用户名: 密码: 验证码:
CTMP在七氟醚预处理神经保护中的作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
缺血性脑卒中是人类的第二大死因[1],而目前唯一被FDA批准的外源性输入tPA溶栓,因治疗时间窗窄、副作用多,仅对5%的脑卒中患者显示出确切疗效[2]。预处理可激活多种内源性信号,诱导缺血耐受。以预处理为手段,明确内源性保护信号的关键分子,将为临床脑保护策略研究提供切实可行的新靶点。我科以往的研究发现:七氟醚预处理可诱导脑缺血耐受[3,4],然而,七氟醚预处理的机制远未阐明。脑缺血损伤后,各种损伤因子如兴奋性氨基酸等大量增加。为了存活,机体同时会激发一系列的保护机制,其中内源性生存信号通路是最重要的一个方面。包括缺血预处理等诸多神经保护策略,也涉及到生存信号Akt的激活[5-7]。但是,在缺血状态下,Akt激酶的磷酸化水平虽然也会增加,神经元却依旧凋亡、坏死——机体本身所活化的Akt通路没能显示出任何的促生存作用[8,9]。这一现象提示:在缺血损伤状态下,可能同时伴有某些负性调控因子激增,致使Akt激酶虽有改变而无活性。2009年Nature Neuroscience上的一篇研究显示:负性调控因子carboxy-terminal modulatorprotein (CTMP)在脑缺血损伤后大量增加[10]。由此,我们推测:七氟醚预处理通过调节CTMP的表达水平,可以恢复Akt激酶活性,从而诱导脑缺血耐受。
     本研究旨在揭示CTMP在七氟醚预处理诱导脑缺血耐受中的关键地位及其具体作用机制,为阐明七氟醚预处理诱导脑缺血耐受提供新的学术见解,为临床围术期脑保护策略研究提供新的方向。
     实验一七氟醚预处理对大鼠局灶性脑缺血损伤具有神经保护作用
     方法:由第四军医大学实验动物中心提供的清洁级雄性40只SD大鼠(200到250g),经过一周适应性饲养后,随机分为5组Sham组、I/R(ischemia/reperfusion)24h组、PC+I/R(sevoflurane preconditioning+ischemia/reperfusion)24h组、I/R7d组和PC+I/R7d组(Sham=4,其余n=9)。除假手术组(Sham)动物外,所有动物均行局灶性脑缺血再灌注损伤(middle cerebral artery occlusion,MCAO模型),缺血时间为1h,再灌注24h或7d。其中,给予七氟醚预处理的动物(PC+I/R24h组及PC+I/R7d组),在缺血前1h给予2.7%的七氟醚预处理45min。Sham组动物实施同样的各项操作,但不诱导脑缺血再灌注损伤,手术操作前1h给予45min纯氧。分别于再灌注24h和7d观察神经功能学评分(NBS)。评分后,处死动物,取脑,行TTC染色,计算脑梗死容积百分比。
     结果:单次七氟醚预处理可显著改善缺血后1d、7d时脑梗死容积百分比,对1d后的神经行为学亦有改善作用。
     实验二PI3K/Akt信号通路参与到七氟醚预处理的神经保护作用之中
     方法:由第四军医大学实验动物中心提供的清洁级雄性85只SD大鼠(200到250g),经过一周适应性饲养后,随机分为9组(Sham=5,其余n=10):Sham组,I/R组,PC+I/R,WT+PC+I/R(wortmannin,WT)组,LY+PC+I/R(LY294002,LY)组,WT+I/R组,LY+I/R组,VE-WT+PC+I/R组和VE-LY+PC+I/R组(两组溶剂对照组,Vehicle,VE)。除假手术组(Sham)动物外,所有动物均行局灶性脑缺血再灌注损伤(MCAO模型),缺血时间为1h,再灌注24h。其中,给予七氟醚预处理的动物,即:PC+I/R组,WT+PC+I/R组,LY+PC+I/R组,VE-WT+PC+I/R组和VE-LY+PC+I/R组,在缺血前1h给予2.7%的七氟醚预处理45min。Sham组动物实施同样的各项操作,但不诱导脑缺血再灌注损伤,手术操作前1h给予45min纯氧。抑制剂WT或LY294002于缺血前10min给予。神经功能评分和脑梗死容积染色于再灌注24h后实施。
     结果:Akt信号通路的两种抑制剂均可减少七氟醚预处理的于再灌注24h后的神经保护效果。
     实验三七氟醚预处理可抑制CTMP激增,提高Akt激酶活性
     方法:65只SD大鼠(200到250g),经过一周适应性饲养后,随机分为Sham组,I/R组,PC组(单纯预处理组)和PC+I/R组。I/R组动物行局灶性脑缺血再灌注损伤,缺血时间为1h,再灌注24h。PC组和PC+I/R组动物,给予2.7%的七氟醚预处理45min。PC+I/R组动物预处理后1h行MCAO模型。Sham组动物实施同样的各项操作,但不诱导脑缺血再灌注损伤,手术操作前1h给予45min纯氧。PC组,I/R组和PC+I/R组动物分别于再灌注1h,3h,12h和24h后取皮层半暗带。以Western Blot方法检测不同时间点:Akt在Ser473位点磷酸化(pSer473-Akt)水平、其下游直接作用分子GSK3β在Ser9位点的磷酸化(pSer9-GSK3β)水平以及Akt内源性抑制剂CTMP的表达水平。另取16只雄性SD大鼠,应用试剂盒分别检测Sham组,I/R组,PC组及PC+IR组于再灌注3h及相应的预处理时间点缺血半暗带或相应部位组织内Akt激酶活性。。
     结果:与Sham组相比,再灌注3h后I/R组,PC组及PC+I/R组的pSer473-Akt水平均显著增加,但pSer9-GSK3β只有在PC组及PC+I/R组增加。I/R组CTMP水平在持续增高至再灌注24h,而I/R组内Akt激酶活性与Sham组间无统计学差异。与I/R组相比,预处理可降低过量增加的pSer-473Akt,但可提高pSer9-GSK3β的表达水平。PC+I/R组CTMP水平较I/R组明显降低并维持至再灌注24h,Akt激酶活性增高。
     实验四CTMP过表达可抑制七氟醚预处理的神经保护效果
     方法:84只SD大鼠(200到250g),经过一周适应性饲养后,通过慢病毒转染(lentiviral transduction,LV)方法,于预处理前3d,经侧脑室分别注射LV-CTMP或其乱序对照LV-C。72h后,分析Sham组、LV-CTMP组与LV-C组(n=4)大鼠脑内CTMP的表达状况,及Akt激酶功能活性。另取一批动物,按实验一的方案,于再灌注24h后,对Sham组、LV-CTMP组、LV-C组、I/R组、PC+I/R组、LV-CTMP+PC+I/R组、LV-C+PC+I/R组、LV-CTMP+I/R组和LV-C+I/R组(n=8)动物进行神经功能学评分。Sham组、I/R组、PC+I/R组、LV-CTMP+PC+I/R组、LV-C+PC+I/R组、LV-CTMP+I/R组和LV-C+I/R组在评分后行TTC染色,测量脑梗死容积百分比。
     结果:LV-CTMP侧脑室注射3d后CTMP表达含量增加,Akt激酶活性降低。与PC+I/R组相比,CTMP过表达降低了再灌注24h后的神经功能学评分并增加了脑梗死容积百分比,与I/R组动物间没有统计学差异。
It has been confirmed that dysregulation of the pro-survival signal Akt contributes toneuronal damage after ischemic stroke. Neuroprotective strategies such as ischemicpreconditioning and sevoflurane postconditioning promote neuronal survival by activatingAkt[5-7]. A robust increase of phosphorylation level of Akt occurred after ischemiaparalleling its sustained poor function in phosphorylating the downstream pro-apoptoticsubstrates[8,9]. Such data indicate that the phosphorylation level of Akt is not alwaysparallel with its activity. The endogenous inhibitor of Akt, carboxy-terminal modulatorprotein (CTMP)[11], increased robustly after ischemia, it probably participates in thedamage to neurons in the ischemic stroke and be regulated by sevofluranepreconditioning.
