kim, G.W., et al., The role of MMP-9in integrin-mediated hippocampal cell death afterpilocarpine-induced status epilepticus. Neurobiol Dis,2009.36(1): p.169-80.
    27. Lerner, J.T., et al., Assessment and surgical outcomes for mild type I and severe type IIcortical dysplasia: a critical review and the UCLA experience. Epilepsia,2009.50(6): p.1310-35.
    28. Lamparello, P., et al., Developmental lineage of cell types in cortical dysplasia withballoon cells. Brain,2007.130(Pt9): p.2267-76.
    29. Ying, Z., et al., Expression of neural stem cell surface marker CD133in balloon cells ofhuman focal cortical dysplasia. Epilepsia,2005.46(11): p.1716-23.
    30. Cepeda, C., et al., Morphological and electrophysiological characterization of abnormalcell types in pediatric cortical dysplasia. J Neurosci Res,2003.72(4): p.472-86.
    31. Lee, S.R., et al., Involvement of matrix metalloproteinase in neuroblast cell migrationfrom the subventricular zone after stroke. J Neurosci,2006.26(13): p.3491-5.
    32. Kang, S.S., et al., Inhibition of matrix metalloproteinase-9attenuated neural progenitorcell migration after photothrombotic ischemia. Brain Res,2008.1228: p.20-6.
    1. Ming, G.L. and H. Song, Adult neurogenesis in the mammalian central nervous system.Annu Rev Neurosci,2005.28: p.223-50.
    2. Gage, F.H., Neurogenesis in the adult brain. J Neurosci,2002.22(3): p.612-3.
    3. Kang, S.S., et al., Inhibition of matrix metalloproteinase-9attenuated neural progenitorcell migration after photothrombotic ischemia. Brain Res,2008.1228: p.20-6.
    4. Lee, S.R., et al., Involvement of matrix metalloproteinase in neuroblast cell migrationfrom the subventricular zone after stroke. J Neurosci,2006.26(13): p.3491-5.
    5. Parent, J.M. and D.H. Lowenstein, Seizure-induced neurogenesis: are more new neuronsgood for an adult brain? Prog Brain Res,2002.135: p.121-31.
    6. Sisodiya, S.M., Malformations of cortical development: burdens and insights fromimportant causes of human epilepsy. Lancet Neurol,2004.3(1): p.29-38.
    7. Lerner, J.T., et al., Assessment and surgical outcomes for mild type I and severe type IIcortical dysplasia: a critical review and the UCLA experience. Epilepsia,2009.50(6): p.1310-35.
    8. Lamparello, P., et al., Developmental lineage of cell types in cortical dysplasia withballoon cells. Brain,2007.130(Pt9): p.2267-76.
    9. Monsonego-Ornan, E., et al., Matrix metalloproteinase9/gelatinase B is required forneural crest cell migration. Dev Biol,2012.364(2): p.162-77.
    10. Reeves, T.M., et al., Matrix metalloproteinase inhibition alters functional and structuralcorrelates of deafferentation-induced sprouting in the dentate gyrus. J Neurosci,2003.23(32): p.10182-9.
    11. Tohyama, T., et al., Nestin expression in embryonic human neuroepithelium and in humanneuroepithelial tumor cells. Lab Invest,1992.66(3): p.303-13.
    12. Gleeson, J.G., et al., Doublecortin is a microtubule-associated protein and is expressedwidely by migrating neurons. Neuron,1999.23(2): p.257-71.
    13. Suh, H., et al., In vivo fate analysis reveals the multipotent and self-renewal capacities ofSox2+neural stem cells in the adult hippocampus. Cell Stem Cell,2007.1(5): p.515-28.
    14. Vidal-Sanz, M., et al., Persistent retrograde labeling of adult rat retinal ganglion cellswith the carbocyanine dye diI. Exp Neurol,1988.102(1): p.92-101.
    15. Bonaguidi, M.A., et al., In vivo clonal analysis reveals self-renewing and multipotentadult neural stem cell characteristics. Cell,2011.145(7): p.1142-55.