     The current study was designed to explore the role and mechanism of CTMP inischemic tolerance induced sevoflurane preconditioning, improving our understanding ofsevoflurane preconditioning and providing evidence of new research direction for the
     Experiment1Single sevoflurane preconditioning induced neuroprotection
     against focal cerebral ischemia and reperfusion injuryMethod:To determine the neuroprotection of single sevoflurane preconditioning,40SD rats were random assigned to5groups: a sham operation group (Sham), anischemia/reperfusion (I/R) group observed24h, a sevoflurane preconditioning (PC+I/R)group observed24h, an I/R group observed7d and a PC+I/R group observed7d (Sham=4;others, n=9). Preconditioned animals were exposed to2.7%sevoflurane for45mins at1hbefore ischemia. The neurological deficits and infarct volumes of the rats were evaluated24h or7d after reperfusion by a researcher blinded to the animal groups.
     Result:Sevoflurane preconditioning significantly reduced the infarct volume of therats suffering focal cerebral ischemia at24h and7d after reperfusion, and amelioratedneurological dysfunction at24h after reperfusion.
     Experiment2Akt pathway was involved in the neuroprotection of sevofluranepreconditioning
     Method:To investigate the role of Akt in the induction of ischemic tolerance bysevoflurane preconditioning, we randomly assigned85rats to9groups: a Sham group(n=5), an I/R group, a PC+I/R group, a sevoflurane preconditioning with wortmannin(WT+PC+I/R) group, a sevoflurane preconditioning with LY294002(LY+PC+I/R) group,an ischemia with wortmannin (WT+I/R) group, an ischemia with LY294002(LY+I/R)group and two vehicle (VE-WT+PC+I/R and VE-LY+PC+I/R) groups. Preconditionedanimals were exposed to2.7%sevoflurane for45mins at1h before ischemia. Theneurological deficits and infarct volumes of the rats were evaluated24h after reperfusionby a researcher blinded to the animal groups. Wortmannin and LY294002wereadministered to the rats10mins before preconditioning. An equal volume of vehicle wasadministered to the rats in the same manner in the VE-WT+PC+I/R and theVE-LY+PC+I/R group.
     Result: Wortmannin and LY294002injection lessened the neuroprotection of
     sevoflurane preconditioning.
     Experiment3Sevoflurane preconditioning suppressed the CTMPover-expression induced by ischemia injury and restored Akt activity
     Method: To determine the effect of sevoflurane preconditioning on thephosphorylation levels of Akt and its downstream target GSK3β, as well as changes inCTMP levels and the activity of Akt kinase after ischemia,64rats were random assignedto Sham, I/R, PC or PC+I/R group. Preconditioned animals not subjected to ischemia(noted as0h) were sacrificed24h after preconditioning. Rats in the I/R and PC+I/Rgroups were sacrificed1,3,12and24h after reperfusion (n=5). Akt activity wasdetermined3h after reperfusion with another16SD male rats (n=4).
     Result:Ischemia induced a transient increase in the phosphorylation of Akt at Ser473(pSer473-Akt), whereas sevoflurane preconditioning suppressed the phosphorylation ofAkt elicited by ischemia3h after reperfusion. Phosphorylation level of GSK3β(pSer9-GSK3β), a downstream target of Akt, was higher in the PC+I/R group compared tothe I/R group at1h and3h after reperfusion. An Akt kinase activity assay showed thatsevoflurane preconditioning increased Akt activity3h after reperfusion, which wasconsistent with the increased pSer9-GSK3β expression in vivo. Expression of CTMP inthe rats of the I/R group began to increase3h after ischemia/reperfusion and remainedhigher than that of the sham group at24h. Sevoflurane preconditioning suppressed theincrease in CTMP expression induced by I/R injury.
     Experiment4CTMP over-expression by LV-CTMP markedly suppressed thebeneficial effects of sevoflurane preconditioning
     Method:To examine the effect of CTMP in sevoflurane preconditioning andischemia/reperfusion, we used lentiviral transduction (LV) to increase the expression ofCTMP before preconditioning. Rats received an intracerebroventricular injection of eitherLV-CTMP or LV-C (scrambled control vector)3d before preconditioning. After24h ofreperfusion, rats were subjected to evaluation of neurologic scores and sacrificed to determine infarct volume. Expression of CTMP and the activity of Akt kinase in theLV-CTMP, LV-C and sham operation groups was examined by Western Blot analysis.
     Result:Injection of LV-CTMP led to an approximately3-fold increase of CTMPprotein expression and a suppression of Akt kinase activity in the targeted brain regions.CTMP over-expression markedly lessened the beneficial effects of sevofluranepreconditioning.
引文
[1] Lopez AD, Mathers CD, Ezzati M et al. Global and regional burden of disease andrisk factors,2001: systematic analysis of population health data. Lancet2006;367:1747-57.
    [2] Fonarow GC, Smith EE, Saver JL et al. Timeliness of tissue-type plasminogenactivator therapy in acute ischemic stroke: patient characteristics, hospital factors, andoutcomes associated with door-to-needle times within60minutes. Circulation2011;123:750-8.