    16. Wang, Y.Q., et al., VEGF overexpression enhances striatal neurogenesis in brain of adultrat after a transient middle cerebral artery occlusion. J Neurosci Res,2007.85(1): p.73-82.
    17. Duntsch, C., et al., Up-regulation of neuropoiesis generating glial progenitors thatinfiltrate rat intracranial glioma. J Neurooncol,2005.71(3): p.245-55.
    18. Glud, A.N., et al., Direct MRI-guided stereotaxic viral mediated gene transfer ofalpha-synuclein in the Gottingen minipig CNS. Acta Neurobiol Exp (Wars).71(4): p.508-18.
    19. Bovetti, S., et al., Subventricular zone-derived neuroblast migration to the olfactory bulbis modulated by matrix remodelling. Eur J Neurosci,2007.25(7): p.2021-33.
    20. Heissig, B., et al., Recruitment of stem and progenitor cells from the bone marrow nicherequires MMP-9mediated release of kit-ligand. Cell,2002.109(5): p.625-37.
    21. Wang, L., et al., Matrix metalloproteinase2(MMP2) and MMP9secreted byerythropoietin-activated endothelial cells promote neural progenitor cell migration. JNeurosci,2006.26(22): p.5996-6003.
    22. Dufour, A., et al., Role of matrix metalloproteinase-9dimers in cell migration: design ofinhibitory peptides. J Biol Chem,2010.285(46): p.35944-56.
    23. Dufour, A., et al., Role of the hemopexin domain of matrix metalloproteinases in cellmigration. J Cell Physiol,2008.217(3): p.643-51.
    1. Kwan, P., S.C. Schachter, and M.J. Brodie, Drug-resistant epilepsy. N Engl J Med,2011.365(10): p.919-26.
    2. Tian, G.F., et al., An astrocytic basis of epilepsy. Nat Med,2005.11(9): p.973-81.
    3. Wetherington, J., G. Serrano, and R. Dingledine, Astrocytes in the epileptic brain. Neuron,
    2008.58(2): p.168-78.
    4. Binder, D.K. and C. Steinhauser, Functional changes in astroglial cells in epilepsy. Glia,
    2006.54(5): p.358-68.
    5. Briellmann, R.S., et al., Hippocampal pathology in refractory temporal lobe epilepsy:T2-weighted signal change reflects dentate gliosis. Neurology,2002.58(2): p.265-71.
    6. Girardi, E., et al., Astrocytic response in hippocampus and cerebral cortex in anexperimental epilepsy model. Neurochem Res,2004.29(2): p.371-7.
    7. Shachnai, L., K. Shimamoto, and B.I. Kanner, Sulfhydryl modification of cysteinemutants of a neuronal glutamate transporter reveals an inverse relationship betweensodium dependent conformational changes and the glutamate-gated anion conductance.Neuropharmacology,2005.49(6): p.862-71.
    8. Sarac, S., et al., Excitatory amino acid transporters EAAT-1and EAAT-2in temporal lobeand hippocampus in intractable temporal lobe epilepsy. APMIS,2009.117(4): p.291-301.
    9. Ulu, M.O., et al., The expression of astroglial glutamate transporters in patients with focalcortical dysplasia: an immunohistochemical study. Acta Neurochir (Wien),2010.152(5):p.845-53.
    10. Tanaka, K., et al., Epilepsy and exacerbation of brain injury in mice lacking the glutamatetransporter GLT-1. Science,1997.276(5319): p.1699-702.
    11. Campbell, S.L. and J.J. Hablitz, Decreased glutamate transport enhances excitability in arat model of cortical dysplasia. Neurobiol Dis,2008.32(2): p.254-61.
    12. Mulholland, P.J., et al., Glutamate transporters regulate extrasynaptic NMDA receptormodulation of Kv2.1potassium channels. J Neurosci,2008.28(35): p.8801-9.
    13. Eid, T., et al., Loss of glutamine synthetase in the human epileptogenic hippocampus:possible mechanism for raised extracellular glutamate in mesial temporal lobe epilepsy.Lancet,2004.363(9402): p.28-37.