    [3] Yang Q, Yan W, Li X et al. Activation of Canonical Notch Signaling Pathway IsInvolved in the Ischemic Tolerance Induced by Sevoflurane Preconditioning in Mice.Anesthesiology2012.
    [4] Yang Q, Dong H, Deng J et al. Sevoflurane preconditioning induces neuroprotectionthrough reactive oxygen species-mediated up-regulation of antioxidant enzymes in rats.Anesth Analg2011;112:931-7.
    [5] Brywe KG, Mallard C, Gustavsson M et al. IGF-I neuroprotection in the immaturebrain after hypoxia-ischemia, involvement of Akt and GSK3beta? Eur J Neurosci2005;21:1489-502.
    [6] Brywe KG, Leverin AL, Gustavsson M et al. Growth hormone-releasing peptidehexarelin reduces neonatal brain injury and alters Akt/glycogen synthase kinase-3betaphosphorylation. Endocrinology2005;146:4665-72.
    [7] Han BH, Holtzman DM. BDNF protects the neonatal brain from hypoxic-ischemicinjury in vivo via the ERK pathway. The Journal of neuroscience: the official journal ofthe Society for Neuroscience2000;20:5775-81.
    [8] Yano S, Morioka M, Fukunaga K et al. Activation of Akt/protein kinase B contributesto induction of ischemic tolerance in the CA1subfield of gerbil hippocampus. J CerebBlood Flow Metab2001;21:351-60.
    [9] Noshita N, Lewen A, Sugawara T, Chan PH. Evidence of phosphorylation of Akt andneuronal survival after transient focal cerebral ischemia in mice. J Cereb Blood FlowMetab2001;21:1442-50.
    [10] Miyawaki T, Ofengeim D, Noh KM et al. The endogenous inhibitor of Akt,CTMP, is critical to ischemia-induced neuronal death. Nat Neurosci2009;12:618-26.
    [11] Schick V, Majores M, Engels G et al. Activation of Akt independent of PTEN andCTMP tumor-suppressor gene mutations in epilepsy-associated Taylor-type focal corticaldysplasias. Acta Neuropathol2006;112:715-25.
    [12] Wang JK, Yu LN, Zhang FJ et al. Postconditioning with sevoflurane protectsagainst focal cerebral ischemia and reperfusion injury via PI3K/Akt pathway. Brainresearch2010;1357:142-51.
    [13] Yin W, Signore AP, Iwai M et al. Preconditioning suppresses inflammation inneonatal hypoxic ischemia via Akt activation. Stroke; a journal of cerebral circulation2007;38:1017-24.
    [14] Gao X, Zhang H, Steinberg G, Zhao H. The Akt pathway is involved in rapidischemic tolerance in focal ischemia in Rats. Transl Stroke Res2010;1:202-9.
    [15] Zhao H, Shimohata T, Wang JQ et al. Akt contributes to neuroprotection byhypothermia against cerebral ischemia in rats. The Journal of neuroscience: the officialjournal of the Society for Neuroscience2005;25:9794-806.
    [16] Strong K, Mathers C, Bonita R. Preventing stroke: saving lives around the world.Lancet neurology2007;6:182-7.
    [17] Zheng S, Zuo Z. Isoflurane preconditioning reduces purkinje cell death in an invitro model of rat cerebellar ischemia. Neuroscience2003;118:99-106.
    [18] Zheng S, Zuo Z. Isoflurane preconditioning induces neuroprotection againstischemia via activation of P38mitogen-activated protein kinases. Mol Pharmacol2004;65:1172-80.
    [19] Bright R, Mochly-Rosen D. The role of protein kinase C in cerebral ischemic andreperfusion injury. Stroke2005;36:2781-90.
    [20] Dave KR, DeFazio RA, Raval AP et al. Ischemic preconditioning targets therespiration of synaptic mitochondria via protein kinase C epsilon. The Journal ofneuroscience: the official journal of the Society for Neuroscience2008;28:4172-82.
    [21] Raval AP, Dave KR, Mochly-Rosen D et al. Epsilon PKC is required for theinduction of tolerance by ischemic and NMDA-mediated preconditioning in theorganotypic hippocampal slice. The Journal of neuroscience: the official journal of theSociety for Neuroscience2003;23:384-91.
    [22] Wang J, Bright R, Mochly-Rosen D, Giffard RG. Cell-specific role for epsilon-and betaI-protein kinase C isozymes in protecting cortical neurons and astrocytes fromischemia-like injury. Neuropharmacology2004;47:136-45.
    [23] Di-Capua N, Sperling O, Zoref-Shani E. Protein kinase C-epsilon is involved inthe adenosine-activated signal transduction pathway conferring protection againstischemia-reperfusion injury in primary rat neuronal cultures. Journal of neurochemistry2003;84:409-12.
    [24] Raval AP, Dave KR, DeFazio RA, Perez-Pinzon MA. epsilonPKC phosphorylatesthe mitochondrial K(+)(ATP) channel during induction of ischemic preconditioning in therat hippocampus. Brain Res2007;1184:345-53.
    [25] Ravati A, Ahlemeyer B, Becker A et al. Preconditioning-induced neuroprotectionis mediated by reactive oxygen species and activation of the transcription factor nuclearfactor-kappaB. Journal of neurochemistry2001;78:909-19.
    [26] McLaughlin B, Hartnett KA, Erhardt JA et al. Caspase3activation is essential forneuroprotection in preconditioning. Proceedings of the National Academy of Sciences ofthe United States of America2003;100:715-20.
    [27] Sakurai M, Hayashi T, Abe K et al. Enhancement of heat shock proteinexpression after transient ischemia in the preconditioned spinal cord of rabbits. Journal ofvascular surgery: official publication, the Society for Vascular Surgery [and] InternationalSociety for Cardiovascular Surgery, North American Chapter1998;27:720-5.
    [28] Chen LJ, Su XW, Qiu PX et al. Thermal preconditioning protected cerebellargranule neurons of rats by modulating HSP70expression. Acta pharmacologica Sinica2004;25:458-61.
    [29] Steiger HJ, Hanggi D. Ischaemic preconditioning of the brain, mechanisms andapplications. Acta Neurochir (Wien)2007;149:1-10.
    [30] Yenari MA, Giffard RG, Sapolsky RM, Steinberg GK. The neuroprotectivepotential of heat shock protein70(HSP70). Mol Med Today1999;5:525-31.
    [31] Lee SH, Kwon HM, Kim YJ et al. Effects of hsp70.1gene knockout on themitochondrial apoptotic pathway after focal cerebral ischemia. Stroke2004;35:2195-9.
    [32] Wu JC, Liang ZQ, Qin ZH. Quality control system of the endoplasmic reticulumand related diseases. Acta Biochim Biophys Sin (Shanghai)2006;38:219-26.
    [33] Chen JJ, Lin F, Qin ZH. The roles of the proteasome pathway in signaltransduction and neurodegenerative diseases. Neuroscience bulletin2008;24:183-94.
    [34] Hebert DN, Molinari M. In and out of the ER: protein folding, quality control,degradation, and related human diseases. Physiol Rev2007;87:1377-408.
    [35] Ghaemmaghami S, Huh WK, Bower K et al. Global analysis of proteinexpression in yeast. Nature2003;425:737-41.
    [36] Voellmy R. Transcriptional regulation of the metazoan stress protein response.Prog Nucleic Acid Res Mol Biol2004;78:143-85.
    [37] Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am JPhysiol Lung Cell Mol Physiol2000;279:L1005-28.
    [38] Dhalla NS, Elmoselhi AB, Hata T, Makino N. Status of myocardial antioxidantsin ischemia-reperfusion injury. Cardiovascular research2000;47:446-56.
    [39] Harukuni I, Bhardwaj A. Mechanisms of brain injury after global cerebralischemia. Neurologic clinics2006;24:1-21.
    [40] Benveniste H, Hedlund LW, Johnson GA. Mechanism of detection of acutecerebral ischemia in rats by diffusion-weighted magnetic resonance microscopy. Stroke1992;23:746-54.
    [41] Wiegand F, Liao W, Busch C et al. Respiratory chain inhibition induces toleranceto focal cerebral ischemia. J Cereb Blood Flow Metab1999;19:1229-37.
    [42] Wada K, Miyazawa T, Nomura N et al. Preferential conditions for and possiblemechanisms of induction of ischemic tolerance by repeated hyperbaric oxygenation ingerbil hippocampus. Neurosurgery2001;49:160-6; discussion6-7.
    [43] Richard VJ, Murry CE, Jennings RB, Reimer KA. Therapy to reduce free radicalsduring early reperfusion does not limit the size of myocardial infarcts caused by90minutes of ischemia in dogs. Circulation1988;78:473-80.
    [44] Gidday JM, Shah AR, Maceren RG et al. Nitric oxide mediates cerebral ischemictolerance in a neonatal rat model of hypoxic preconditioning. J Cereb Blood Flow Metab1999;19:331-40.
    [45] Atochin DN, Clark J, Demchenko IT et al. Rapid cerebral ischemicpreconditioning in mice deficient in endothelial and neuronal nitric oxide synthases.Stroke2003;34:1299-303.
    [46] Cho S, Park EM, Zhou P et al. Obligatory role of inducible nitric oxide synthasein ischemic preconditioning. J Cereb Blood Flow Metab2005;25:493-501.
    [47] Kapinya KJ, Prass K, Dirnagl U. Isoflurane induced prolonged protection againstcerebral ischemia in mice: a redox sensitive mechanism? Neuroreport2002;13:1431-5.
    [48] Hashiguchi A, Yano S, Morioka M et al. Up-regulation of endothelial nitric oxidesynthase via phosphatidylinositol3-kinase pathway contributes to ischemic tolerance inthe CA1subfield of gerbil hippocampus. J Cereb Blood Flow Metab2004;24:271-9.
    [49] Mehta SL, Manhas N, Raghubir R. Molecular targets in cerebral ischemia fordeveloping novel therapeutics. Brain Res Rev2007;54:34-66.
    [50] Jiang X, Zhu D, Okagaki P et al. N-methyl-D-aspartate and TrkB receptoractivation in cerebellar granule cells: an in vitro model of preconditioning to stimulateintrinsic survival pathways in neurons. Ann N Y Acad Sci2003;993:134-45.
    [51] Bond A, Lodge D, Hicks CA et al. NMDA receptor antagonism, but not AMPAreceptor antagonism attenuates induced ischaemic tolerance in the gerbil hippocampus.Eur J Pharmacol1999;380:91-9.
    [52] Grabb MC, Choi DW. Ischemic tolerance in murine cortical cell culture: criticalrole for NMDA receptors. The Journal of neuroscience: the official journal of the Societyfor Neuroscience1999;19:1657-62.
    [53] Shimazaki K, Nakamura T, Nakamura K et al. Reduced calcium elevation inhippocampal CA1neurons of ischemia-tolerant gerbils. Neuroreport1998;9:1875-8.
    [54] Mattson MP, Goodman Y, Luo H et al. Activation of NF-kappaB protectshippocampal neurons against oxidative stress-induced apoptosis: evidence for induction ofmanganese superoxide dismutase and suppression of peroxynitrite production and proteintyrosine nitration. Journal of neuroscience research1997;49:681-97.
    [55] Soriano FX, Papadia S, Hofmann F et al. Preconditioning doses of NMDApromote neuroprotection by enhancing neuronal excitability. The Journal of neuroscience:the official journal of the Society for Neuroscience2006;26:4509-18.
    [56] Perez-Pinzon MA. Mechanisms of neuroprotection during ischemicpreconditioning: lessons from anoxic tolerance. Comp Biochem Physiol A Mol IntegrPhysiol2007;147:291-9.
    [57] Dave KR, Lange-Asschenfeldt C, Raval AP et al. Ischemic preconditioningameliorates excitotoxicity by shifting glutamate/gamma-aminobutyric acid release andbiosynthesis. Journal of neuroscience research2005;82:665-73.
    [58] Obrenovitch TP. Molecular physiology of preconditioning-induced braintolerance to ischemia. Physiol Rev2008;88:211-47.
    [59] Zhou AM, Li WB, Li QJ et al. A short cerebral ischemic preconditioningup-regulates adenosine receptors in the hippocampal CA1region of rats. Neuroscienceresearch2004;48:397-404.
    [60] Liu Y, Xiong L, Chen S, Wang Q. Isoflurane tolerance against focal cerebralischemia is attenuated by adenosine A1receptor antagonists. Can J Anaesth2006;53:194-201.
    [61] Schultz JE, Qian YZ, Gross GJ, Kukreja RC. The ischemia-selective KATPchannel antagonist,5-hydroxydecanoate, blocks ischemic preconditioning in the rat heart.Journal of molecular and cellular cardiology1997;29:1055-60.
    [62] Kariko K, Weissman D, Welsh FA. Inhibition of toll-like receptor and cytokinesignaling--a unifying theme in ischemic tolerance. J Cereb Blood Flow Metab2004;24:1288-304.
    [63] Nawashiro H, Tasaki K, Ruetzler CA, Hallenbeck JM. TNF-alpha pretreatmentinduces protective effects against focal cerebral ischemia in mice. J Cereb Blood FlowMetab1997;17:483-90.