    14. Petroff, O.A., et al., Glutamate-glutamine cycling in the epileptic human hippocampus.Epilepsia,2002.43(7): p.703-10.
    15. Volterra, A. and J. Meldolesi, Astrocytes, from brain glue to communication elements: therevolution continues. Nat Rev Neurosci,2005.6(8): p.626-40.
    16. Notenboom, R.G., et al., Up-regulation of hippocampal metabotropic glutamate receptor5in temporal lobe epilepsy patients. Brain,2006.129(Pt1): p.96-107.
    17. Steinhauser, C. and G. Seifert, Glial membrane channels and receptors in epilepsy: impactfor generation and spread of seizure activity. Eur J Pharmacol,2002.447(2-3): p.227-37.
    18. Aronica, E., et al., Expression and cell distribution of group I and group II metabotropicglutamate receptor subtypes in taylor-type focal cortical dysplasia. Epilepsia,2003.44(6):p.785-95.
    19. Ding, S., et al., Enhanced astrocytic Ca2+signals contribute to neuronal excitotoxicityafter status epilepticus. J Neurosci,2007.27(40): p.10674-84.
    20. Hinterkeuser, S., et al., Astrocytes in the hippocampus of patients with temporal lobeepilepsy display changes in potassium conductances. Eur J Neurosci,2000.12(6): p.2087-96.
    21. Djukic, B., et al., Conditional knock-out of Kir4.1leads to glial membrane depolarization,inhibition of potassium and glutamate uptake, and enhanced short-term synapticpotentiation. J Neurosci,2007.27(42): p.11354-65.
    22. Schwartzkroin, P.A., S.C. Baraban, and D.W. Hochman, Osmolarity, ionic flux, andchanges in brain excitability. Epilepsy Res,1998.32(1-2): p.275-85.
    23. Haglund, M.M. and D.W. Hochman, Furosemide and mannitol suppression of epilepticactivity in the human brain. J Neurophysiol,2005.94(2): p.907-18.
    24. Lee, T.S., et al., Aquaporin-4is increased in the sclerotic hippocampus in human temporallobe epilepsy. Acta Neuropathol,2004.108(6): p.493-502.
    25. Eid, T., et al., Loss of perivascular aquaporin4may underlie deficient water and K+homeostasis in the human epileptogenic hippocampus. Proc Natl Acad Sci U S A,2005.102(4): p.1193-8.
    26. Medici, V., et al., Aquaporin4expression in control and epileptic human cerebral cortex.Brain Res,2011.1367: p.330-9.
    27. Binder, D.K., et al., Increased seizure duration and slowed potassium kinetics in micelacking aquaporin-4water channels. Glia,2006.53(6): p.631-6.
    28. Binder, D.K., et al., Increased seizure duration in mice lacking aquaporin-4waterchannels. Acta Neurochir Suppl,2006.96: p.389-92.
    29. Garbelli, R., et al., Expression of connexin43in the human epileptic and drug-resistantcerebral cortex. Neurology,2011.76(10): p.895-902.
    30. Collignon, F., et al., Altered expression of connexin subtypes in mesial temporal lobeepilepsy in humans. J Neurosurg,2006.105(1): p.77-87.
    31. Nilsen, K.E., A.R. Kelso, and H.R. Cock, Antiepileptic effect of gap-junction blockers ina rat model of refractory focal cortical epilepsy. Epilepsia,2006.47(7): p.1169-75.
    32. Aronica, E. and P.B. Crino, Inflammation in epilepsy: clinical observations. Epilepsia,
    2011.52Suppl3: p.26-32.
    33. Vezzani, A., et al., The role of inflammation in epilepsy. Nat Rev Neurol,2011.7(1): p.31-40.
    34. Rodgers, K.M., et al., The cortical innate immune response increases local neuronalexcitability leading to seizures. Brain,2009.132(Pt9): p.2478-86.
    35. Farina, C., F. Aloisi, and E. Meinl, Astrocytes are active players in cerebral innateimmunity. Trends Immunol,2007.28(3): p.138-45.
    36. Ravizza, T., et al., The IL-1beta system in epilepsy-associated malformations of corticaldevelopment. Neurobiol Dis,2006.24(1): p.128-43.