    [64] Liu J, Ginis I, Spatz M, Hallenbeck JM. Hypoxic preconditioning protectscultured neurons against hypoxic stress via TNF-alpha and ceramide. Am J Physiol CellPhysiol2000;278:C144-53.
    [65] Ohtsuki T, Ruetzler CA, Tasaki K, Hallenbeck JM. Interleukin-1mediatesinduction of tolerance to global ischemia in gerbil hippocampal CA1neurons. J CerebBlood Flow Metab1996;16:1137-42.
    [66] Huang J, Upadhyay UM, Tamargo RJ. Inflammation in stroke and focal cerebralischemia. Surgical neurology2006;66:232-45.
    [67] Allain R, Marone LK, Meltzer J, Jeyabalan G. Carotid endarterectomy. IntAnesthesiol Clin2005;43:15-38.
    [68] Wilson PV, Ammar AD. The incidence of ischemic stroke versus intracerebralhemorrhage after carotid endarterectomy: a review of2452cases. Ann Vasc Surg2005;19:1-4.
    [69] Ferguson GG, Eliasziw M, Barr HW et al. The North American SymptomaticCarotid Endarterectomy Trial: surgical results in1415patients. Stroke1999;30:1751-8.
    [70] Kitano H, Kirsch JR, Hurn PD, Murphy SJ. Inhalational anesthetics asneuroprotectants or chemical preconditioning agents in ischemic brain. J Cereb BloodFlow Metab2007;27:1108-28.
    [71] Kevin LG, Novalija E, Riess ML et al. Sevoflurane exposure generatessuperoxide but leads to decreased superoxide during ischemia and reperfusion in isolatedhearts. Anesthesia and analgesia2003;96:949-55.
    [72] Bouwman RA, Musters RJ, van Beek-Harmsen BJ et al. Reactive oxygen speciesprecede protein kinase C-delta activation independent of adenosine triphosphate-sensitivemitochondrial channel opening in sevoflurane-induced cardioprotection. Anesthesiology2004;100:506-14.
    [73] Novalija E, Kevin LG, Camara AK et al. Reactive oxygen species precede theepsilon isoform of protein kinase C in the anesthetic preconditioning signaling cascade.Anesthesiology2003;99:421-8.
    [74] Payne RS, Akca O, Roewer N et al. Sevoflurane-induced preconditioning protectsagainst cerebral ischemic neuronal damage in rats. Brain Res2005;1034:147-52.
    [75] Codaccioni JL, Velly LJ, Moubarik C et al. Sevoflurane preconditioning againstfocal cerebral ischemia: inhibition of apoptosis in the face of transient improvement ofneurological outcome. Anesthesiology2009;110:1271-8.
    [76] Adamczyk S, Robin E, Simerabet M et al. Sevoflurane pre-and post-conditioningprotect the brain via the mitochondrial K ATP channel. British journal of anaesthesia2010;104:191-200.
    [77] Wang H, Lu S, Yu Q et al. Sevoflurane preconditioning confers neuroprotectionvia anti-inflammatory effects. Frontiers in bioscience2011;3:604-15.
    [78] Ye Z, Guo Q, Wang E.[Delayed neuroprotective effect of sevoflurane on theexpression of NF-kappaB following transient focal ischemia-reperfusion in rats]. Zhongnan da xue xue bao Yi xue ban=Journal of Central South University Medical sciences2010;35:262-6.
    [79] McAuliffe JJ, Loepke AW, Miles L et al. Desflurane, isoflurane, and sevofluraneprovide limited neuroprotection against neonatal hypoxia-ischemia in a delayedpreconditioning paradigm. Anesthesiology2009;111:533-46.
    [80] Luo Y, Ma D, Ieong E et al. Xenon and sevoflurane protect against brain injury ina neonatal asphyxia model. Anesthesiology2008;109:782-9.
    [81] Wang ZP, Zhang ZH, Zeng YM et al.[Protective effect of sevofluranepreconditioning on oxygen-glucose deprivation injury in rat hippocampal slices: the roleof mitochondrial K(ATP)channels.]. Sheng li xue bao:[Acta physiologica Sinica]2006;58:201-6.
    [82] Kehl F, Payne RS, Roewer N, Schurr A. Sevoflurane-induced preconditioning ofrat brain in vitro and the role of KATP channels. Brain Res2004;1021:76-81.
    [83] Sigaut S, Jannier V, Rouelle D et al. The preconditioning effect of sevoflurane onthe oxygen glucose-deprived hippocampal slice: the role of tyrosine kinases and durationof ischemia. Anesthesia and analgesia2009;108:601-8.
    [84] Wang S, Dai ZG, Dong XW et al. Duplicate preconditioning with sevoflurane invitro improves neuroprotection in rat brain via activating the extracellular signal-regulatedprotein kinase. Neuroscience bulletin2010;26:437-44.
    [85] Ding Q, Wang Q, Deng J et al. Sevoflurane preconditioning induces rapidischemic tolerance against spinal cord ischemia/reperfusion through activation ofextracellular signal-regulated kinase in rabbits. Anesthesia and analgesia2009;109:1263-72.
    [86] Li H, Wang JK, Zeng YM et al. Sevoflurane post-conditioning protects againstmyocardial reperfusion injury by activation of phosphatidylinositol-3-kinase signaltransduction. Clin Exp Pharmacol Physiol2008;35:1043-51.
    [87] Zhu L, Lemoine S, Babatasi G et al. Sevoflurane-and desflurane-induced humanmyocardial post-conditioning through Phosphatidylinositol-3-kinase/Akt signalling. ActaAnaesthesiol Scand2009;53:949-56.
    [88] Yu LN, Yu J, Zhang FJ et al. Sevoflurane postconditioning reduces myocardialreperfusion injury in rat isolated hearts via activation of PI3K/Akt signaling andmodulation of Bcl-2family proteins. Journal of Zhejiang University Science B2010;11:661-72.
    [89] Inamura Y, Miyamae M, Sugioka S et al. Aprotinin abolishes sevofluranepostconditioning by inhibiting nitric oxide production and phosphorylation of proteinkinase C-delta and glycogen synthase kinase3beta. Anesthesiology2009;111:1036-43.
    [90] Kapinya KJ, Lowl D, Futterer C et al. Tolerance against ischemic neuronal injurycan be induced by volatile anesthetics and is inducible NO synthase dependent. Stroke2002;33:1889-98.
    [91] Xiong L, Zheng Y, Wu M et al. Preconditioning with isoflurane producesdose-dependent neuroprotection via activation of adenosine triphosphate-regulatedpotassium channels after focal cerebral ischemia in rats. Anesthesia and analgesia2003;96:233-7.
    [92] Kitano H, Young JM, Cheng J et al. Gender-specific response to isofluranepreconditioning in focal cerebral ischemia. J Cereb Blood Flow Metab2007;27:1377-86.
    [93] Blanck TJ, Haile M, Xu F et al. Isoflurane pretreatment ameliorates postischemicneurologic dysfunction and preserves hippocampal Ca2+/calmodulin-dependent proteinkinase in a canine cardiac arrest model. Anesthesiology2000;93:1285-93.
    [94] Zhao P, Zuo Z. Isoflurane preconditioning induces neuroprotection that isinducible nitric oxide synthase-dependent in neonatal rats. Anesthesiology2004;101:695-703.
    [95] McAuliffe JJ, Joseph B, Vorhees CV. Isoflurane-delayed preconditioning reducesimmediate mortality and improves striatal function in adult mice after neonatalhypoxia-ischemia. Anesthesia and analgesia2007;104:1066-77.
    [96] Bhardwaj A, Castro IA, Alkayed NJ et al. Anesthetic choice of halothane versuspropofol: impact on experimental perioperative stroke. Stroke2001;32:1920-5.
    [97] Ma D, Hossain M, Pettet GK et al. Xenon preconditioning reduces brain damagefrom neonatal asphyxia in rats. J Cereb Blood Flow Metab2006;26:199-208.
    [98] Bhardwaj A, Alkayed NJ, Kirsch JR, Hurn PD. Mechanisms of ischemic braindamage. Curr Cardiol Rep2003;5:160-7.
    [99] Warner DS. Anesthetics provide limited but real protection against acute braininjury. J Neurosurg Anesthesiol2004;16:303-7.
    [100] Kawaguchi M, Furuya H, Patel PM. Neuroprotective effects of anesthetic agents.J Anesth2005;19:150-6.
    [101] Bickler PE, Buck LT, Feiner JR. Volatile and intravenous anesthetics decreaseglutamate release from cortical brain slices during anoxia. Anesthesiology1995;83:1233-40.
    [102] Eilers H, Bickler PE. Hypothermia and isoflurane similarly inhibit glutamaterelease evoked by chemical anoxia in rat cortical brain slices. Anesthesiology1996;85:600-7.
    [103] Toner CC, Connelly K, Whelpton R et al. Effects of sevoflurane on dopamine,glutamate and aspartate release in an in vitro model of cerebral ischaemia. British journalof anaesthesia2001;86:550-4.
    [104] Engelhard K, Werner C, Hoffman WE et al. The effect of sevoflurane andpropofol on cerebral neurotransmitter concentrations during cerebral ischemia in rats.Anesthesia and analgesia2003;97:1155-61.
    [105] Illievich UM, Zornow MH, Choi KT et al. Effects of hypothermia or anestheticson hippocampal glutamate and glycine concentrations after repeated transient globalcerebral ischemia. Anesthesiology1994;80:177-86.
    [106] Nakashima K, Todd MM. Effects of hypothermia, pentobarbital, and isofluraneon postdepolarization amino acid release during complete global cerebral ischemia.Anesthesiology1996;85:161-8.
    [107] Patel PM, Drummond JC, Cole DJ, Goskowicz RL. Isoflurane reducesischemia-induced glutamate release in rats subjected to forebrain ischemia.Anesthesiology1995;82:996-1003.
    [108] Ritz MF, Schmidt P, Mendelowitsch A. Effects of isoflurane on glutamate andtaurine releases, brain swelling and injury during transient ischemia and reperfusion. Int JNeurosci2006;116:191-202.
    [109] Li J, Zheng S, Zuo Z. Isoflurane decreases AMPA-induced dark cell degenerationand edematous damage of Purkinje neurons in the rat cerebellar slices. Brain Res2002;958:399-404.
    [110] Carla V, Moroni F. General anaesthetics inhibit the responses induced byglutamate receptor agonists in the mouse cortex. Neurosci Lett1992;146:21-4.
    [111] Zuo Z, Tichotsky A, Johns RA. Inhibition of excitatory neurotransmitter-nitricoxide signaling pathway by inhalational anesthetics. Neuroscience1999;93:1167-72.
    [112] Solt K, Eger EI,2nd, Raines DE. Differential modulation of humanN-methyl-D-aspartate receptors by structurally diverse general anesthetics. Anesthesia andanalgesia2006;102:1407-11.
    [113] Paschen W. Mechanisms of neuronal cell death: diverse roles of calcium in thevarious subcellular compartments. Cell Calcium2003;34:305-10.
    [114] Bickler PE, Buck LT, Hansen BM. Effects of isoflurane and hypothermia onglutamate receptor-mediated calcium influx in brain slices. Anesthesiology1994;81:1461-9.
    [115] Racay P, Kaplan P, Lehotsky J. Ischemia-induced inhibition of active calciumtransport into gerbil brain microsomes: effect of anesthetics and models of ischemia.Neurochem Res2000;25:285-92.
    [116] Gray JJ, Bickler PE, Fahlman CS et al. Isoflurane neuroprotection in hypoxichippocampal slice cultures involves increases in intracellular Ca2+and mitogen-activatedprotein kinases. Anesthesiology2005;102:606-15.
    [117] Bickler PE, Zhan X, Fahlman CS. Isoflurane preconditions hippocampal neuronsagainst oxygen-glucose deprivation: role of intracellular Ca2+and mitogen-activatedprotein kinase signaling. Anesthesiology2005;103:532-9.
    [118] Engelhard K, Werner C, Eberspacher E et al. Sevoflurane and propofol influencethe expression of apoptosis-regulating proteins after cerebral ischaemia and reperfusion inrats. European journal of anaesthesiology2004;21:530-7.
    [119] Kawaguchi M, Drummond JC, Cole DJ et al. Effect of isoflurane on neuronalapoptosis in rats subjected to focal cerebral ischemia. Anesthesia and analgesia2004;98:798-805.
    [120] Wise-Faberowski L, Raizada MK, Sumners C. Oxygen and glucosedeprivation-induced neuronal apoptosis is attenuated by halothane and isoflurane.Anesthesia and analgesia2001;93:1281-7.
    [121] Kodaka M, Mori T, Tanaka K et al.[Depressive effects of propofol on apoptoticinjury and delayed neuronal death after forebrain ischemia in the rat--comparison withnitrous oxide-oxygen-isoflurane]. Masui The Japanese journal of anesthesiology2000;49:130-8.
    [122] Graham SH, Chen J. Programmed cell death in cerebral ischemia. J Cereb BloodFlow Metab2001;21:99-109.