    37. Shu, H.F., et al., Expression of the interleukin6system in cortical lesions from patientswith tuberous sclerosis complex and focal cortical dysplasia type IIb. J Neuropathol ExpNeurol,2010.69(8): p.838-49.
    38. Maroso, M., et al., Toll-like receptor4and high-mobility group box-1are involved inictogenesis and can be targeted to reduce seizures. Nat Med,2010.16(4): p.413-9.
    39. Zurolo, E., et al., Activation of toll-like receptor, RAGE and HMGB1signalling inmalformations of cortical development. Brain,2011.134(Pt4): p.1015-32.
    40. van Vliet, E.A., et al., Blood-brain barrier leakage may lead to progression of temporallobe epilepsy. Brain,2007.130(Pt2): p.521-34.
    41. Ivens, S., et al., TGF-beta receptor-mediated albumin uptake into astrocytes is involved inneocortical epileptogenesis. Brain,2007.130(Pt2): p.535-47.
    42. Boer, K., et al., Inflammatory processes in cortical tubers and subependymal giant celltumors of tuberous sclerosis complex. Epilepsy Res,2008.78(1): p.7-21.
    43. Li, S., et al., Increased expression of matrix metalloproteinase9in cortical lesions frompatients with focal cortical dysplasia type IIb and tuberous sclerosis complex. Brain Res,
    2012.1453: p.46-55.
    44. Crino, P.B., K.L. Nathanson, and E.P. Henske, The tuberous sclerosis complex. N Engl JMed,2006.355(13): p.1345-56.
    45. Han, J.M. and M. Sahin, TSC1/TSC2signaling in the CNS. FEBS Lett,2011.585(7): p.973-80.
    46. Sosunov, A.A., et al., Tuberous sclerosis: a primary pathology of astrocytes? Epilepsia,
    2008.49Suppl2: p.53-62.
    47. Boer, K., et al., Gene expression analysis of tuberous sclerosis complex cortical tubersreveals increased expression of adhesion and inflammatory factors. Brain Pathol,2009.20(4): p.704-19.
    48. Maldonado, M., et al., Expression of ICAM-1, TNF-alpha, NF kappa B, and MAP kinasein tubers of the tuberous sclerosis complex. Neurobiol Dis,2003.14(2): p.279-90.
    49. Uhlmann, E.J., et al., Astrocyte-specific TSC1conditional knockout mice exhibitabnormal neuronal organization and seizures. Ann Neurol,2002.52(3): p.285-96.
    50. Zeng, L.H., et al., Tsc2gene inactivation causes a more severe epilepsy phenotype thanTsc1inactivation in a mouse model of tuberous sclerosis complex. Hum Mol Genet,2011.20(3): p.445-54.
    51. Wong, M., et al., Impaired glial glutamate transport in a mouse tuberous sclerosisepilepsy model. Ann Neurol,2003.54(2): p.251-6.
    52. Zeng, L.H., et al., Modulation of astrocyte glutamate transporters decreases seizures in amouse model of Tuberous Sclerosis Complex. Neurobiol Dis,2010.37(3): p.764-71.
    53. Xu, L., L.H. Zeng, and M. Wong, Impaired astrocytic gap junction coupling andpotassium buffering in a mouse model of tuberous sclerosis complex. Neurobiol Dis,
    2009.34(2): p.291-9.
    54. Zeng, L.H., et al., Rapamycin prevents epilepsy in a mouse model of tuberous sclerosiscomplex. Ann Neurol,2008.63(4): p.444-53.
    55. Zeng, L.H., N.R. Rensing, and M. Wong, The mammalian target of rapamycin signalingpathway mediates epileptogenesis in a model of temporal lobe epilepsy. J Neurosci,2009.29(21): p.6964-72.
    56. Rouach, N., et al., Astroglial metabolic networks sustain hippocampal synaptictransmission. Science,2008.322(5907): p.1551-5.
    57. Suzuki, A., et al., Astrocyte-neuron lactate transport is required for long-term memoryformation. Cell,2011.144(5): p.810-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700