    [123] Homi HM, Mixco JM, Sheng H et al. Severe hypotension is not essential forisoflurane neuroprotection against forebrain ischemia in mice. Anesthesiology2003;99:1145-51.
    [124] Mackensen GB, Nellgard B, Kudo M et al. Periischemic cerebral blood flow(CBF) does not explain beneficial effects of isoflurane on outcome from near-completeforebrain ischemia in rats. Anesthesiology2000;93:1102-6.
    [125] Chi OZ, Wei HM, O'Hara DA et al. Effects of pentobarbital and isoflurane onregional cerebral oxygen extraction and consumption with middle cerebral arteryocclusion in rats. Anesthesiology1993;79:299-305.
    [126] Murr R, Schurer L, Berger S et al. Effects of anaesthetic agents on cerebral bloodflow and brain oedema from a focal lesion in rabbit brain. Acta Neurochir Suppl (Wien)1990;51:97-9.
    [127] Murr R, Schurer L, Berger S et al. Effects of isoflurane, fentanyl, or thiopentalanesthesia on regional cerebral blood flow and brain surface PO2in the presence of afocal lesion in rabbits. Anesthesia and analgesia1993;77:898-907.
    [128] Saito R, Graf R, Hubel K et al. Reduction of infarct volume by halothane: effecton cerebral blood flow or perifocal spreading depression-like depolarizations. J CerebBlood Flow Metab1997;17:857-64.
    [129] Crack PJ, Taylor JM. Reactive oxygen species and the modulation of stroke. FreeRadic Biol Med2005;38:1433-44.
    [130] Warner DS, Sheng H, Batinic-Haberle I. Oxidants, antioxidants and the ischemicbrain. J Exp Biol2004;207:3221-31.
    [131] Wilson JX, Gelb AW. Free radicals, antioxidants, and neurologic injury: possiblerelationship to cerebral protection by anesthetics. J Neurosurg Anesthesiol2002;14:66-79.
    [132] Kudo M, Aono M, Lee Y et al. Absence of direct antioxidant effects from volatileanesthetics in primary mixed neuronal-glial cultures. Anesthesiology2001;94:303-212.
    [133] Verhaegen MJ, Todd MM, Warner DS. A comparison of cerebral ischemic flowthresholds during halothane/N2O and isoflurane/N2O anesthesia in rats. Anesthesiology1992;76:743-54.
    [134] Nellgard B, Mackensen GB, Pineda J et al. Anesthetic effects on cerebralmetabolic rate predict histologic outcome from near-complete forebrain ischemia in the rat.Anesthesiology2000;93:431-6.
    [135] Bickler PE, Warner DS, Stratmann G, Schuyler JA. gamma-Aminobutyric acid-Areceptors contribute to isoflurane neuroprotection in organotypic hippocampal cultures.Anesthesia and analgesia2003;97:564-71, table of contents.
    [136] Hui L, Pei DS, Zhang QG et al. The neuroprotection of insulin on ischemic braininjury in rat hippocampus through negative regulation of JNK signaling pathway byPI3K/Akt activation. Brain Res2005;1052:1-9.
    [137] Paez J, Sellers WR. PI3K/PTEN/AKT pathway. A critical mediator of oncogenicsignaling. Cancer Treat Res2003;115:145-67.
    [138] Shiojima I, Walsh K. Role of Akt signaling in vascular homeostasis andangiogenesis. Circulation research2002;90:1243-50.
    [139] Kandel ES, Hay N. The regulation and activities of the multifunctionalserine/threonine kinase Akt/PKB. Exp Cell Res1999;253:210-29.
    [140] Easton RM, Cho H, Roovers K et al. Role for Akt3/protein kinase Bgamma inattainment of normal brain size. Mol Cell Biol2005;25:1869-78.
    [141] Cheng JQ, Lindsley CW, Cheng GZ et al. The Akt/PKB pathway: moleculartarget for cancer drug discovery. Oncogene2005;24:7482-92.
    [142] Brazil DP, Park J, Hemmings BA. PKB binding proteins. Getting in on the Akt.Cell2002;111:293-303.
    [143] Grutzner U, Keller M, Bach M et al. PI3-kinase pathway is responsible forantiapoptotic effects of atrial natriuretic peptide in rat liver transplantation. World JGastroenterol2006;12:1049-55.
    [144] Akbar M, Calderon F, Wen Z, Kim HY. Docosahexaenoic acid: a positivemodulator of Akt signaling in neuronal survival. Proceedings of the National Academy ofSciences of the United States of America2005;102:10858-63.
    [145] Fukunaga K, Ishigami T, Kawano T. Transcriptional regulation of neuronal genesand its effect on neural functions: expression and function of forkhead transcription factorsin neurons. J Pharmacol Sci2005;98:205-11.
    [146] Kim AH, Khursigara G, Sun X et al. Akt phosphorylates and negatively regulatesapoptosis signal-regulating kinase1. Mol Cell Biol2001;21:893-901.
    [147] Li XL, Man K, Ng KT et al. The influence of phosphatidylinositol3-kinase/Aktpathway on the ischemic injury during rat liver graft preservation. Am J Transplant2005;5:1264-75.
    [148] Cross DA, Alessi DR, Cohen P et al. Inhibition of glycogen synthase kinase-3byinsulin mediated by protein kinase B. Nature1995;378:785-9.
    [149] Diehl JA, Cheng M, Roussel MF, Sherr CJ. Glycogen synthase kinase-3betaregulates cyclin D1proteolysis and subcellular localization. Genes Dev1998;12:3499-511.
    [150] Wei W, Jin J, Schlisio S et al. The v-Jun point mutation allows c-Jun to escapeGSK3-dependent recognition and destruction by the Fbw7ubiquitin ligase. Cancer Cell2005;8:25-33.
    [151] Welcker M, Singer J, Loeb KR et al. Multisite phosphorylation by Cdk2andGSK3controls cyclin E degradation. Mol Cell2003;12:381-92.
    [152] Yeh E, Cunningham M, Arnold H et al. A signalling pathway controlling c-Mycdegradation that impacts oncogenic transformation of human cells. Nature cell biology2004;6:308-18.
    [153] Beurel E, Jope RS. The paradoxical pro-and anti-apoptotic actions of GSK3inthe intrinsic and extrinsic apoptosis signaling pathways. Progress in neurobiology2006;79:173-89.
    [154] Hoeflich KP, Luo J, Rubie EA et al. Requirement for glycogen synthasekinase-3beta in cell survival and NF-kappaB activation. Nature2000;406:86-90.
    [155] Pap M, Cooper GM. Role of glycogen synthase kinase-3in thephosphatidylinositol3-Kinase/Akt cell survival pathway. J Biol Chem1998;273:19929-32.
    [156] Casillas-Ramirez A, Mosbah IB, Ramalho F et al. Past and future approaches toischemia-reperfusion lesion associated with liver transplantation. Life Sci2006;79:1881-94.
    [157] Harada N, Hatano E, Koizumi N et al. Akt activation protects rat liver fromischemia/reperfusion injury. The Journal of surgical research2004;121:159-70.
    [158] Vivanco I, Sawyers CL. The phosphatidylinositol3-Kinase AKT pathway inhuman cancer. Nat Rev Cancer2002;2:489-501.
    [159] Lopez-Neblina F, Toledo-Pereyra LH. Phosphoregulation of signal transductionpathways in ischemia and reperfusion. The Journal of surgical research2006;134:292-9.
    [160] Fukunaga K, Kawano T. Akt is a molecular target for signal transduction therapyin brain ischemic insult. J Pharmacol Sci2003;92:317-27.
    [161] Chan PH. Future targets and cascades for neuroprotective strategies. Stroke2004;35:2748-50.
    [162] Kovacina KS, Park GY, Bae SS et al. Identification of a proline-rich Akt substrateas a14-3-3binding partner. J Biol Chem2003;278:10189-94.
    [163] Saito A, Narasimhan P, Hayashi T et al. Neuroprotective role of a proline-rich Aktsubstrate in apoptotic neuronal cell death after stroke: relationships with nerve growthfactor. The Journal of neuroscience: the official journal of the Society for Neuroscience2004;24:1584-93.
    [164] Maehama T, Dixon JE. The tumor suppressor, PTEN/MMAC1, dephosphorylatesthe lipid second messenger, phosphatidylinositol3,4,5-trisphosphate. J Biol Chem1998;273:13375-8.
    [165] Maira SM, Galetic I, Brazil DP et al. Carboxyl-terminal modulator protein(CTMP), a negative regulator of PKB/Akt and v-Akt at the plasma membrane. Science2001;294:374-80.
    [166] Knobbe CB, Reifenberger J, Blaschke B, Reifenberger G. Hypermethylation andtranscriptional downregulation of the carboxyl-terminal modulator protein gene inglioblastomas. J Natl Cancer Inst2004;96:483-6.
    [167] Parcellier A, Tintignac LA, Zhuravleva E et al. Carboxy-Terminal ModulatorProtein (CTMP) is a mitochondrial protein that sensitizes cells to apoptosis. Cell Signal2009;21:639-50.
    [168] Tatlisumak T, Takano K, Carano RA et al. Delayed treatment with an adenosinekinase inhibitor, GP683, attenuates infarct size in rats with temporary middle cerebralartery occlusion. Stroke1998;29:1952-8.
    [169] Garcia JH, Wagner S, Liu KF, Hu XJ. Neurological deficit and extent of neuronalnecrosis attributable to middle cerebral artery occlusion in rats. Statistical validation.Stroke1995;26:627-34; discussion35.
    [170] Swanson RA, Sharp FR. Infarct measurement methodology. J Cereb Blood FlowMetab1994;14:697-8.
    [171] Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebralartery occlusion without craniectomy in rats. Stroke1989;20:84-91.
    [172] Zhang QG, Han D, Xu J et al. Ischemic preconditioning negatively regulatesplenty of SH3s-mixed lineage kinase3-Rac1complex and c-Jun N-terminal kinase3signaling via activation of Akt. Neuroscience2006;143:431-44.
    [173] Sang H, Cao L, Qiu P et al. Isoflurane produces delayed preconditioning againstspinal cord ischemic injury via release of free radicals in rabbits. Anesthesiology2006;105:953-60.
    [174] Li QF, Zhu YS, Jiang H. Isoflurane preconditioning activates HIF-1alpha, iNOSand Erk1/2and protects against oxygen-glucose deprivation neuronal injury. Brain Res2008;1245:26-35.
    [175] Zhang HP, Yuan LB, Zhao RN et al. Isoflurane preconditioning inducesneuroprotection by attenuating ubiquitin-conjugated protein aggregation in a mouse modelof transient global cerebral ischemia. Anesthesia and analgesia2010;111:506-14.
    [176] Bedirli N, Bagriacik EU, Emmez H et al. Sevoflurane and isofluranepreconditioning provides neuroprotection by inhibition of apoptosis-related mRNAexpression in a rat model of focal cerebral ischemia. J Neurosurg Anesthesiol2012;24:336-44.
    [177] Lei C, Deng J, Wang B et al. Reactive oxygen species scavenger inhibits STAT3activation after transient focal cerebral ischemia-reperfusion injury in rats. Anesthesia andanalgesia2011;113:153-9.
    [178] Ashwal S, Tone B, Tian HR et al. Core and penumbral nitric oxide synthaseactivity during cerebral ischemia and reperfusion. Stroke1998;29:1037-46.
    [179] Velly LJ, Canas PT, Guillet BA et al. Early anesthetic preconditioning in mixedcortical neuronal-glial cell cultures subjected to oxygen-glucose deprivation: the role ofadenosine triphosphate dependent potassium channels and reactive oxygen species insevoflurane-induced neuroprotection. Anesthesia and analgesia2009;108:955-63.
    [180] Ye Z, Huang YM, Wang E et al. Sevoflurane-induced delayed neuroprotectioninvolves mitoK(ATP) channel opening and PKC epsilon activation. Molecular biologyreports2012;39:5049-57.
    [181] Wang L, Traystman RJ, Murphy SJ. Inhalational anesthetics as preconditioningagents in ischemic brain. Curr Opin Pharmacol2008;8:104-10.
    [182] Onishi A, Miyamae M, Kaneda K et al. Direct evidence for inhibition ofmitochondrial permeability transition pore opening by sevoflurane preconditioning incardiomyocytes: comparison with cyclosporine A. Eur J Pharmacol2012;675:40-6.
    [183] Mottet D, Dumont V, Deccache Y et al. Regulation of hypoxia-induciblefactor-1alpha protein level during hypoxic conditions by the phosphatidylinositol3-kinase/Akt/glycogen synthase kinase3beta pathway in HepG2cells. J Biol Chem2003;278:31277-85.
    [184] Wang F, Xu L, Guo C et al. Identification of RegIV as a novel GLI1target genein human pancreatic cancer. PLoS One2011;6:e18434.
    [185] Parcellier A, Tintignac LA, Zhuravleva E et al. The Carboxy-Terminal ModulatorProtein (CTMP) regulates mitochondrial dynamics. PLoS One2009;4:e5471.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700